用户名: 密码: 验证码:
粘结NdFeB永磁材料制造原理与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘结NdFeB是在磁学、冶金、复合材料、粉末冶金、化工等多学科知识基础上发展起来的一种新型的功能复合材料,它具有许多烧结磁体所不具备的特点,引起了研究者和企业界的广泛关注。经过近二十年的研究发展,它成为永磁材料家族中的一个新宠,应用范围越来越广。
     粘结NdFeB的理论和技术主要包括①高性能磁粉的制备、②磁粉与粘结剂预混的配合料制备技术、③磁体的成型技术、④磁体的后处理技术。为了适应不断发展的技术和应用要求,对上述内容进行系统地总结和研究就显得十分必要。作者重点对粘结NdFeB磁体的设计理论、高性能双相纳米交换耦合磁粉、粘结NdFeB磁体用粘结剂和助剂、粘结NdFeB磁体的制备工艺、混杂粘结NdFeB磁体等进行了研究,制备了具有不同特性NdFeB基粘结磁体。
     本文首先对粘结NdFeB的设计进行了研究,提出了压缩成型和注射成型两类粘结NdFeB的磁粉堆垛模型,计算了这两类磁体粘结剂的最基本需求量,分别为:2.42wt%和5.18wt%;在分析影响粘结NdFeB性能的基础上,提出了其设计流程(图2.5)。
     在分析总结研究现状的基础上,作者研究了Nd(Pr)-Fe-B-Ti-C系双相纳米耦合磁体,通过电弧熔炼、快淬甩带制备了14种成分的Nd(Pr)_2Fe_(14)B/α-Fe合金,采用VSM测试分析了它们的磁性能,TEM和XRD分析了结构和组成,并对影响其材料结构和性能的因素进行了分析,结果表明:适量的钛和碳加入到Nd(Pr)-Fe-B基双相纳米复合永磁,改变了合金在冷却和晶化退火过程的相析出顺序,使2-14-1相成为先析出相,抑制了α-Fe的析出和晶粒长大,经快淬和晶化退火后,形成了细小均匀Nd_2Fe_(14)B纳米晶粒(20~30nm)被晶界区以α-Fe为主的软磁相所分隔的显微结构;当Re含量为7~9.5at%,Ti与2-14-1相的摩尔比1∶1,TiC与TiB_2的摩尔比1∶2时,Re-Fe-B-Ti-C合金的平均磁能积约为15MGOe(119.4kJ/m~3),其中稀土含量达到9at%时,纳米交换耦合永磁体矫顽力可以达到950kA/m(μ_0H=1.2T)以上。
     通过对不同粘结剂制备的粘结NdFeB磁体的磁性能、力学性能和磁体制备的工艺性能的实验比较与综合分析,确定了制备压缩粘结NdFeB磁体应选用环氧值高、润滑作用强、对磁粉包裹均匀的固态树脂作为粘结剂的主要成分,其中F48和E-20树脂是理想的树脂;实验研究了配合料存放不同时间后制备的磁体磁性能和力学性能,发现时效性能主要受固化剂与环氧树脂反应难易程度的影响,高温固化剂和潜伏性固化剂适于制备配合料,其中双氰胺/环氧树脂体系制备的配合料综合性能明显优于顺丁烯二酸酐/环氧树脂体系。配合料体系(HQP-2G+F-48+DICY)时效62天内,所制成的磁体抗压强度保持180MPa以上;通过调整尼龙与MOP-D磁粉的比例,混炼了不同配比的尼龙/MQP-D磁粉,热压后制成磁体,测试了磁体的密度,结果表明:78%体积分数的磁粉与尼龙混炼后,当成型压力达到120MPa时,磁体的密度就达到了5.9g/cm~3,可以实现低成型压力制备高密度磁体;采用F44树脂和间苯二胺固化剂制成粘结NdFeB磁体在180℃时的强度可以达到110MPa以上,在高温下可以正常使用。
     本文还对粘结NdFeB磁体制备的关键技术进行了研究,主要研究内容和结果为:
     (1)通过球磨等手段得到了不同粒度的磁粉,制成粘结磁体后测量其磁性能,并计算出磁粉的性能。结果表明磁粉粒径越小,磁体和磁粉的磁性能就越差,其根本原因是磁粉粒径减小,磁体内部和磁粉颗粒之间退磁场增加导致磁性能变差,如果磁粉的细化过程引起磁粉部分氧化也会导致磁性能的下降。小粒径的磁体制成粘结磁体后,由于磁体密度的下降还会引起磁体性能的进一步下降;
     (2)实验采用了不同偶联剂、不同用量、和不同处理方法对磁粉进行预处理,通过测量、比较所制备的粘结磁体力学性能与磁性能,认为通过偶联剂溶液对磁粉进行预处理可以明显提高磁粉的磁性能和力学性能,其中硅烷和钛酸酯的最佳用量为1wt%和0.1wt%;
     (3)实验研究了混胶造粒过程添加不同润滑剂对配合料的流动性和成型性的影响,发现添加0.2%的硬脂酸锌与聚乙烯醇缩丁醛(两者质量比为1∶1)混合润滑剂既可以显著地提高配合料的流动性,又可以保证粘结磁体的力学与磁性能;
     (4)通过对不同粘结剂含量粘结磁体的磁性能和力学性能测量分析,发现粘结剂的用量为2~3wt%左右时可以得到最佳综合性能;
     (5)实验通过测定不同压力下磁粉的粒度变化和相应粘结磁体的磁性能,结合磁体断口分析,认为900MPa是适宜的成型压力,成型压力太小磁体密度不高,磁性能低;太大虽然可以进一步提高磁体密度,但磁粉碎化严重,增加了磁体内部的退磁场,磁性能提高并不明显,同时还给成型模具带来严峻的考验;
     (6)实验研究了不同成型温度下粘结磁体的密度与磁性能,结果表明在树脂软化点以上温度附近进行温压成型可以提高磁体的密度和磁性能;
     (7)实验采用XRD研究了影响各向异性NdFe_(12)N_x粘结磁体取向度的因素,发现通过溶剂和强磁场预处理可以破坏磁粉之间存在的由于静磁作用而产生的团聚力,再通过磁场中混胶干燥,造粒后磁场成型、固化就可以得到取向度高的磁体,最大磁能积达到了6.44MGOe;
     (8)实验制备出了最高磁能积为94kJ/m~3(11.8MGOe)热固性NdFeB粘结磁体,和密度达到5.9g/cm~3、磁能积为62.0 kJ/m~3(7.79MGOe)的φ220mm磁体。
     实验最后研究了各向同性NdFeB和各向异性锶铁氧体、各向异性Sm_2Co_(17)两个体系的混杂粘结磁体,测量了不同的混杂比例的粘结磁体的磁性能,结果表明在NdFeB/锶铁氧体混杂磁体中锶铁氧体含量为50%以下时有矫顽力绝对增大的现象,而在NdFeB/各向异性Sm_2Co_(17)混杂磁体中Sm_2Co_(17)含量为10%时有剩磁增强现象,其磁能积达到了11.3MGOe(89.95kJ/m~3),Henkel曲线表明各向同性NdFeB/各向异性Sm_2Co_(17)混杂粘结磁体中存在有双相纳米耦合永磁中类似的交换作用。混杂磁体同时表现出了较单一磁粉制备的粘结磁体更好的温度稳定性。
Bonded NdFeB magnet is a new kind of functional composite materials and is becoming a new subject which is based on magnetism,metallurgy,composite materials, powder metallurgy and chemical engineering etc.Broad attention has been driven to bonded NdFeB magnets because of their special characteristics which sintered NdFeB magnets don't have.
     In terms of materials and technics,the routine of bonded magnet includes preparation of high performance magnetic powders,preparation of premixed powders, compressing and the subsequent treatment of bonded magnets.It is necessary to summarized and investgated the above aspects systematically in order to meet the requirements of continuously developing technics and applications.In this dissertation, the design of bonded magnets,high performance nanocomposite exchange-coupled magnetic powder,the binders and curing agents for bonded NdFeB magnets,the technics of preparing bonded NdFeB magnets and bonded hybrid magnets were discussed in detail,and bonded magnets with different characteristics based on NdFeB powders were gained.
     Two kinds of packing model of magnetic powders for compression moulding magnets and injection moulding magnets were suggested.The least amount of binder for these two kinds of bonded magnets is 2.42wt%and 5.18wt%respectively.The flow chart(Fig.2.5) of designing bonded magnets was given.
     Nd(Pr)-Fe-B-Ti-C nanocomposite magnets with fourteen different compositions were prepared by means of arc melting and melt-spinning.With the help of Vibrating Sample Magnetometer(VSM),TEM and XRD,the magnetic properties,microstructure and constituents of these magnets were measured.The factors that influence the microstructure and magnetic properties were also discussed.The results show that the sequence of phase formation in cooling and annealing process is changed for the addition Titanium and Carbon.Addition of Ti and C promotes the formation of 2/14/1 phase and suppresses the formation and the growth ofα-Fe,resulting in a fine microstructure with Nd_2Fe_(14)B(about 20~30nm) surrounded by a boundary phase consisting ofα-Fe and other soft phases.For nanocomposite Re-Fe-B-Ti-C alloys,with 7~9.5at%Rare Eearth metals,ratio of 1:1 for Ti to 2/14/1 phase,ratio of 1:2 TiC to TiB_2,an average energy product could reach to approximately 15MGOe(119.4k J/m~3). Especially when the rare earth metal content reaches 9at%,a high coercive above 950kA/m can be achieved.
     The magnetic properties,mechanical properties and processing ability of bonded NdFeB magnets with different kinds of binders were well discussed.It was found that solid state resin such as F48 and E-20 was the ideal basis of the binder for their high epoxy value,better lubricative effect and more evenly encapsulating ability of the magnetic powders.The magnetic properties and mechanical properties ot bonded magnets prepared by premixed powders stored for different time were measured.It was found that the aging properties of premixed powders are mainly affected by the reaction activity of curing agent/epoxy resin system.High temperature curing agent and latent curing agent are good candidates for preparing premixed powders due to their stability at room temperature.DICY/epoxy binder shows a better comprehensive performance than maleic anhydride/epoxy binder.After 62 days' aging,bonded magnets with "HQP-2G powders+F-48 resin+DICY" can get high a compressive strength above 180MPa.Thermoplastic polymer bonded MQP-D magnets were prepared by hot press the premix of MQP-D magnetic powders with different proportion of nylon,and the density of these magnets were measured.The result shows that thermoplastic polymer bonded magnets with a density of 5.9g/cm3 can be gained at the pressure of 120MPa, temperature of 240℃for the magnet with powder volume fraction of 78%,so bonded magnets with a high density can be made at a low pressure.Bonded NdFeB magnets with metaphenylene diamine and F44 resin as a binder has a compressive strength of 110MPa at 180℃,suitable for high temperature application.
     The key technics for preparing bonded NdFeB were also investigated in this dissertation,the main topics and results were showed as follows.
     (1) Magnetic powders with various granularities were obtained by mechanical milling and other means.The magnetic properties of bonded magnets using these powders were measured and corresponding properties of these powders were derived. The result shows that the magnetic properties deteriorate when the granularity decrease, and this is due to the increase of demagnetization field between the magnetic particles in the bonded magnets.Furthermore,if partial oxidation of powders occurred in fining process,the magnetic properties also deteriorate.The magnetic properties further decrease because of the low density of bonded magnets with fine magnetic powders.
     (2) Magnetic powders were pretreated with various coupling agents,different coupling agent quantity and different treatment methods.The magnetic properties and mechanical properties of the bonded magnets prepared by pretreated powders were measured.It was found that pretreatment with coupling agent solution could enhance the magnetic properties and the mechanical properties of bonded magnets magically. The optimal dosage of coupling agent for silicane and titanite is 1wt%and 0.1wt% respectively.
     (3) The effect of lubricant addition on the fluidity and molding ability of premixed powders were studied.It shows that 0.2wt%addition of the mixture of Zinc Stearate and Polyvinyl Butyral(the weight ratio is 1:1) can increase the fluidity while magnetic properties and mechanical properties staying good at the same time.
     (4) The magnetic properties and mechanical properties of bonded magnets with different content of binder were measured.Optimal properties could be achieved when the dosage of binder is about 2~3wt%.
     (5) The dimension of the magnetic powders in bonded magnets and the magnetic properties of the magnets compressed at different pressure were studied.The fracture of bonded magnet was also analyzed.It shows that 900MPa is the most suitable pressure for preparing compression molding bonded magnets.It is impossible to obtain magnets with high density and high magnetic properties if the pressure far below 900 MPa. Increasing the pressure tends to improve the density,but has no use for the magnetic properties because the powders are crushed badly and the demagnetization field between the magnetic particles increases.
     (6) The density and magnetic properties of bonded magnets compressed at different temperature were measured.The result shows that the density and magnetic properties could be enhanced by hot compressing at the temperature a little higher than the softening point of the resin.
     (7) The alignment of anisotropic bonded NdFe_(12)N_x magnets was studied with the aid of XRD.It was found that the congregation between the small particles due to the existence of static magnetic field can be eliminated with the combination of solvent processing and being pulse-magnetized.Anisotropic bonded magnets with a good alignment and an energy product of 6.44MGOe was gained.
     (8) Epoxy bonded NdFeB magnet with the highest energy product of 94kJ/m~3 (11.8MGOe) and thermoplastic polymer bonded magnet with diameter of 220mm, density of 5.9g/cm~3 and energy product of 62.0 kJ/m~3(7.79MGOe) were achieved.
     At last,two kinds of bonded hybrid magnets,isotropic NdFeB/anisotrpic Sr-ferrite and isotropic NdFeB/anisotrpic Sm_2Co_(17) were studied in detail.The results show that a coercivity enhancement is found in bonded NdFeB/Sr-ferrite magnets when the mass fraction of Sr-ferrite is below 50wt%.A remarkable remanence enhancement is gained in bonded NdFeB/Sm_2Co_(17) magnets when the mass fraction of Sm_2Co_(17) reaches 10wt%, and the energy product of the magnet is 11.3MGOe(89.95kJ/m~3).The Henkel plot of bonded NdFeB/Sm_2Co_(17) magnets shows that there has exchanging interaction in hybrid bonded NdFeB/Sm_2Co_(17) magnet when the Sm_2Co_(17) mass fraction reaches 10wt%, which is the characteristics of nanocomposite exchange-coupled magnets.It is also concluded that bonded hybrid magnets have better temperature stability than that of bonded magnets prepared by one kind of powders.
引文
[1]周寿增,董清飞.超强永磁体——稀土铁系永磁材料.北京:冶金工业出版社,2004:3-321.
    [2]田民波.磁性材料.北京:清华大学出版社,2001:34.
    [3]斯特普兰.硬磁铁氧体和塑料铁氧体.北京:科学普及出版社,1986:1-9.
    [4]李安华,董生智,李卫.稀土永磁材料的力学性能.金属功能材料,2002,9(4):1-6.
    [5]石德珂,金志浩.材料力学性能.西安:西安交通大学出版社,1998:108.
    [6]Coey J M D.Magnetic materials.J.Alloy.Compd.,2001,326:2-6.
    [7]王尔德,石刚,郭斌,等.稀土永磁材料研究新进展.粉末冶金技术,2005,21(1):55-61.
    [8]何开元.精密合金材料学.北京:冶金工业出版社,1991:90.
    [9]Stmat K J.Cobalt-rare-earth alloys as promising new permanent-magnetic materials.Cobalt,1967,36:133-143.
    [10]Strnat K J,et al.A family of new cobalt-based permanent magnetic materials.J.Appl.Phys.,1967,38(3):1001.
    [11]Ojima T,Tomizawa S.New Type Rare-earth-cobalt Magnets with an Energy Product of 30 MGOe.Japan.J.Appl.Phys.,1977(4):671-673.
    [12]Hadjipanyis G C,Tang W,Zhang Y,et al.High temperature 2:17 magnets:Relationship of magnetic properties to micorstructure and processing.IEEE Trans Magn,2000,36(5):3382-3387.
    [13]Tang W,Zhang Y,Hadjipanayis G C.Microstructure and magnetic properties of Sm(Co_(bal)Fe_xCu_(0.128)Zr_(0.02))_(7.0).J Magn Magn Mater,2000,221:268-272.
    [14]Sagawa M,Fujimura S,Togawa N,et al.New material for permanent magnets on a base of Nd and Fe(invited).J.Appl.Phys.,1984,55:2083-2087.
    [15]NdFeB sintered Magnet Created the world Recod with 1.555T and 474kJ/m~3.2005.07,http://www.neomax.co.jp/pdf/20050712.dpf
    [16]Coey J M D,Sun H,Hurley D P F.Intrinsic Magnetic Properties of New Rare-Earth Iron Intermetallic Series.J.Magn.Magn.Mater.,1991,101:310-316.
    [17]石川尚.高性能Sm-Fe-N系异方性ボツド磁石材料.工业材料,2003,51(2):34-37.
    [18]Yang Y C,Zhang X D,Kong L S,et al.New Potential Hard Magnetic Material-NdTiFe_(11)N_x.Solid State Communications,1991,78(4):317-320.
    [19]尹有祥.粘结永磁及其应用.产业透视—新材料产业,2004,130(9):24-30.
    [20]李增峰,谈萍,张晗亮等.粘结稀土永磁体发展概况.稀有金属快报,2005,24(6):14-18.
    [21]Hamada N,Mishima C,Mitarai H,et al.Development of Nd-Fe-B Anisotropic Bonded Magnet with 27 MGOe.IEEE Transactions on Magnetics,2003,39(5):2953-2955.
    [22]Croat J J,Herbst J F,Lee R W,et al.Pr-Fe and Nd-Fe-based material:A new class of high-performance magnets.J.Appl.Phys.1984,55:2078-2082.
    [23]Croat J J.Current status and future outlook for bonded neodymium permanent magnets(invited).J.Appl.Phys.1997,81(8):4804-4809.
    [24]Tao Y F.Magnetic and Microstructure Properties of Iron-Rare Earth-Boron Magnets:Ph.Dr Thesis of Department of Physics,Kansas state University,USA,1986:79.
    [25]Croat J J.Neodymium-Iron-Boron Permanent Magnets Prepared by Rapid Solidification.J.Mater.Eng.,1988,10,1:7-13.
    [26]Pinkerton F E.Quench rate dependence of the initial magnetization in rapidly solidified neodymium-iron-boron ribbons,IEEE Trans.Magn.1986,22:1986-1989.
    [27]Croat J J,Herbst J F,Lee R W,et al.High-energy product neodymium-iron-boron permanent magnets.Appl.Phys.Lett.,1984,44:148-149
    [28]Liu S.Effect of nanograin structure on magnetic properties of rare earth permanent magnets.18th International Workshop on High Performance Magnets and their Applications,Annecy(France) 29 August-2 September 2004.
    [29]Coehoorn R,de Mooij D B,Duchateau J P W B,et al.Novel Permanent Magnetic Materials made by Rapid Quenching.J.de Phys.c.8 Supplemen,1988,49:699.
    [30]Kneller E F,Hawig R.The exchange-spring magnet:A new material principle for permanent magnets.IEEE Trans.on Magn.MAG,1991,27(4):3588-3560.
    [31]Manaf A,Buckley R A,Davies H A.New nanocrystalline high-remanence NdFeB by rapid solidification.J Magn.Magn.Mater.,1993,128:302.
    [32]Ding J,Mccormick P G,Street R.Remanence Enhancement in Mechanically Alloyed Isotropic Sm_7Fe_(93) Nitride.J.Magn.Magn.Mater.,1993,124:L1-4.
    [33]Schrefl T,Fischer R,Fidler T,et al.Two-and Three-dimensional Calculation of Remanence Enhancement of Rare-earth Based Composite Magnets.J.Appl.Phys.,1994,76(10):7053.
    [34]Skomski R,Coey J M D.Giant energy product in nanostructured two phase magnets.Phys.Rev.B,1993,48:15812-15816.
    [35]Skomski R.Aligned Two Phase Magnets:Permanent magnetism of the future.J.Appl.Phys.,1994,76(10):7059-7064.
    [36]王佐诚.纳米复合Pr_2Fe_(14)B/α-Fe永磁合金及磁体的制备、组织结构与磁性能.[博士学位论文].北京:北京科技大学,1999.
    [37]Wang Z C,Zhang M C,Li F B,et al.High coercivity(NdDy)_2(FeNb)_(14)B/α-Fe nanocrystalline alloys.J.Appl.Phys.,1997,81(8):5097-5099.
    [38]Sinnema S,Radwauski R T,Franse,J J M,et al.Magnetic properties of ternary rare-earth compounds of the type R_2Fe_(14)B.J.Magn.Magn.Mater.,1984,44:333-341.
    [39]Inoue A,Takeuchi A.Hard Magnetic Properties of nanocrystalline Fe-rich Fe-Nd-B alloys prepared by partial crytallisation of amorphous phase.Mater.Trans.JIM,1995,36:963.
    [40]Manaf A,Buckley R A,Davies H A.Microstructure Analysis of Nanocrystalline Fe-Nd-B Ribbons with Enhanced Hard Magnetic Properties.J Magn.Magn.Mater.,1993,128:302-307.
    [41]Hadjipanayis G C,Withanawasam L.Nanocomposite R_2Fe_(14)B/α-Fe permanent magnets.IEEE Magn.,1995,31(6):3596-3601.
    [42]Kramer J,Li C P,Dennis K W.Effect of TiC additions to the Microstructure and Magnetic Properties of Nd_(9.5)Fe_(84.5)B_6 Melt-spun Ribbons.J.Appl.Phys.,1998,83:6631-6634.
    [43]Shindo M,Ishizone M,Kato H,et al.Exchange-spring behavior in sputterdeposited alpha-Fe/Nd-Fe-B multilayer magnets.J Magn.Magn.Mater.,1996,161:1-5.
    [44]Shindo M,Kato H,Miyazaki T.Magnetic properties of exchange-coupled α-Fe/NdFeB multilayer magnets.J.Magn.Magn.Mater.,1997,81:4444-4446.
    [45]Shen Bao-gen,Zhong Jun-xian,Yang Lin-yuan,et al.Magnetic properties and phase components in amorhous(Fe_(1-x)Nd_x)_(81.5)B_(18.5) alloys afrer crystallization.J.Magn.Magn.Mater.,1990,89:195-200.
    [46]Shen Bao-gen,Yang Lin-yuan,Zhong Jun-xian,et al.Magnetic properties of rapidly quenched NdFeB alloys with lower Nd concentration.Solid State communication,1990,74(9):893-897.
    [47]沈保根.低Nd快淬NdFeB合金的相结构与磁性.自然科学进展——国家重点实验通讯,1992(4):319.
    [48]Cheng Shao-hua,Shen Bao-gen.Magnetism and phase composition hyperfine fields of melt-spun NdFeB alloys with a few percent of neodymium.Phys.Rev.,B 1995,52:9427-9430.
    [49]Folks L,Street R,Woodward R C,et al.Magnetic properties of novel resin-bonded exchange coupled rare-earth magnets,Journal of Magnetism and Magnetic Materials,1995,147:360-366.
    [50]Campbell P,Brown D N,Chen Z M.R_2Fe_(14)B-type isotropic powders for bonded magnets.18th International Workshop on High Performance Magnets and their Applications,Annecy(France) 29 August-2 September 2004.
    [51]Brown D N,Chen Z M,Guschl P C,et al.Developments in Melt spun poewders for permanent magnets.Proceedings of 19th International Workshop on Rare Earth Permanent Magnets and Their Applications.Beijing,China,Aug.30,2006.
    [52]Shultz L,Wecker J,Hellstern E.Formation and properties of NdFeB prepared by mechanical alloying and solid-state reaction.J.Appl.Phys.1987,61(8):3583-3585.
    [53]王敬欣,孙爱芝.粘结NdFeB磁体制备的研究进展.稀有金属,2003,27(6):827-831.
    [54]白书欣,张虹,吕丽,等.高性能磁性复合材料-粘结钕铁硼磁体.磁性材料及器件2002,33(4):24-27.
    [55]Fukunaga H,Yamamoto R.Highly stable Nd-Fe-B bonded-magnets using spherical powder prepared by spinning-cup atomization.18th International workshop on high performance magnets and their applications,Annecy(France) 29August-2 September 2004.
    [56]Branagan D J,Hyde T A,Sellers C H,et al.A new generation of gas atomized powder with improved levels ofenergy product and processability.IEEE Trans.Magn.1996,32:5097-5099.
    [57]Vasilyeva E,Vystavkina V.Microstructure and properties of Nd-Fe-B powders by gas atomization.J.Magn.Magn.Mater.,2003,267:267-273.
    [58]Gutfleisch O,Kirchner A,Grunberger W,et al.Textured NdFeB HDDR magnets produced by die-upsetting and backward extrusion.J.Appl.Phys.,1998,31:807-811.
    [59]Takeshita T,Nakayama R.11th Inter.Workshop on rare-Earth magnets and their application.Pittsburgh,USA,1990,11:49-51.
    [60]Nakayama R,Takeshita T.Magnetic properties and microstructures of the NdFeB system during the hydrogenation-decomposition-desorption-recombinetion process.J.Appl.Phys,1993,74(4):2719-2724.
    [61]吕丽,白书欣,张虹,等.粘结NdFeB系磁体概述.金属功能材料.2002,9(5):8-12.
    [62]Nakayama R,Takeshita T,et al.Magnetic properties and microstructures of the NdFeB magnet powder produced by hydrogen treatment.J.Appl.Phys,1991,70(7):3770-3774.
    [63]Yoshinobu H.Automotive Motor Innovation with Anisotropic Bonded Magnet-Magfine.Proceedings of 19th International Workshop on Rare Earth Permanent Magnets and Their Applications.Beijing,China,Aug 30,2006.
    [64]韩景智.HDDR各向异性三元Nd_(13)Fe_(80)B_7的制备工艺及其各向异性形成机理的研究:[博士学位论文].北京:北京科技大学,2002.
    [65]沈文娟.各向同性NdFeB粘结磁体的制备工艺及性能研究.河北工业大学硕士学位论文,2003.
    [66]Namkung S,Kim A S,Kim D H,et al.Coercivity of anisotropic magnet powder obtained from the NdFeB sintered magnet scrap.18th International Workshop on High Performance Magnets and their Applications,Annecy(France) 29 August-2September 2004.
    [67]Kwon H W,Hwang D H,Jeong I C,et al.Coercivity enhancement in NdFeB powder obtained from crushed sintered magnets.18th International Workshop on High Performance Magnets and their Applications,Annecy(France) 29 August-2September 2004.
    [68]孟艳.快淬NdFeB磁体粉末表面处理及粘结工艺的研究[硕士学位论文].上海:上海交通大学,2001.
    [69]张虹,白书欣.粘结NdFeB磁体用粘结剂.磁性材料及器件,2001,32(3):14-17.
    [70]蒋龙,周谦莉,张振涛,等.粘结NdFeB磁体用粘结剂的研究.金属功能材料,2000,7(3):16-18.
    [71]刘颖,涂明旌.高性能的尼龙1010粘结NdFeB永磁材料的制备.复合材料学报,1999,16(3):7-10.
    [72]Kuhrt C,O'Donnell K,Katter M,et al.Pressure-assisted zinc bonding of microcrystalhe Sm_2Fe_(17)N_x powders.Appl.Phys.Lett.,1992,60(26):3316-3318.
    [73]刘颖,涂明旌.磁性高分子粘结钕铁硼的性能.复合材料学报,1999,16(2):15-18.
    [74]Yamashita F.Radially-anisotropic rare-earth hybrid magnet with self-organizing binder consolidated under a heat and a low-pressure consolidated.18th International Workshop on High Performance Magnets and their Applications,Annecy (France) 29 August-2 September 2004.
    [75]刘颖,涂铭旌.快淬NdFeB磁粉颗粒度对聚合物粘结NdFeB磁体永磁性能的影响.中国稀土学报,1999,17(4):322-324.
    [76]张虹,白书欣.粘结NdFeB磁体用偶联剂.磁性材料及器件,2001,32(2):9-12.
    [77]王峰,任先京,陶振声.偶联剂和固化剂对柔性橡胶钕铁硼复合材料性能的影响.磁性材料及器件,2003,34(6):10-12.
    [78]Yamashita F,Yamagata Y,Hirotoshi F.Anisotropic Nd-Fe-B based flexible bonded magnet for small permanent magnet motors.IEEE Trans.on Mag.,2000,36(5):3366-3369.
    [79]Yang C J,Chio S D,Lee W Y.Magnetic properties of nylon 6 based Nd-Fe-Co-Zr-B pellets for injection molding.Powder technology,1993,77(3):285-290.
    [80]Abbott A D,Allen J O.Producing injection moulded magnets.Metal Powder Report,1996,51(6):18-19.
    [81]Masaki S.Developers refine extrusion molding for neodymium bonded magnets.JEE,Journal of Electronic Engineering,1993,30(322):33-36.
    [82]Ikuma K,Akioka K,Shimoda T,et al.High-energy extrusion-molding Nd-Fe-B magnets.IEEE Trans.on Mag.in Japan,1994,9(5):94-99.
    [83]闻荻江,刘晓波.预氧化及预氧化——还原处理改善NdFeB微晶磁粉的抗氧化性能.中国腐蚀与防护学报,1999,19(2):125-128.
    [84]詹亚萍.具有改良表面的粘结NdFeB磁体的磁性能.电工材料,2001,1:35-38.
    [85]孟艳,曹力军,杨远刚,等.快淬NdFeB磁粉的表面包覆工艺.上海交通大学学报,2002,36(1):55-58.
    [86]程星华,李波,喻晓军,等.磁粉粒度分布和抗氧化剂对注射成型NdFeB粘结磁体性能的影响.金属功能材料,2004,11(4):1-4.
    [87]陈柯.烧结NdFeB磁体表面ZnAlCr涂层研究[硕士学位论文].国防科技大学研究生院,2003.
    [88]刘颖,陈悦,涂铭旌,敬安晋.各向异性的粘结钕铁硼/铁氧体永磁复合材料的磁性能.功能材料.1999,30(4):352.
    [89]梁树勇,杨智勇,刘难等.“粘结磁体2000”一瞥:粘结钕铁硼.磁性材料及器件,2000,31(4):17-21.
    [90]胡德林.金属学原理.西安:西北工业大学出版社,1995年第1版.
    [91]Schneider J R,Schmidt K.Bonded hybrid magnets.J.Magn.Magn.Mater.,1996,157/158:27-28.
    [92]Slusarek B,Dudzikowski I.Application of permanment magnets made from NdFeB powder and from mixture of powders in DC motors.J.Magn.Magn.Mater.,2002,239:597-599.
    [93]杨定国.阴极电泳树脂性能研究.西北纺织工学院学报,1997,11(2):78.
    [94]姚金甫,田守信,王峰,等.无机填料对环氧树脂胶粘剂强度的影响.粘接,2004,25(4):38-39.
    [95]徐惠君,王寿隆.转杯纺纱关键件与其材料技术的探讨.棉纺织技术.1999,27(1):16-18.
    [96]贾文军,张虹,白书欣,等.粘结NdFeB磁体用预混料的时效性能研究.材料工程.2005,11:32-34.
    [97]Herzer G.Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets.IEEE Trans.on Mag.1990,26:1397-1402.
    [98]E C Stoner,E P Wohlfarth.A mechanism of magnetic hysteresis in heterogenous alloys.Phil.Trans.R.Soc.A 240(1948):599-642.
    [99]Gr(o|¨)ssinger R,Dahlgren M.Exchange coupled hard magnetic materials in pulsed high magnetic field.J.Phys.B.1998,246-247:213-219.
    [100]Zhao G P,Ong C K,Feng Y P.Remanence enhancement of single-phased isotropic nanostructured permanent magnets.J.Magn.Magn.Mater.,1999,192:543-552.
    [101]Griffiths M K,Bishop J E L,Tucke J W,et al.Computer simulation of single-phase nanocrystalline permanent magnets.J.Magn.Magn.Mater.,1999,183:49-67
    [102]Manaf A,Buckley R A,Davies H A,et al.Enhanced magnetic properties in rapidly solidified Nd-Fe-B based alloys.J.Magn.Magn.Mater.,1991(101):360-362.
    [103]Gutfleisch O.Controlling the properties of high energy density permanent magnetic materials by different processing route.J.Phys.D:Appl.Phys.,2000(33):R157-R172.
    [104]Liu S.Effect of nanograin structure on magnetic properties of rare earth permanent magnets,18th Intemational Workshop on High Performance Magnets and their Applications,Annecy(France) 29 August - 2 September 2004.
    [105]Schrefl T,Fidler J,Kronm(u|¨)ller H.Remanence and coercivity in isotropic nanocrystalline permanent magnets.H.Phys.Rev.,1994,B49:6100-6110.
    [106]Kronmller H,Fischer R,Zerm A,et al.Micromagnetism and microstructure of hard magnetic materials.J.Phys.D:Appl.Phys.,1996,29:2274-2578.
    [107]Lee D,Chen C H,Liu S.Nanocomposite rare earth magnets.18th Interna- tional Workshop on High Performance Magnets and their Applications,Annecy(France)29 August - 2 September 2004.
    [108]Fidler J,Schrefl T.Overview of Nd-Fe-B Magnets and Coercivity.J.Appl.Phys.,1996,79(8):5029-5034.
    [109]Lileev A S,Ayuyan A G,Steiner W,et al.Low-temperature magnetization reversal processes in permanent magnets based on R_2T_(14)B.J.Magn.Magn.Mater.,1996,157-158:373-375.
    [110]Herbst J F.R_2Fe_(14)B materials:Intrinsic properties and technological aspects.Reviews of Modem Physics,1991,63(4):819-898.
    [111]Jezierska E,Kaszuwra W.Nanocomosite R_2Fe_(14)B/α-Fe permanent mangents.IEEE Trans.On Mag.,1994,30:580-583.
    [112]Betancout J I,Davies H A.Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys.J.Appl.Phys.,1999,85:5911-5915.
    [113]巴肖(英)主编,詹文山,赵见高等译.金属与陶瓷的电子及磁学性质(Ⅱ),北京:科学出版社,2001,420.
    [114]Buschow K H J.New developments in hard magnetic materials.Rep.Prog.Phys.,1991,54:1123-1213.
    [115]Ma B M,Krause R F.Microstructure and magnetic properties of sintered Nd-Dy-Fe-B magnets.Proc.5th Int.Symposium on Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys,Deutsche Physikalische,FRG.1987:141.
    [116]石永金,张小立,易毅刚.铽含量对耐热钕铁硼永磁材料的磁性能的影响.稀有金属材料与工程,1999,28(4):236-239.
    [117]Schrefl T,Fidler J.Finite element modeling of nanocomposite magnets.IEEE Trans.on Mag.,1999,35:3223-3228.
    [118]K H J Buschow,D B de Mooij,H M van Noort.Propertims of metastable ternary compounds and amorphous alloys in the Nd-Fe-B system.J.Less-Common Met.1986,125:135-146.
    [119]R.Coehoom,D B Mooij,C de Waard.Melt-spun permanent magnet materials containing Fe_3B as the main phase.J.Magn.Magn.Mater.,1989,80:101-104.
    [120]Hirosawa S,Kanekiyo H,Uehara M.High-coercivity iron-rich rare-earth permanent magnet material based on(Fe,Co)_3B-Nd-M(M=aluminum,silicon,copper,gallium,silver,gold).J.Appl.Phys.,1993,73:6488-6490.
    [121]Liu J F,Davies H A.Magnetic properties of cobalt substituted Nd_2Fe_(14)B/α-Fe nanocomposite magnets processed by overquenching and annealing.J.Magn.Magn.Mater.,1996,157-158:29-30.
    [122]Chang W C,Zhou E Y,Bounds C O,et al.High performance α-Fe/Nd_2Fe_(14)B-type nanocomposites with nominal composites of(Nd,La)_(9.5)Fe_(78-x)Co_xCr_2B10.5(x=0-10).J.Magn.Magn.Mater.,1998,189:55-61.
    [123]Kim,A.S.,CampF.E.Relation of remanence and coercivity of Nd(Dy)-Fe(Co)-B sintered permanent magnets to crystallite orientation;J.Appl.Phys.1994,76(10):6265-6268
    [124]Gr(o|¨)mssinger R,Heib S,Wiesinger G,et al.The effect of substitutions of the hard magnetic properties of Nd-Fe-B based materials.J.Magn.Magn.Mater.,1989,80:61-66.
    [125]周寿增,郭灿杰,呼琴.高磁能积低温度系数的铁基永磁合金的磁性能与组织结构,北京钢铁学院学报,1988,10(3):317-320.
    [126]J Wecker,L Schultz,Coercivity of metastable(Nd,Pr)-Fe-Co-B alloys.J.Magn.Magn.Mater.,1989,80:97-100.
    [127]Kim A S,Camp F E.High performance NdFeB magnets(invited).J.Appl.Phys.1996,79(8):5035-5039.
    [128]Pandian S,Chandrasekaran V,G Markandeyulu,et al.Effect of Al,Cu,Ga,and Nb additions on the magnetic properties and microstructural features of sintered NdFeB.J.Appl.Phy.,2002,92(10):6082-6086.
    [129]Kanekiyo H,Uchara M,Hirosawa S.Microstructure and magnetic properties of high-remanence Nd_5 Fe7_(1.5)Co_5B_(18.5)M(M=Al,Si,Ga,Ag,Au) rapidly solidified and crystallized alloys for resin-bonded magnets.IEEE Trans.On Mag.1993,29:2863-2865.
    [130]Micski A,Uhrenius B.Contribution to the knowledge of phase equilibria and the magnetic properties of the Nd-Fe-B-X systems(X = Al,Co,V),J.Appl.Phys.1994,75:6265-6268.
    [131]Xie J Q,Wu C H,Chuang Y C.Effects of Gallium on the Magnetic Properties of Nd_2Fe_(11.5)Co_(2.5)B.Solid State Communications,1989,71(5):329-332.
    [132]Hu J F,Wang Z X.Study of the coercivity for Nd-Fe-B-Ga sintered magnets IEEE Trans On Mag,1989,25:3429-3430.
    [133]Grieb B,Fritz K.As-cast magnets based on Fe-Nd-C,J.Appl.Phys.,1991,70:6447-6449.
    [134]Zhang Wen-Yong,Zhang Shao-Ying,Shen Bao-Gen.Large effect of Ga addition on the magnetic properties of Pr_2Fe_(14)B/α-Fe-type ribbons.Solid State Communications,2002,122(12):641-643.
    [135]Jurczyk M,Jakubowicz J.Nanocomposite Nd_2(Fe,Co,Cr)_)14_B/α-Fe materials.J.Magn.Magn.Mater.,1998.185:66.
    [136]Rieger G,Seeger M,Sun Li,et al.Micromagnetic analysis applied to melt-spun NdFeB magnets with small additions of Ga and Mo.J.Magn.Magn.Mater.,1995,151:193.
    [137]Hashino H,Tazaki Y,Ino H,et al.Effects of Zr and C additions on the magnetic properties and structures of melt-spun Fe_(83)Nd_(10)B_7-based nanocomposite magnets.J.Magn.Magn.Mater.,2004,278:68-75.
    [138]Lukin A A,Szymura S.Sintered(Nd,Tb)-(Fe,Ti)-B+C permanent magnets.Intermetallics,200,19:169-171.
    [139]Hirosawa S,Kanekiyo H,Miyoshi T,et al.Development of high-coercivity nanocomposite permanent magnets based on Nd_2Fe_(14)B and Fe_xB J.Alloys Compd.,2006,408-412:260-265.
    [140]Hirosawa S,Kanekiyo H,Miyoshi T.Unusual effects of Ti and C additions on structural and magnetic properties of Nd-Fe-B nanocomposite magnets in a B-rich and Nd-poor composition range,J.Magn.Magn.Mater.,2004,281:58-67.
    [141]Raviprasad K,Ravishandar N,Padhyay K C.Magnetic hardening mechanism in nanocrystalline Nd_2Fe_(14)B with 0.1 at.%addition of Cr,Cu,or Zr.J.Appl.Phys.,1998,83:916-920.
    [142]Fidler J,Shrefl T.Overview of Nd-Fe-B magnets and coercivity(invited).J.Appl.Phys.,1996,79:5029-5034.
    [143]McCallum R W,Branagan D J.Altering the cooling rate dependence of phase formation during rapid solidification in the Nd_2Fe_(14)B system.J.Magn.Magn.Mater.,1995,146:89-102.
    [144]Branagan D J,Hyde T A,Sellers C H,et al.A new generation of gas atomized powder with improved levels ofenergy product and processability.IEEE Trans.Magn.,1996,32:5097-5099.
    [145]Yao J,Chin T,Lin C,et al.Coercivity of Melt-spun Nd-Fe-B-Ti alloys with large volume fraction of free-iron dispersoid.Jpn.J.Appl.Phys.,1994,33:3443-3447.
    [146]Chang W C,Wang S H,Chang S J,et al.The effects of refractory metals on the magnetic properties of α-Fe/R_2Fe_(14)B-type nanocomposites.IEEE Trans.Magn.1999,35:3265-3267.
    [147]McCormick P G,Miao W F,Ding J,et al.Remanence-enhanced Nd_8Fe_(87)M_1B_4(M = Fe,V,Si,Ga,Cr) alloys.J.Magn.Magn.Mater.,1998,177-181:976-977.
    [148]Kou X C,Sun X K,Chuang Y C,et al.Structure and magnetic properties of R_2Fe_(14)B_(1-x)C_x compounds(R=Y,Nd).J.Magn.Magn.Mater.,1989,80:31-36.
    [149]W Liu,Z Zhang,X K Sun,et al.Room temperature magnetic anisotropic of rare-earth transitin-metal intermetallics R_2Fe_(14)C and R_2Fe_(14)B(R=Gd,Nd),Solid State Commun.1990,76:1375-1379
    [150]Liu N C,Stadelmaier H H,Schneider G.High intrinsic coercivities in iron-rare earth-carbon-boron alloys through the carbide or boro-carbide Fe_(14)R_2X (X=B_xC_(1-x)).J.Appl.Phys.,1987,61:3574-3756.
    [151]Liu N C,Stadelmaier H H.High coercivity permanent magnet materials based on iron-rare-earth-carbon alloys.Mater.Lett.,1986,4:377-380.
    [152]Coehoorn R,Duchateau J P W B,Denissen C J M.Permanent magnetic materials based on Nd_2Fe_(14)C Prepared by melt spinning.J.Appl.Phys.,1989,65(2):704-709.
    [153]Hayashi N,Daniil M,Zhang Y,et al.Structural and magnetic properties of Nd-(Fe,M)-(C,B) melt-spun ribbons.J.Alloys Compd.,2000,305:290-297.
    [154]Daniil M,Okumura H,Hadjipanayis G C,et al.Nanocomposite Nd-Fe Carbides Made by Melt-Spinning IEEE Trans.Magn.,2000,36:3315.
    [155]Jakubowicz J,Jurczyk M.Magnetic properties of nanocomposite Nd_2(Fe,Co,M)_(14)B/α-Fe-bonded magnets.J.Alloys Compd.,1998,269:284-287.
    [156]Kramer M J,Li C P,Dennis K W,et al.A generalized solidification model and microstructural verification for the Nd-Fe-B-Ti-C system processed by rapid solidification.J.Appl.Phys.,1997,81(8):4459-4461.
    [157]Yu D,Yagodkin A S,Lilee V,et al.Structure and magnetic properties of nanocrystalline alloys based on Nd_2Fe_(14)B obtained by Various techniques.J.Magn.Magn.Mater.,2003,258-259:586-589.
    [158]Yang C J,Park E B.The effect of magnetic field treatment on the enhanced exchange coupling of a Nd_2Fe_(14)B/Fe_3B magnet.J.Magn.Magn.Mater.,1997,166:243-248.
    [159]Mishra R K,Panchanathan V,Croat J J.The microstructure of hot formed neodymium-iron-boron magnets with energy product with 48 MGOe.J.Appl.Phys.,1993,73:6470.
    [160]周寿增等.Sm_2(Fe_(1-x)Cr_x)_(17)N_(2.7)永磁性能的研究.金属学报,1994,30(2):72-76.
    [161]Lee D,Chen C H,Liu S.Nanocomposite rare earth magnets.18th International Workshop on High Performance Magnets and their Applications,Annecy(France)29 August-2 September 2004.
    [162]O.Donnell K,Rao X L,Coey J M D,et al.Exchange coupling and the grain boundary in magnetic nanocomposites,IEEE Trans.Magn.,1997,33:3886-3889.
    [163]Vincent J H,Davies H A,Herberton J G;Proc.Symp.Continuous Casting of Small Cross Sections.Eds.Y.V.Murty and F.R.Mollard.(The Metallurgical Society of AIME,Pittsburgh) 1980:103.
    [164]Vincent J H,Davies H A,Proc.Int.Conf.Solidification Technology in the Foundry and Cast House.(The Metals Society,Coventry) 1980:153.
    [165]Manaf A,Buckley R A,Davies H A,et al.Enhanced magnetic properties in rapidly solidified Nd-Fe-B based alloys.J.Magn.Magn.Mater.,1991,101:360-362.
    [166]Bragnan D J,McCullum R W.Altering the cooling rate dependence of phase formation during rapid solidification in the Nd_2Fe_(14)B system.J.Magn.Magn.Mater.,1995,146:89-102.
    [167]Hermann R,B(a|¨)cher I.Growth kinetics in undercooled Nd-Fe-B alloys with carbon and Ti or Mo additions.J.Magn.Magn.Mater.,2000,213:82-86.
    [168]Shurin A K,Razumova N A.Quasiternary system Fe-TiC-TiB_2.Powder Metallurgy and Metal Ceramics,1979,18(12):903-905.
    [169]Branagan D J,McCallum R W.Solubility of Ti with C in the Nd_2Fe_(14)B system and controlled carbide precipitation J.Alloys Compd.1995,218:143-148
    [170]Jha A,Davies H A,Buckley R A.Glass forming ability and kinetics of crystallisation of rapidly quenched Nd-Fe-B alloys.J.Magn.Magn.Mater.,1989,80:109-114.
    [171]Wecker J,Schultz L.Coercivity after heat treatment of overquenched and optimally quenched Nd-Fe-B.J.Appl.Phys.,1987,62:990.
    [172]G H Tu,Z Altounian,D H Ryan.J.O.Strom Olsen.Crystallization and texturing in rapidly quenched Nd_2Fe_(14)B and Nd_(15)Fe_(77)B_8,J.Appl.Phys.1988,63:3330.
    [173]刘颖,陈悦,涂铭旌.不同表面处理工艺对快淬NdFeB永磁粉抗氧化性和磁性能影响.功能材料,1999,30(3):252-253.
    [174]陈平,刘胜平.环氧树脂.北京:化学工业出版社,1999.
    [175]吴洪志.环氧树脂胶粘剂的应用.粘结,1995,16(6):25-28.
    [176]赵玉庭,等.复合材料聚合物基体.武汉:武汉工业大学出版社,1996.
    [177]陈连喜,张惠玲,雷家珩.环氧树脂潜伏性固化剂研究进展.化工新型材料,2004,32(7):29-32.
    [178]祁小云,谭硕望.环氧树脂功能性固化剂的研究现状与进展.胶体与聚合物,2005,23(2):37-38.
    [179]李子东,李广宇,于敏.实用胶粘剂原材料手册.北京:国防工业出版社,2001.
    [180]何崇军,蔡立彬,崔英德.环氧树脂固化体系研究进展.广州化工,2002,30(4):109-111.
    [181]翁兴国.NdFeB粘结永磁材料生产技术与市场发展前景.新材料产业,2001,(7):22.
    [182]夏文干,赵桂芳,曾令况编著.胶粘剂和胶接技术.北京:国防工业出版社,1980,6第一版.
    [183]Stadelmaier H H,Liu N C.Effect of mechanical comminution on the intrinsic coercivity of Fe-Nd-B sintered magnets.Mater.Lett.,1986,4(5):304-308.
    [184]王集成,强文江,乔袆等.热处理对烧结NdFeB磁体机械破碎磁粉的影响.北京科技大学学报,2000,22(3):216-218.
    [185]刘旭波,肖耀福,张正义等.HDDR各向异性NdFeB磁粉的粒度效应.功能材料,2000,31(5):466-475.
    [186]E.P.普鲁特曼著,梁思发,谢世杰译.硅烷和钛酸酯偶联剂.上海:上海科学技术文献出版社,1987.
    [187]李明怡,康志君,果世驹,等.润滑剂和粘结剂的加入对铁粉流动性和松装密度的影响[J].润滑与密封,2000,5:32-34.
    [188]王崇新.浅析磁性元件的干压成型.第四届全国磁性材料及元器件应用技术交流会论文集,1996,6:10.
    [189]张迎春.复合粘结磁体[硕士学位论文].浙江大学,2004.
    [190]Slusarek B,Dudzikowski I.Application of permanment magnets made from NdFeB powder and from mixture of powders in DC motors.J.Magn.Magn.Mater.,2002239:597-599.
    [191]深圳北大双极有限公司主页.
    [192]深圳华光永磁有限公司主页.
    [193]日本专利:JP6001790.
    [194]日本专利:JP61284906.
    [195]麦格昆磁天津有限公司主页.
    [196]刘颖,涂铭旌,毛献忠,等.塑料粘结钕铁硼—铁氧体材料的复合效应研究.功能材料,1995,26(2):168-169.
    [197]刘颖,涂铭旌,邹红.钕铁硼—铝镍钴粘结永磁的复合效应.功能材料,1995,26(3):246-247.
    [198]常颖,俞晓军,蒋龙,等.Nd_2Fe_(14)B/Fe_3B与铁氧体磁粉复合效应的研究.金属功能材料,2003,10(3):20-22.
    [199]常颖,连法增,俞晓军.复相粘结磁体研究.东北大学学报(自然科学版),2003,24(10):927-930.
    [200]敬安晋,陈彪.添加HDDR—NdFeB的复合粘结磁体研究.第四届全国磁性材料及元器件应用技术交流会论文集,1999,6.
    [201]刘兴阶,李震,胡用时,等。α-Fe/铁氧体材料粘结混合磁体.金属功能材料,2001,8(1):33-34.
    [202]O'Sullivan J,Rao X L,Coey J M D.Magnetic coupling of the composite mixtures Sm_2Co_(17)/Sm_2Fe_(17)N_3 and Sm_2CO_(17)/Fe.J.Appl.Phys.1997,81(8):5124-5126.
    [203]Schneider J,Knehans-Schmidt R.Bonded hybrid magnets.J.Magn.Magn.Mater.,1996,157/158:27-28.
    [204]Kitazawa,A,Sakagami Y.Development of the bonded magnets mixed with different magnetic powders.Journal of the Japan Society of Powder and Powder Metallurgy,1997,44(9):839-842.
    [205]Yoshihiko Matsuyama,Dong-Ying Ju,Hong-Yang Zhao.Manufacturing Process and Property Analysis of Magnetic Material with Positive Magnetic Temperature Coefficient,Proc.of the 16~(th) International Workshop on Rare-Earth Magnets and Their Applications,Eds.,H.Kaneko,M.Homma and M.Okada,2000:1139-1141
    [206]高汝伟.微米与纳米微粒间的交换作用及其对磁性材料性能的影响.物理,1997,26(9):538-541.
    [207]Comejo D R,Bue M Lo.Moving Preisach model analysis of nanocrystalline SmFeCo.J.Appl.Phys.,1997,81(8):5588-5590.
    [208]Emura M,Neiva A C,Missell F P,et al.Magnetization process in hybrid magnets.J.Appl.Phys.,1998,83(11):7127-7129.
    [209]Emura M,Comeo D R,Missell F P.Reversible and irreversible magnetization in hybrid magnets.J.Appl.Phys.,2000,87(3):1387-1394.
    [210]D Bueno-Baques,E Padron-Hernandez,J Matutes-Aquino.Study of magnetization reversal in hybrid magnets.J.Alloys.Compd.,2004,369:158-161.
    [211]潘树明,应启明.加入Al、Ga、Co的NdFeB永磁体.金属材料研究,1993,19(1):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700