用户名: 密码: 验证码:
基于数值线性代数与稀疏优化的图像复原问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像在形成、记录、处理和传输过程中,由于成像系统、记录设备和传输介质等不完善,从而导致图像质量下降即图像降质。例如,大气湍流的扰动效应,环境条件的变化和传感元器件自身的质量原因产生的噪声干扰,被摄物与成像设备间的相对运动造成的运动模糊等。图像复原是利用图像的某些先验知识来重建图像从而改善图像质量的技术。然而随着对图像质量和图像分辨率要求的提高,图像复原算法的代价和硬件实现的复杂度显著地增加,且实际应用中对图像复原算法通常有实时性要求。这对现有数字图像复原技术提出了更大的挑战也预示了其广阔的应用前景。本文研究内容涉及图像复原问题中的两个方面:其一,主要发展了求解图像复原问题中大规模线性代数系统的高效正则化方法;其二,研究更加符合实际的图像复原模型。具体来说,本文研究内容组织为方法篇和模型篇,其中前四部分归于正则化方法研究篇,后两部分属于模型研究篇,具体内容如下
     基于Toeplitz-plus-Hankel矩阵的分裂,提出了求解Toeplitz-plus-Hankel线性系统的分裂迭代方法并进一步讨论了分裂迭代方法的计算复杂度,收敛性质以及(拟)最优参数的选取问题。
     利用新均值边界条件下模糊矩阵的特殊结构,给出了其模糊矩阵的最优Kronecker积逼近算法。并进一步提出了基于Kronecker积逼近的TSVD型正则化方法来求解新均值边界条件下图像复原问题。
     Landweber方法具有简单的迭代格式,但缓慢的收敛速度限制了Landweber方法的广泛应用。提出了基于向量外推的Landweber方法并进一步考虑了更加实用的重启型基于向量外推的Landweber方法。数值实验说明基于向量外推的Landweber方法的收敛速度优于其它Landweber型方法的收敛速度。
     受基于向量外推的截断奇异值分解(TSVD)方法在中小规模问题上优异表现启发,提出适用于大规模线性离散不适定问题的高效杂交正则化方法。该杂交正则化方法将基于向量外推的TSVD方法用于求解Krylov子空间方法产生的中小规模问题,从而发挥了Krylov子空间方法和基于向量外推的TSVD方法各自的优势。
     由于各种原因,实际情况中点扩散函数通常不能精确给定。我们考虑涉及复原图像和点扩散函数噪声两个变量的模型来求解点扩散函数被噪声污染情况下的图像复原问题。并提出求解该模型的交替极小化方法和讨论交替极小化方法的收敛性质。大量的数值实验说明了建立模型的合理性和交替极小化方法的高效性。
     如何有效地解译混合像元(unmixing)和去除造成遥感图像降质的模糊是高光谱遥感应用的关键问题。建立了高光谱图像的解译混合像元和去除模糊模型并提出了求解模型的交替迭代方法。大量的数值实验表明建立模型的合理性和交替迭代方法的高效性。
During the formation, recording, processing and transmitting, imperfect imagingsystems, recording equipments and transmission medium will result in the degradationof images. For examples, effects of atmospheric turbulence, noise caused by sensors andchanges of environment condition, motion blurs caused by the relative motion betweenthe camera and the entire scene. Image restoration is the reconstruction of the original im-age from a degraded observation with a priori knowledge of images to improve the qualityof images. With rising requirements of image resolution and image quality, and real-timerequirements in practice, the computational burdens increase significantly. This providesgrand challenges and also a promising future for the development of image restorationtechniques. The contents of this thesis are organized into regularization methods studyparts and models study parts, among which, the following first four parts are attributedto the first kind of study parts while the latter successive two parts belong to the secondkind. They are illustrated in detail as follows:
     Based on the matrix splitting of a Toeplitz-plus-Hankel matrix, an efficient splittingiteration method for Toeplitz-plus-Hankel systems has been developed. The convergenceproperties and the computational cost of the proposed splitting iteration method are dis-cussed. Moreover, we have studied the problem of choosing optimal or quasi-optimalparameters of the proposed splitting iteration method. The performance of this splittingiteration method is illustrated by numerical experiments.
     As alternatives to classic boundary conditions, new mean boundary conditions havebeen recently introduced for image restoration problems. We have proposed an efficien-t scheme of computing optimal Kronecker product approximations of blurring matriceswith new mean boundary conditions. Based on Kronecker product approximations, trun-cated singular value decomposition (TSVD) type regularization method is developed forimage restoration problems with new mean boundary conditions.
     Landweber method is one of classical iterative regularization methods for solvinglinear discrete ill-posed problems. However, the slow convergence limits its availabilityfor widespread applications. We have presented the vector extrapolation based Landwebermethod which exhibits a fast and stable convergence behavior. Moreover, the restarted version of the vector extrapolation based Landweber method is considered for practicalconsiderations. Numerical results are given to illustrate the performance of the vectorextrapolation based Landweber method.
     Motivated by the excellent performance of the vector extrapolation enhanced TSVDmethod on small-to-medium sized problems, we have proposed an efficient hybrid methodfor large-scale linear discrete ill-posed problems, which applies the vector extrapolationenhanced TSVD method to small-to-medium sized problems generated by Krylov sub-space methods. Numerical experiments are reported to illustrate the performance of theproposed hybrid method for large-scale linear discrete ill-posed problems.
     In practice, one is often faced with imprecise knowledge of the point spread function-s. We studied the functional model by minimizing two variables: the restored image andthe noise on the data-fitting term, the magnitude of the noise in the point spread function,and the total variation regularization term. By making use of the structure of the func-tional, an efficient alternating minimization scheme is developed to solve the proposedmodel. The existence of minimizers of the proposed model and the convergence of theproposed scheme are established. Numerical examples are also presented to demonstratethe effectiveness of the proposed model and the efficiency of the numerical scheme.
     Unmixing and deblurring are key issues of hyperspectral imaging. We have proposedan unmixing and deblurring model of hyperspactral data and developed an alternatingdirection method to solve the proposed model. Extensive numerical results are reportedto demonstrate the effectiveness of the proposed model and the efficiency of the proposedscheme.
引文
[1] H. Andrews, B. Hunt. Digital Image Restoration[M]. Englewood Cliffs: Prentice-Hall Press,1977,1-30
    [2] A. K. Jain. Fundamentals of Digital Image Processing[M]. Englewood Cliffs: Prentice-HallPress,1989,1-10
    [3] M. Bertero, P. Boccacci. Introduction to Inverse Problems in Imaging[M]. London: Institute ofPhysics Publishing,1998,4-10
    [4] G. Aubert, P. Kornprobst. Mathematical Problems in Image Processing: Partial Differential E-quations and the Calculus of Variations[M]. New York: Springer,2006,10-30
    [5]麦特尔.现代数字图像处理[M].北京:电子工业出版社,2006,1-10
    [6]王桥.数字图像处理[M].北京:科学出版社,2009,30-35
    [7]耿则勋,陈波,王振国等.自适应光学图像复原理论与方法[M].北京:科学出版社,2010,10-20
    [8] L. Xu, J. Jia. Two-phase kernel estimation for robust motion deblurring[C]. European Conferenceon Computer Vision, Crete,2010,157-170
    [9] A. Levin, Y. Weiss, F. Durand, et al. Understanding and evaluating blind deconvolution algo-rithms[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami,2009,1964-1971
    [10]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2001,1-10
    [11]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008,2-15
    [12]吴亚东,张红英,吴斌.数字图像修复技术[M].北京:科学出版社,2010,5-13
    [13] N. Joshi, S. B. Kang, C. L. Zitnick, et al. Image deblurring using inertial measurement sensors[J].ACM Transactions on Graphics,2010,29:1-9
    [14] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of LinearInversion[M]. Philadelphia: SIAM,1997,1-50
    [15] P. C. Hansen, J. G. Nagy, D. P. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering[M].Philadelphia: SIAM,2006,13-20
    [16] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms[M]. Philadelphia: SIAM,2010,5-23
    [17] X. Q. Jin. Developments and Applications of Block Toeplitz Iterative Solvers[M]. Dordrecht:Kluwer Academic Publishers,2002,1-10
    [18] R. H. Chan, X. Q. Jin. An Introduction to Iterative Toeplitz Solvers[M]. Philadelphia: SIAM,2007,30-40
    [19] J. Huang, T. Z. Huang, X. L. Zhao, et al. Image restoration with shifting reflective boundaryconditions[J]. Science China Information Sciences, to appear
    [20] F. Chen, L. Yu. Image deblurring with odd symmetry discrete Neumann boundary condition[C].International Conference on Machine Learning and Cybernetics, Hong Kong,2007,1749-1752
    [21] H. Engl, M. Hanke, A. Neubauer. Regularization of Inverse Problems[M]. Dordrecht: KluwerAcademic Publishers,1996,5-15
    [22] C. R. Vogel. Computational Methods for Inverse Problems[M]. Philadelphia: SIAM,2002,15-30
    [23]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003,20-30
    [24]刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社,2005,30-50
    [25]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007,50-55
    [26]冯立新.反问题的计算方法及应用[M].哈尔滨:哈尔滨工业大学出版社,2011,50-60
    [27] T. F. Chan, J. Shen. Image Processing and Analysis: Variational, Pde, Wavelet, and StochasticMethods[M]. Philadelphia: SIAM,2005,1-30
    [28]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2009,3-21
    [29]冯象初,王卫卫.图像处理的变分和偏微分方程方法[M].北京:科学出版社,2009,1-15
    [30] A. H. Roger, C. R. Johnson. Matrix Analysis[M]. Cambridge: Cambridge University Press,1990,70-88
    [31] G. H. Golub, C. F. Van Loan. Matrix Computation[M]. Baltimore: The Johns Hopkins UniversityPress,1996,90-112
    [32]黄廷祝,钟守铭,李正良.矩阵理论[M].北京:高等教育出版社,2003,20-30
    [33]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004,30-50
    [34] M. E. Hochstenbach, L. Reichel. Subspace-restricted singular value decompositions for lineardiscrete ill-posed problems[J]. J. Comput. Appl. Math.,2010,235:1053-1064
    [35] M. Fuhry, L. Reichel. A new Tikhonov regularization method[J]. Numer. Algorithms,2011,59:1-13
    [36] M. E. Hochstenbach, L. Reichel. Fractional Tikhonov regularization for linear discrete ill-posedproblems[J]. BIT,2011,51:197-215
    [37] M. Kilmer, G. W. Stewart. Iterative regularization and MINRES[J]. SIAM J. Matrix Anal. Appl.,2000,21:613-628
    [38] T. K. Jensen, P. C. Hansen. Iterative regularization with minimum-residual methods[J]. BIT,2007,47:103-120
    [39] P. Brianzi, P. Favati, O. Menchi, et al. A framework for studying the regularizing properties ofKrylov subspace methods[J]. Inverse problems,2006,22:1007-1021
    [40] P. C. Hansen, T. K. Jensen. Large-scale methods in image deblurring[C]. International conferenceon Applied parallel computing: state of the art in scientific computing, Umea,2007,24-35
    [41] M. E. Kilmer, P. C. Hansen, M. I. Espan ol. A projection-based approach to general-formTikhonov regularization[J]. SIAM J. Sci. Comput.,2007,29:315-330
    [42] S. Mallat. A Wavelet Tour of Signal Processing: the Sparse Way[M]. Academic Press,2009,1-30
    [43] M. Elad. Sparse and Redundant Representations: from Theory to Applications in Signal andImage Processing[M]. New York, Springer,2010,1-20
    [44]焦李成,王爽.图像多尺度几何分析理论与应用[M].西安:西安电子科技大学出版社,2008,1-30
    [45] W. E. Vinje, J. L. Gallant. Sparse coding and decorrelation in primary visual cortex during naturalvision[J]. Science,2000,287:1272-1276
    [46] S. Nirenberg, S. M. Carcieri, A. L. Jacobs, et al. Retinal ganglion cell sact largely as independentencoders[J]. Nature,2001,411:698-701
    [47] J. Nocedal, S. J. Wright. Numerical optimization[M]. New York: Springer,1999,30-50
    [48] S. P. Boyd, L. Vandenberghe. Convex Optimization[M]. Cambridge: Cambridge UniversityPress,2004,30-50
    [49] K. Ito, K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applications[M].Philadelphia: SIAM,2008,50-69
    [50] M. Fornasier. Numerical Methods for Sparse Recovery[M]. Berlin/New York: Walter de GruyterGmbH&Co. KG,2010,10-15
    [51] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms[J]. Phys-ica D: Nonlinear Phenomena,1992,60:259-268
    [52] A. Buades, B. Coll, J. M. Morel. A review of image denoising algorithms with a new one[J].Multiscale Model. Simul.,2005,4:490-530
    [53] K. Bredies, K. Kunisch, T. Pock, et al. Total generalized variation[J]. SIAM J. Imaging Sciences,2010,3:492-526
    [54] L. Xiao, L. L. Huang, Z. H. Wei. A weberized total variation regularization-based image multi-plicative noise removal algorithm[J]. EURASIP J. Adv. Sig. Proc.,2010,38:1-15
    [55] M. Benning, C. Brune, M. Burger, et al. Higher-order TV methods enhancement via Bregmaniteration[R]. Reports12-04, UCLA Department of Mathematics,2012
    [56] J. F. Cai, S. Osher Z. Shen. Linearized Bregman iterations for frame-based image deblurring[J].SIAM J. Imaging Sciences,2009,2:226–252
    [57] J. F. Cai, S. Osher, Z. Shen. Split Bregman methods and frame based image restoration[J]. Mul-tiscale Model. Simul.,2009,8:337-369
    [58] J. F. Cai, Z. Shen. Framelet based deconvolution[J]. J. Comput. Math.,2010,28:289-308
    [59] S. Setzer. Operator splittings, Bregman methods and frame shrinkage in image processing[J].Int. J. Comput Vision,2011,92:265-280
    [60] Z. Shen, K. C. Toh, S. Yun. An accelerated proximal gradient algorithm for frame based imagerestorations via the balanced approach[J]. SIAM J. Imaging Sciences,2011,4:2011
    [61] J. F. Cai, B. Dong, S. Osher, et al. Image restoration: total variation, wavelet frames, and be-yond[J]. J. Amer. Math. Soc.,2012,25:1033-1089
    [62] Y. Wang, J. Yang, W. Yin, et al. A new alternating minimization algorithm for total variationimage reconstruction[J]. SIAM J. Imaging Sciences,2008,1:248-272
    [63] T. Goldstein, S. Osher. The split Bregman method for L1regularized problems[J]. SIAM J.Imaging Sciences,2009,2:323–343
    [64] X. C. Tai, C. Wu. Augmented Lagrangian method, dual methods, and split Bregman iteration forROF, vectorial TV, and high order models[J]. SIAM J. Imaging Sciences,2010,3:300-339
    [65] M. V. Afonso, J. Bioucas-Dias, M. A. T. Figueiredo. Fast image recovery using variable splittingand constrained optimization[J]. IEEE Trans. Image. Process.,2010,19:2345-2356
    [66] H. H. Bauschke, R. S. Burachik, P. L. Combettes, et al. Fixed-Point Algorithms for InverseProblems in Science and Engineering[M]. New York: Springer,2011,20-30
    [67] C. Clason, B. Jin, K. Kunisch. A duality-based splitting method for1-TV image restoration withautomatic regularization parameter choice[J]. SIAM J. Sci. Comput.,2009,3:1484-1505
    [68] P. L. Combettes, D. Dung, B. C. Vu. Dualization of signal recovery problems[J]. Set-Valued Var.Anal.,2010,18:373-404
    [69] M. Zhu, T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation imagerestoration[R]. Reports08-34, UCLA Department of Mathematics,2008
    [70] E. Esser, X. Zhang, T. F. Chan. A general framework for a class of first order primal-dual al-gorithms for convex optimization in imaging science[J]. SIAM J. Imaging Sciences,2010,3:1015-1046
    [71] A. Chambolle, T. Pock. A first-order primal-dual algorithm for convex problems with applica-tions to imaging[J]. J. Math. Imaging Vis.,2011,40:120-145
    [72]徐仲,张凯院,陆全. Toeplitz矩阵类的快速算法[M].西安:西北工业大学出版社,1999,29-34
    [73] M. K. Ng. Iteration Methods for Toeplitz Systems[M]. New York: Oxford University Press,2004,31-47
    [74] G. A. Merchant, T. W. Parks. Efficient solution of a Toeplitz-plus-Hankel coefficient matrixsystem of equations[J]. IEEE Trans. Acoust. Speech Signal Process.,1982,30:40-44
    [75] I. Gohberg, I. Koltracht. Efficient algorithm for Toeplitz-plus-Hankel matrices[J]. Integral Equa-tions Operator Theory,1982,12:136-142
    [76] Q. Alfio, S. Riccardo, S. Fausto. Numerical Mathematics[M]. Berlin: Springer,2010,30-43
    [77] Z. Z. Bai, G. H. Golub, M. K. Ng. Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl.,2003,24:603-626
    [78] M. K. Ng. Circulant and skew-circulant splitting methods for Toeplitz systems[J]. J. Comput.Appl. Math.,2003,159:101-108
    [79] X. L. Zhao, T. Z. Huang, S. L. Wu, et al. DCT and DST based splitting methods for Toeplitzsystems[J]. Int. J. Comput. Math.,2012,89:691-700
    [80] C. Q. Gu, Z. L. Tian. On the HSS iteration methods for positive definite Toeplitz linear systemsCirculant and skew-circulant splitting methods for Toeplitz systems[J]. J. Comput. Appl. Math.,2009,224:709-718
    [81] F. Chen, Y. L. Jiang. On HSS and AHSS iteration methods for nonsymmetric positive definiteToeplitz systems[J]. J. Comput. Appl. Math.,2010,234:2432-2440
    [82] R. H. Chan, M. K. Ng. Toeplitz preconditioners for Hermitian Toeplitz systems[J]. Linear Alge-bra Appl.,1993,190:181-208
    [83] Z. Z. Bai, G. H. Golub, L. Z. Lu, et al. Block triangular and skew-hermitian splitting methodsfor positive definite linear systems[J]. SIAM J. Sci. Comput.,2005,26:844-863
    [84] X. G. Lv, T. Z. Huang, Z. B. Xu, et al. A special Hermitian and skew-Hermitian splitting methodfor image restoration[J]. Appl. Math. Model.,2012, to appear
    [85] J. G. Nagy, M.E. Kilmer. Kronecker product approximation for preconditioning in three-dimensional imaging applications[J]. IEEE Trans. Image Process.,2006,15:604-613
    [86] Xi-Le Zhao, Ting-Zhu Huang. New Kronecker product preconditioner in image restoration[C].Ninth International Conference on Matrix Theory and its Applications, Shanghai,2010,45-48
    [87] M. K. Ng, R. H. Chan, W. Tang. A fast algorithm for deblurring models with Neumann boundarycondtions[J]. SIAM J. Sci. Comput.,1999,21:851-866
    [88] S. Serra-Capizzano. A note on antireflective boundary conditions and fast deblurring models[J].SIAM J. Sci. Comput.,2003,25:1307-1325
    [89] Y. Y. Shi, Q. S. Chang. Acceleration methods for image restoration problem with different bound-ary conditions[J]. Appl. Numer. Math.,2008,58:602-614
    [90] J. G. Nagy, K. Palmer, L. Perrone. Iterative methods for image deblurring: a Matlab object-oriented approach[J]. Numer. Algorithms,2004,36:73-93
    [91] M. Christiansen, M. Hanke. Deblurring methods using antireflective boundary condition[J].SIAM J. Sci. Comput.,2008,30:855-872
    [92] M. Donatelli, S. Serra-Capizzano. Anti-reflective boundary conditions and re-blurring[J]. InverseProblems,2005,21:169-182
    [93] M. Donatelli, C. Estatico, A. Martinelli, et al. Improved image deblurring with anti-reflectiveboundary conditions and re-blurring[J]. Inverse Problems,2006,22:2035-2053
    [94] A. Arico, M. Donatelli, J. G. Nagy, et al. The anti-reflective transform and regularization byfiltering[J]. Lecture Notes in Electrical Engineering: Numerical Linear Algebra in Signals, Sys-tems and Control, New York,2011,1-21
    [95] J. Kamm, J. G. Nagy. Optimal Kronecker product approximation of block Toeplitz matrices[J].SIAM J. Matrix Anal. Appl.,2000,22:155-172
    [96] J. G. Nagy, M. K. Ng, L. Perrone. Kronecker product appoximations for image restoration withreflexive boundary conditions[J]. SIAM J. Matrix Anal. Appl.,2004,26:829-841
    [97] L. Perrone. Kronecker product appoximations for image restoration with anti-reflective boundaryconditions[J]. Numer. Linear Algebra,2006,13:1-22
    [98] C. F. Van Loan, N. Pitsianis. Approximation with Kronecker products[C]. Linear Algebra forLarge Scale and Real Time Applications, Ithaca,1993,293-314
    [99] N. P. Pitsianis. The Kronecker product in approximation and fast transform generation[D]. Itha-ca: Cornell University,1997
    [100] J. G. Nagy, K. Palmer. Steepest descent, CG, and iterative regularization of ill-posed problem-s[J]. BIT,2003,43:1003-1017
    [101] C. Vonesch, M. Unser. A fast thresholded Landweber algorithm for wavelet-regularized multi-dimensional deconvolution[J]. IEEE Trans. Image Process.,2008,17:539-549
    [102] H. Zhang, L. Cheng. Projected Landweber iteration for matrix completion[J]. J. Comput. Appl.Math.,2010,235:593-601
    [103] L. Liang, Y. Xu. Adaptive Landweber method to deblur images[J]. IEEE Signal Proc. Let.,2003,10:129-132
    [104] D. Smith, W. Ford, A. Sidi. Extrapolation methods for vector sequences[J]. SIAM Rev.,1987,29:199-233
    [105] K. Jbilou, H. Sadok. Vector extrapolation methods: applications and numerical comparison[J].J. Comput. Appl. Math.,2000,122:149-165
    [106] A. Sidi. Vector extrapolation methods with applications to solution of large systems of equationsand to PageRank computations[J]. Comput. Math. Appl.,2008,56:1-24
    [107] G. Rosman, L. Dascal, R. Kimmel, et al. Efficient beltrami image filtering via vector extrapola-tion methods[J]. SIAM J. Imaging Sciences,2008,3:858-878
    [108] A. Sidi. Practical Extrapolation Methods: Theory and Applications[M]. Cambridge: CambridgeUniversity Press,2003,30-40
    [109] A. Sidi. Efficient implementation of minimal polynomial and reduced rank extrapolation meth-ods[J]. J. Comput. Appl. Math.,1991,36:305-337
    [110] K. Jbilou, H. Sadok. LU implementation of the modified minimal polynomial extrapolationmethod for solving linear and nonlinear systems[J]. IMA J. Numer. Anal.,1999,19:549-561
    [111] A. Sidi. Convergence and stability properties of minimal polynomial and reduced rank extrap-olation algorithms[J]. SIAM J. Numer. Anal.,1986,23:197-209
    [112]A. Bjo¨rck. Numerical Methods for Least Squares Problems[M]. Philadelphia: SIAM,1996,20-30
    [113] T. Elfving, T. Nikazad. Stopping rules for Landweber-type iteration[J]. Inverse Problems,2007,23:1417-1432
    [114] X. L. Zhao, T. Z. Huang, X. G. Lv. Acceleration of the lagged diffusivity fixed point methodin total variation in image restoration[C]. International Conference of Matrices and Operators,Chengdu,2011,410-413
    [115] P. C. Hansen, D. P. O’Leary. The use of the L-curve in the regularization of discrete ill-posedproblems[J]. SIAM J. Sci. Comput.,1993,14:1487-1503
    [116] G. H. Golub, M. Heath, G. Wahba. Generalized cross-validation as a method for choosing agood ridge parameter[J]. Technometrics,1979,21:215-223
    [117] M. E. Kilmer, D. P. O’Leary. Choosing regularization parameters in iterative methods for ill-posed problems[J]. SIAM J. Matrix Anal. Appl.,2001,22:1204-1221
    [118] K. Jbilou, L. Reichel, H. Sadok. Vector extrapolation enhanced TSVD for linear discrete ill-posed problems[J]. Numer. Algorithms,2009,51:195-208
    [119] D. P. O’Leary, J. A. Simmons. A bidiagonalization-regularization procedure for large scalediscretizations of ill-posed problems[J]. SIAM J. Sci. Comput.,1981,2:474-489
    [120] F. Baza′n, L. Borges. GKB-FP: an algorithm for large-scale discrete ill-posed problems[J]. BIT,2010,50:481-507
    [121] I. Hneˇtynkova′, M. Plesˇinger, Z. Strakosˇ. The regularizing effect of the Golub-Kahan iterativebidiagonalization and revealing the noise level in the data[J]. BIT,2009,49:669-696
    [122] P. C. Hansen. Regularization tools: A Matlab package for analysis and solution of discreteill-posed problems[J]. Numer. Algorithms,1994,6:1-35
    [123]A. Bjo¨rck. A bidiagonalization algorithm for solving large and sparse ill-posed systems of linearequations[J]. BIT,1988,28:659-670
    [124]A. Bjo¨rck, E. Grimme, P. V. Dooren. An implicit shift bidiagonalization algorithm for ill-posedsystems[J]. BIT,1994,34:510-534
    [125] T. Bell. Electronics and the stars[J]. IEEE Spectrum,1995,32:16-24
    [126] P. Campisi, K. Egiazarian. Blind Image Deconvolution: Theory and Applications[M]. NewYork: CRC Press,2007,50-70
    [127] L. Guan, R. Ward. Restoration of randomly blurred images via the maximum a posteriori crite-rion[J]. IEEE Trans. Image Process.,1992,1:256-262
    [128] V. Mesarovic, N. Galatsanos, A. Katsaggelos. Regularized constrained total least squares imagerestoration[J]. IEEE Trans. Image Process.,1995,4:1096-1108
    [129] M. K. Ng, R. Plemmons, F. Pimentel. A new approach to constrained total least squares imagerestoration[J]. Linear Algebra Appl.,2000,316:237-258
    [130] A. Pruessner, D. O’Leary. Blind deconvolution using a regularized structured total least squaresnorm algorithm[J]. SIAM J. Matrix Anal. Appl.,2003,24:1018-1037
    [131] H. Fu, J. Barlow. A regularized structured total least squares algorithm for high-resolution im-age reconstruction[J]. Linear Algebra Appl.,2004,391:75-98
    [132] J. Rosen, H. Park, J. Glick. Total least norm formulation and solution for structured problems[J].SIAM J. Matrix Anal. Appl.,1996,17:110-126
    [133] M. K. Ng, P. Weiss, X. Yuan. Solving constrained total-variation image restoration and re-construction problems via alternating direction methods[J]. SIAM J. Sci. Comput.,2010,32:2710-2736
    [134] R. Glowinski. Numerical Methods For Non-Linear. Variational Problems[M]. Berlin: Springer-Verlag,2008,40-70
    [135] M. K. Ng, F. Wang, X. Yuan. Inexact alternating direction methods for image recovery[J]. SIAMJ. Sci. Comput.,2011,33:1643-1668
    [136]贾森.非监督的高光谱图像解混技术研究[D].浙江:浙江大学,2007
    [137] M. C. Roggemann, B. Welsh. Imaging Through Turbulence[M]. New York: CRC Press,1996,1-30
    [138]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000,30-40
    [139] C. Chang. Hyperspectral Imaging: Techniques for Spectral Detection and Classification[M].New York: Kluwer Academic/Plenum Publishers,2003,20-30
    [140] M. Eismann. Hyperspectral Remote Sensing[M]. Bellingham: SPIE Press,2012,10-50
    [141] J. Bioucas-Dias, A. Plaza, N. Dobigeon, et al. Hyperspectral unmixing overview: Geometrical,statistical, and sparse regression-based approaches[J]. IEEE J-STARS,2012,99:1-16
    [142] M. Iordache, J. Bioucas-Dias, A. Plaza. Sparse unmixing of hyperspectral data[J]. IEEE Trans.Geosci. Remote.,2011,49:2014-2039
    [143] M. Winter. N-FINDR: an algorithm for fast autonomous spectral end-member determination inhyperspectral data[C]. SPIE Conference of Imaging Spectrometry, New York,2003,266-275
    [144] J. Bioucas-Dias. A variable splitting augmented Lagrangian approach to linear spectral unmix-ing[C]. IEEE Worskshop on Hyperspectral Image and Signal Processing: Evolution in RemoteSensing, Grenoble,2009,1-4
    [145] M. Iordache, J. Bioucas-Dias, A. Plaza. Total variation regulatization in sparse hyperspectralunmixing[C].3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Re-mote Sensing, Lisbon,2011,1-4
    [146] J. Bioucas-Dias, M. Figueiredo. Alternating direction algorithms for constrained sparse regres-sion: Application to hyperspectral unmixing[C].2nd Workshop on Hyperspectral Image andSignal Processing: Evolution in Remote Sensing, Reykjavik,2010,1-4
    [147] C. Li, T. Sun, K. Kelly, et al. A compressive sensing and unmixing scheme for hyperspectraldata processing[J]. IEEE Trans. Image Process.,2012,21:1200-1210
    [148] N. Gillis, R. Plemmons. Dimensionality reduction, classification and spectral mixture analysisusing nonnegative underapproximation[J]. Optical Engineering,2011,50:1-16
    [149] N. Gillis, R. Plemmons. Sparse nonnegative matrix underapproximation and its application tohyperspectral image analysis[J]. Linear Algebra Appl., to appear
    [150] Z. Guo, T. Wittman, S. Osher. L1unmixing and its application to hyperspectral image enhance-ment[C]. SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral,and Ultraspectral Imagery XV, San Diego,2009,73341-73449
    [151] F. Li, M. K. Ng, R. Plemmons. Coupled segmentation and denoising/deblurring models forhyperspectral material identification[J]. Numer. Linear Algebra,2012,19:153-173
    [152] M. Iordache, J. Bioucas-Dias, A. Plaza. Total variation spatial regularization for sparse hyper-spectral unmixing[J]. IEEE Trans. Geosci. Remote.,2012, to appear
    [153] M. Iordache. A sparse regression approach to hyperspectral unmixing[D]. Lisbon: UniversidadeTécnica de Lisboa,2011
    [154] N. Joshi, R. Szeliski, D. Kriegman. PSF estimation using sharp edge prediction[C]. IEEE Con-ference on Computer Vision and Pattern Recognition, Anchorage,2008,1-8
    [155] F. Chen, J. Ma. An empirical identification method of Gaussian blur parameter for image de-blurring[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami,2009,2467-2478
    [156] J. Eckstein, D. Bertsekas. On the Douglas-Rachford splitting method and the proximal pointalgorithm for maximal monotone operators[J]. Math. Program.,1992,55:293-318
    [157] Q. Zhang, H. Wang, R. Plemmons, et al. Tensor methods for hyperspectral data analysis: aspace object material identification study[J]. J. Opt. Soc. Am. A,2008,25:3001-3012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700