用户名: 密码: 验证码:
微凝胶负载杂多酸季铵盐微反应器的构筑及在深度脱硫中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两相催化的研究受到人们的极大关注,但涉及两相催化反应的应用领域特别广泛,且反应体系间存在一定的差异性,因此,有目的的研究具有重大应用价值的两相催化反应不仅对于解决重大实际问题具有重要意义,而且具有重要的理论价值。当今国内外都以深度脱硫满足严格的燃料油尾气新排放标准及燃料电池的无硫化。基于目前两相催化过氧化氢氧化深度脱硫被公认为最具发展前景的方法之一,结合燃料油脱硫是一个典型的两相催化反应体系,本研究提出根据两相催化过氧化氢氧化深度脱硫的基本原理,通过将具有催化活性的双核过氧钨酸钾(K_2{W(=O)(O_2)_2(H_2O)}_2(μ-O),W2)与负载于高分子水凝胶微球表面的季铵盐(3-(三甲氧基硅基)-丙基-十八烷基二甲基氯化铵,AEM)发生离子交换作用,构筑具有核/壳结构特点的两相催化微反应器,旨在有效提高过氧化氢氧化效率的同时,解决产品难于纯化、催化剂难于回收和再利用问题。更重要的是,通过本研究实施为建立具有普遍适应性的两相催化微反应器的构筑方法及其应用奠定基础。
     依据上述目的,本研究主要包括以下几个方面:
     1以收缩态的聚(甲基丙烯酰胺-甲基丙烯酸)P(AM-MAA)微凝胶作为模板,利用浸渍法合成P(AM-MAA)/AEM复合微球。通过AEM和W2之间的离子交换作用制得具有核/壳结构特点的P(AM-MAA)/AEM/W2微反应器。
     (1)浸渍法合成P(AM-MAA)/AEM复合微球
     以反相微乳液聚合法得到收缩态的P(AM-MAA)微凝胶作为模板,利用限域原位沉积季铵盐型表面活性剂AEM于微球表面,通过AEM的水解缩合反应得到目标复合微球。通过改变AEM的引入方式和负载量,得到了组成不同的P(AM-MAA)/AEM复合微球。
     (2)离子交换法构筑P(AM-MAA)/AEM/W2复合微球
     利用P(AM-MAA)/AEM复合微球上AEM的季铵盐基团与W2阴离子之间的离子交换作用,制得目标复合微球。通过在不同搅拌速度条件下所得到不同粒径的微凝胶为模板,得到粒径不同的P(AM-MAA)/AEM/W2复合微球;通过改变AEM负载量和W2溶液的浓度,以及AEM和W2离子交换时间,得到表面负载催化剂量不同的复合微球。
     (3)利用红外光谱、热重分析、扫描电子显微镜及能谱仪等多种表征手段对P(AM-AA)/AEM复合微球和P(AM-MAA)/AEM/W2复合微球的表面形貌和组成进行了表征。
     研究结果表明:
     (1)AEM作为共表面活性剂参与反相微乳液聚合制备P(AM-MAA)高分子微凝胶将AEM引入到微凝胶上的方法,以及将AEM溶解于反相微乳液水相中使其在引发聚合反应时将AEM引入到微凝胶上的方法,均不能有效的提高AEM在微凝胶上的负载量。
     (2)以反相微乳液聚合法制备了P(AM-MAA)高分子微凝胶为模板,再通过浸渍法将AEM引入到P(AM-MAA)高分子微凝胶上,经AEM在高分子骨架上发生水解和缩聚反应,将AEM固定化于P(AM-MAA)微球上,然后通过离子交换作用得到P(AM-MAA)/AEM/W2复合微球。该方法是制备P(AM-MAA)/AEM/W2复合微球的有效方法。
     (3)所得P(AM-MAA)/AEM/W2复合微球具有核/壳型结构,核主要为P(AM-MAA),壳层主要为双核磷钨杂多酸季铵盐(AEM/W2)。此复合微球具有本研究预设微反应器的结构特点。模板微球粒径越小,负载AEM越多,为通过离子交换调节W2负载量创造了条件;在AEM负载量一定的条件下,并非W2浓度越大,越有利于负载W2量的提高;AEM负载量对于W2负载量有明显影响,较高的W2负载量取决于较高的AEM负载量;足够的离子交换时间对于提高W2的负载量也是必要的。
     2为增加模板微球负载催化剂的量,以比表面较大的孔结构微凝胶微球为模板,利用浸渍法合成P(AM-MAA)/AEM复合微球,再通过季铵盐基团与W2阴离子之间的离子交换作用制得具有特异微凸表面形貌的P(AM-MAA)/AEM/W2复合微球。
     (1)浸渍法合成P(AM-MAA)/AEM复合微球
     以溶胀态冷冻干燥处理后具有多孔道结构的P(AM-MAA)微球作为模板,利用浸渍法限域原位沉积AEM于微球表面,再置于氨水气氛中水解,通过调节AEM的负载量和AEM处理次数,得到表面形貌不同的P(AM-MAA)/AEM复合微球;通过改变在氨水气氛中放置时间和处理次数来控制复合微球表面形貌;通过改变孔结构高分子微球的交联度来调节复合微球的表面形貌。
     (2)离子交换法制备P(AM-MAA)/AEM/W2复合微球
     利用P(AM-MAA)/AEM复合微球上AEM季铵盐基团与W2阴离子之间的离子交换作用,制备目标复合微球。通过改变AEM负载量和W2溶液的浓度得到了表面形貌不同的P(AM-MAA)/AEM/W2复合微球。
     (3)利用红外光谱、热重分析、扫描电子显微镜、能谱仪及X-光电子能谱等多种表征手段对P(AM-MAA)/AEM复合微球和P(AM-MAA)/AEM/W2复合微球的表面形貌和组成进行了表征。
     研究结果表明:
     (1)以孔结构的高分子微球作为模板构筑的复合微球除具有以收缩态高分子微球为模板合成复合微球的特点之外,其最大的特点在于具有较高的催化剂负载量以及复合微球的表面形貌具有微凸结构。
     (2)通过改变BA的含量可以有效调节模板微球的孔结构;不同孔结构模板对AEM负载量及形貌产生显著影响;BA含量增加模板孔径减小,AEM担载量增加,在氨水气氛中水解缩合使P(AM-MAA)/AEM微球表面微凸结构特征愈加明显;当其他条件不变时,AEM担载量越少,模板微球表面微凸结构特征愈不明显,当AEM担载量增加到一定程度时这种微凸结构特征变化不大。
     (3)以给定AEM负载量P(AM-MAA)/AEM微球与W2进行离子交换时,用于离子交换的W2浓度对P(AM-MAA)/AEM/W2复合微球表面形貌产生明显影响;太高或太低的W2浓度均使复合微球微凸结构变得相对不明显,在合适的W2浓度下可获得较明显的微凸结构。同时实验表明:随P(AM-MAA)/AEM负载AEM量增加,离子交换后所得到的P(AM-MAA)/AEM/W2复合微球上钨和硅含量增加。
     (4)根据对复合微球形成过程的各种因素进行综合分析,提出孔结构P(AM-MAA)为模板负载AEM的复合微球经水解缩合形成表面微凸结构形貌的“迁移与固化交替作用-表面张力导向驱动”机理。
     3以过氧化氢催化氧化十氢萘中二苯并噻吩(DBT)为模型反应,对上述以收缩态和孔结构高分子水凝胶为模板所构筑的核/壳型复合微球为微反应器的催化氧化行为进行系统研究,以获得对此类两相催化微反应器应用具有普遍指导的关键因素。
     实验结果表明:
     (1)基于高分子微凝胶为核,以负载于其表面的杂多酸季铵盐为壳所构筑的两相催化微反应器均表现出良好的催化氧化脱硫性能。同时,这类微反应器具有反复使用特点。表明该研究达到了预设的研究目的。
     (2)无论何种方式所制备的微反应器,提高反应温度和减小微反应器的粒径均有利于提高脱硫效率。
     (3)微反应器负载催化剂量和反应中过氧化氢用量对脱硫效率的影响存在最佳量。随催化剂负载量增加,催化反应能力增强,并达到最大值。再进一步增加催化剂负载量,将由于催化剂壳层厚度增加不利于传质过程而导致催化反应效率减弱。
     (4)随着过氧化氢用量的增加,催化反应效率增加;当达到最大值后,再增加过氧化氢用量,催化效率将因微反应器过量浸渍而不利于其在疏水性介质中分散而导致催化效率降低。
     (5)整体而言,微反应器催化氧化循环使用四次后,微反应器负载催化剂的活性和表面形貌基本保持不变。但需指出的是:这两种不同方式构筑的微反应器在催化反应性能上还存在较大的差异。与以收缩态高分子微球构筑的微反应器相比,尽管以孔结构高分子微凝胶为模板所构筑的特异表面形貌的微反应器负载催化剂的量显著提高,但是催化活性稍有降低。这一现象与微反应器因壳层较厚而导致核内氧化剂向壳层的传质过程受阻有关。
     综上所述:以具有水溶胀行为的高分子微凝胶为核,以负载于其表面的杂多酸季铵盐为壳所构筑的微反应器在两相催化脱硫中的应用是切实可行的。该研究不仅在结构型材料制备方面具有明显的创新性,而且在两相催化反应方面也表现出较其他方法较强的优势。不同于已报道的其他两相催化反应方法,在无须加入其他辅助成分和保证高效催化反应效率的条件下,借助这种微反应器可使催化反应实施过程简单易行,微反应器易于分离和重复使用。同时,依据本研究所提出的构筑两相催化微反应器的基本设想,这类微反应器构筑方法具有普遍的适用性;另外,因高分子水凝胶具有结构较强的可修饰性,可以实现这类微反应器的多功能化,从而使这类微反应器在两相催化反应的应用中具有更广泛的发展前景。
Recently, the study of biphasic catalysis has attracted wide interest. Although different biphasic catalyses were widely studied, it is still important to construct general method for biphasic catalysis due to extensive application and certain differences existing among the systems of biphasic catalysis reaction. Based on ultra-deep desulfurization of fuel oil by H_2O_2 oxidation being a typical biphasic catalysis, and internationally extensive request in ultra-deep desulfurization because of environmental protection purposes, and wide focus on using H_2O_2 as oxidant in ultra-deep desulfurization of fuel oil, a new protocol was proposed to construct a structural microreactor used in ultra-deep desulfurization of fuel oil by H_2O_2 oxidation. The aim for construction of the structural microreactor is to overcome some defects in biphasic catalysis based on emulsion droplets. The structural microreactor can surmount the difficulties in the process of separation and recovery of the catalysts of the emulsion-based biphasic catalysis. To achieve the goal, the novel composite microspheres, P(AM-MAA)/AEM/W2, were synthesized by the following process. Firstly, P(AM-MAA) microgels as template were prepared. P(AM-MAA) microgels loaded quaternary ammonium 3-(trimethoxysilyl)-propyldimethyloctadecylammomum chloride (AEM) were obtained by impregnating method, and AEM then was immobilized onto P(AM-MAA) microgels by hydrolysis and condensation reaction. Finally, P(AM-MAA)/AEM/W2 composite microspheres were synthesized by ion exchange between K_2{W(=O)(O_2)_2(H_2O)}_2(μ-O)(W_2) and quaternary ammonium groups of AEM loaded on the P(AM-MAA) microgel. The structure of P(AM-MAA)/AEM/W2 composite microspheres with hydrogel core and catalyst shell not only meets the emulsion-based biphasic catalysis, but makes the water phase and the catalyst unify. To verify its efficiency in biphasic catalysis, the resulting composite microspheres as microreactors were used in the ultra-deep desulfurization of fuel oil were studied.
     According to the objects above mentioned, the main contents of this research include three aspects as follows:
     1. P(AM-MAA)/AEM/W2 composite microspheres were prepared using the shrunk P(AM-MAA) microspheres as the template.
     (1) P(AM-MAA)/AEM composite microspheres were prepared by following method. Firstly, the shrunk P(AM-MAA) microspheres were impregnated in ethanol solution containing AEM, the resulting microspheres then were hydrolyzed to immobilize AEM onto surface of P(AM-MAA) microspheres.
     In this part, the P(AM-MAA)/AEM composite microspheres with different composition and surface structure were obtained by changing the way of AEM introduced and the content of AEM loaded.
     (2) P(AM-MAA)/AEM/W2 composite microspheres were constructed by ion-exchange between AEM loaded on the surface of P(AM-MAA)/AEM and W2.
     P(AM-MAA)/AEM/W2 composite microspheres with different size were synthesized by using different size of P(AM-MAA)/AEM as template; the P(AM-MAA)/AEM/W2 microreactor with different content of W2 were prepared by using P(AM-MAA)/AEM composite microspheres loaded different amount of AEM, and changing the concentration of W2 and the time of ion exchange.
     (3) The morphologies and compositions of the P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fouier transform infrared spectroscopy (FT-IR), respectively.
     The results indicate that the P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 composite microspheres are of core/shell structure. For the above composite microspheres, the P(AM-MAA) hydrogels are dominantly present in the core. For P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 composite microspheres, the shells are dominantly composed of AEM for the former and the complex of polyoxometate with AEM for the latter. The P(AM-MAA)/AEM/W2 composite microspheres with the specific composition in the core/shell structure have potential catalytic function for biphasic catalytic reaction.
     2. P(AM-MAA)/AEM/W2 composite microspheres were prepared using the swollen P(AM-MAA) microspheres as the template.
     (1) P(AM-MAA)/AEM composite microspheres were prepared by following method. Firstly, the water-swollen P(AM-MAA) microspheres were treated by the freeze-drying to obtain porous microspheres. The porous microspheres were impregnated in ethanol solution containing AEM, the resulting microspheres were then placed in the NH_3·H_2O atmosphere to immobilize AEM onto the surface of P(AM-MAA) microspheres by hydrolysis and condensation.
     In this part, the P(AM-MAA)/AEM composite microspheres with different composition and surface structure were obtained by changing the way of AEM introduced and the content of AEM loaded.
     (2) P(AM-MAA)/AEM/W2 composite microspheres were constructed by ion-exchange between AEM loaded on the surface of P(AM-MAA)/AEM and W2.
     In this part, the P(AM-MAA)/AEM/W2 microreactor with different W2 content were prepared by using P(AM-MAA)/AEM composite microspheres loaded different AEM content, and changing the concentration of W2 and the time of ion exchange.
     (3) The morphologies and compositions of P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 composite microspheres were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fouier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectrometer (XPS), respectively.
     The research results indicate that the structural features for P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 composite microspheres originally prepared from P(AM-MAA) porous microspheres are similar to that of ones originally prepared from the shrunk P(AM-MAA) microgels. However, the most peculiarity of P(AM-MAA)/AEM and P(AM-MAA)/AEM/W2 composite microspheres prepared by using P(AM-MAA) porous microspheres are obviously increased in the loaded amount of AEM and W2, and have the special surface morphology. From the point of view of preparation materials, this method provides an approach for increasing in the loaded amount and surface area. In this part, the formation mechanism on the special micro-convex surface morphology of P(AM-MAA)/AEM composite microspheres was also proposed.
     3. The catalytic performances of the composite microspheres were systematically investigated by using dibenzothiophene (DBT) oxidized by H_2O_2 in decalin as a model system so that some key factors related to the catalytic performances of the composite microspheres were obtained.
     The results indicate that the composite microspheres used as microreactors have excellent performances in ultra-deep desulfurization. Meanwhile, the microreactors are renewable. From above results, the microreactors constructed meet the purpose proposed.
     The results also indicate that the increase in reaction temperature and the decrease in size of the microreactors are beneficial to increase DBT conversion in the ultra-deep desulfurization. However, the appropriate amounts in catalyst loaded on the microreactors and H_2O_2 used to infiltrate the microreactors for the ultra-deep desulfurization are very important. Namely, for given amount of the microreactors, there are optimum amounts in the loaded catalyst and H_2O_2 because too high amount of the loaded catalyst is unfavorable for mass-transmittance, and too high amount of H_2O_2 is unfavorable for dispersion of the microreactors.
     The results also indicate that the catalytic activity of the microreactors prepared in optimum conditions is almost unchangeable after the microreactors used with 4 times. It needs to point out that there is the difference in the catalytic performances between the two microreactors. Compared with the microreactors prepared by using the shrunk, P(AM-MAA) microgels as template, although the amount of catalyst loaded on the microreactors prepared by using the porous P(AM-MAA) microgels is remarkably increased, the catalytic efficiency of the microreactor is slightly decreased. This phenomenon is mainly attributed to the unfavorable mass-transmittance in this case.
     In summary, the composite microspheres with the hydrogel core and the shell composed of complex between AEM and W2 have an excellent performance in ultra-deep desulfurization based on biphasic catalysis. The protocol proposed here is not only creative in preparation of structural composite microspheres but superior in biphasic catalyses. Compared with other methods of biphasic catalysis, the method used here makes operational process and separation of catalyst easy. Additionally, this method is generally suitable for construction of microreactor, and easy to realize diversification in functional microreactor.
引文
[1] W. Keim. Pros and Cons of Homogeneous Transition Metal Catalysis, Illustrated forSHOP [Shell High Olefin Process][J]. Chem. Ing. Tech., 1984,56(11): 850-853.
    
    [2] J. Manassen. Catalysis: Progress in Research[M]. London: Plenum Press., 1973,177,183.
    
    [3] W. A. Herrmann, B. Cornils, R. W. Eckl. Industrial Aspects of Aqueous Catalysis[J],J. Mol. Catal. A: Chem., 1997,116(1-2): 27-33.
    
    [4] B. Cornils, E. G. Kuntz. Introducing TPPTS and Related ligands for IndustrialBiphasic Processes[J]. J. Organomet. Chem., 1995,502(1-2): 177-186.
    
    [5] M. Beller, B. Cornils, C. D. Frohning, C. W. Kohlpaintner. Progress inHydroformylation and Carbonylation[J]. J. Mol. Catal. A: Chem., 1995, 104(1):17-85.
    
    [6] H. Ding, B. E. Hanson, T. E. Glass. The Effect of Salt on Selectivity in WaterSoluble Hydroformylation Catalysts[J]. Inorg. Chim. Acta., 1995, 229(1-2):329-333.
    
    [7] H. Ding, B. E. Hanson, T. Bartik, B. Bartik. Two-Phase Hydroformylation ofOctene-1 with Rhodium Complexes of P[C_6H_4(CH_2)_mC_6H_4-p-SO_3Na]_3(m=3,6) Rateand Selectivity Enhancement with Surface-Active Phosphines[J]. Organometallics,1994,13(10): 3 761-3 763.
    
    [8] B. E. Hanson, M. E. Davis. Hydroformylation of 1-hexene Utilizing HomogeneousRhodium Catalysis: Regioselectivity as a Function of Conversion[J]. J. Chem. Edu.,1987,64(11): 928-930.
    
    [9]吴已丑,袁刚,周启昭.用水溶性铑膦络合催化剂制备高碳醛.石油化工,1991, 22(2):79-85.
    
    [10]李瑞祥,陈骏如,李绪国,李贤均.水溶性铱膦配合物催化苯乙烯加氢反应研 究[J].分子催化,1996,10(2):115-119.
    
    [11]杜守德,邓立生,李贤均.两相催化体系中辛烯的氢甲酰化反应研究[J].化学 研究与应用,2001,13(02):149-152.
    
    [12]徐斌,李敏,杨敏,郑宏杰,两相催化体系中双子表面活性剂对1-十二烯氢甲 酰化反应的促进作用[J].高等学校化学学报,2004,25(11):2 060-2 064.
    
    [13]H. Bahrmann, S. Bogdamovic. Aqueous-Phase Organometallic Catalysis[M].??Willey-VCH, Weinheim, 1998,306-321.
    
    [14] B. Fell, G Papadogianakis. Rhodiumkatalysierte MizellareZweiphasenhydroformylierung von n-Tetradecen-1 mit GrenzflachenaktivenSulfobetainderivaten des Tris(2-pyridyl)phosphans als Wasserlosliche Komplexli-ganden[J]. J. Mol. Catal., 1991,66(2): 143-154.
    
    [15]T. Bvartik, B. Bartik, B. Bartik B. E. Hanson. Surface Active Phosphines forCatalysis under Two-phase Reaction Conditions. P(menthyl) [(CH_2)_8C_6H_4-p-SO_3Na]_2 and the Hydroformylation of Styrene[J]. J. Mol. Catal. A: Chem., 1995,98(3): 117-122.
    
    [16] T. Bartik, B. Bartik, B. E. Hanson, I. Guo, I. Toth. Water-Soluble Electron-DonatingPhosphines: Sulfonation of Tris(omega-phenylalkyl)phosphines. Organometallics,1993,12(1): 164-170.
    
    [17]T. Bartikl, B. Bartik, B. E. Hanson. Aqueous Phase Rhodium Hydroformylation ofOctene-1 with Trisulfonated tris (ω-phenyl)alkylphosphines and TrisulfonatedTriphenyl Phosphine Reaction Selectivity as an Indication of Rhodium-phosphineComplex Chemistry[J]. J. Mol. Catal. A, 1994,88: 43-56.
    
    [18] H. Chen, Y. Z. U, J. R. Chen. Micellar Effect in High Olefin HydroformylationCatalyzed by Water-Soluble Rhodium Complex[J]. J. Mol. Catal., 1999, 149(1-2):1-6.
    
    [19] R. V. Chaudhari, B. M. Bhanage, R. M. Deshpande. Enhancement of InterfacialCatalysis in a Biphasic System Using Catalyst-Binding Ligands[J]. Nature, 1995,373: 501-502.
    
    [20] E. Monflier, S. Tilloy, G Fremy, Y. Castanet, A. Mortreux. A Further Breakthroughin Biphasic, Rhodium-Catalyzed Hydroformylation: the Use of Per(2,6-di-O-methyl)-8-cyclodextrin as Inverse Phase Transfer Catalyst[J]. Tetrahedron Lett.,1995,36(52): 9 481-9 484.
    
    [21] E. Monflier, G Frremy, Y. Castanet, A. Mortreux. Molecular Recognition betweenChemically Modified β-cyclodextrin and Dec-1-ene: New Prospects for BiphasicHydroformylation of Water-Insoluble Olefins[J]. Angew. Chem. Int. Ed. Eng., 1995,34(20): 2 269-2 271.
    
    [22] R. M. Deshpande, A. Fukuoka, M. Ichikawa. Novel Phosphinite CappedCyclodextrin-Rhodium Catalysts in Substrate Selective Hydroformylation[J]. Chem.Lett., 1999,28(1): 13-14.
    
    [23] M. T. Reetz. Supramolecular Transition Metal Catalysts in Two-Phase Systems[J].Catal. Today, 1998,42(4): 399-411.
    
    [24] S. Tilloy, F. Bertoux, A. Mortreux. Chemically Modified 8-cyclodextrins inBiphasic Catalysis: a Fruitful Contribution of the Host-guest Chemistry to theTransition-metal Catalyzed Reactions[J]. Catal. Today, 1999,48(1-4): 245-253.
    
    [25] Z. W. Xi, Z. Ning, S. Yu. Reaction Controlled Phase-Transfer Catalysis forPropylene Epoxidation to Propylene Oxide[J]. Science, 2001, 292(5519): 1 139-1141.
    
    [26]李坤兰,周宁,奚祖威.溶剂和杂多酸盐中季铵阳离子对环己烯环氧化反应控 制相转移催化的影响[J].催化学报,2002,23(2):125-126.
    
    [27]李坤兰,高爽,奚祖威.反应控制相转移催化合成环氧大豆油[J].应用化学, 2007,24(10):1178-1181.
    
    [28]李健,奚祖威,高爽.磷钨杂多酸盐催化的氯丙烯水油两相条件下的环氧化[J]. 分子催化,2006,20(5):395-398.
    
    [29] X. G Yang, S. Gao, Z. W. Xi. Reaction-Controlled Phase Transfer Catalysis forStyrene Epoxidation to Styrene Oxide with Aqueous Hydrogen Peroxide[J]. Org.Process Res. Dev. 2005,9(3): 294-296.
    
    [30]J. Li, S. Gao, M. Li, R. H. Zhang, Z. W. Xi. Influence of Composition ofHeteropolyphosphatotungstate Catalyst on Epoxidation of Propylene[J]. J. Mol.Catal. A: Chem., 2004,218(2): 247-252.
    
    [31]杨小格,张生军,李萌.合成条件对磷钨杂多酸季铵盐催化剂性能的影响[J]. 催化学报,2006,27(1):50-54.
    
    [32] A. Buhling, P. C. J. Kamer, P. W. N. M. Van leeuwen. Rhodium Catalysed Hydroformylation of Higher Alkenes Using Amphiphilic Iigands[J]. J. Mol. Catal. A: Chem., 1995,98(2): 69-80.
    
    [33]A. Buhling, J. W. Elgersma, S. Nkrumah. Novel Amphiphilic Diphosphines: Synthesis, Rhodium Complexes, Use in Hydroformylation and Rhodium Recycling[J]. J. Chem. Soc, Dalton Trans., 1996,10:2143-2 154.
    
    [34] J. Lu, M. J. Lazzaroni, J. P. Hallett. Tunable Solvents for Homogeneous Catalyst Recycle[J]. Ind. Eng. Chem. Res. 2004,43(7): 1 586-1 590.
    
    [35] Z. L. Jin, X. L. Zheng, B. Fell. Therrnoregulated Phase Transfer Ligands and Catalysis. I. Synthesis of Novel Polyether-Substituted Triphenylphosphines and Application of Their Rhodium Complexes in Two-phase Hydroformylation[J]. J.??Mol. Catal. A: Chem., 1997,116(1-2): 55-58.
    
    [36] X. L. Zheng, J. Y. Jiang, X. Z. Liu, Z. L. Jin. Thermoregulated Phase TransferLigands and Catalysis HI. Aqueous/organic Two-Phase Hydroformylation of HigherOlefins by Thermoregulated Phase-Transfer Catalysis[J]. Catal. Today, 1998,44(1-4): 175-182.
    
    [37] R. F. Chen, J. Y. Jiang, Y. H. Wang, Z. L. Jin. Thermoregulated Phase-transferligands and Catalysis VIII Two-Phase Hydroformylation of 4-isobutylstyreneCatalyzed by Thermoregulated Phase-Transfer Catalyst OPGPPrRh[J]. J. Mol. Catal.A: Chem., 1999,149(1-2): 113-117.
    
    [38]梅建庭,王艳华,缪强.温控相转移配体及催化Ⅶ.Ru/PETPP催化的苯乙烯水 -有机两相加氢反应[J].催化学报,2000,21(4):381-383.
    
    [39] J. Y. Jiang, J. T. Mei, Y. H. Wang. Thermoregulated Phase-Transfer Ligands and Catalysis XV CO Selective Reduction of Nitroarenes Catalyzed by Ru_3(CO)_9(PEO-DPPSA)_3 in Two-Phasic System[J]. Appl. Catal. A, 2002, 224(1-2): 21-25.
    
    [40] J. T. Mei, J. Y. Jiang, Y. M. Li. Thermoregulated Phase-Transfer Ligands and Catalysis (Part X): CO Selective Reduction if Aromatic Nitro Compounds Catalyzed by Ru_3(CO)9(PETPP)_3 in Two-phase System[J]. Chemical Journal on Internet, 2000, 2(1): 021002Pe.
    
    [41]梅建庭,蒋景阳,王艳华.温控相转移配体及催化(ⅩⅥ)Rh/PETPP催化的水- 有机两相邻氯硝基苯CO还原反应动力学的研究[J].高等学校化学学报,2002, 23(5):915-918.
    
    [42]梅建庭,蒋景阳,肖启明.Ru_3(CO)_9(TPPTS)_3催化的水-有机两相芳香硝基化合 物CO选择性还原的研究[J].高等学校化学学报,20001,21(6):894-897.
    
    [43] M. Vogt. Ph. D. Thesis, Rhemisch-Westfalischen Technischen Hochschule, Aachen,Germany, 1991.
    
    [44] I. T. Horvath, J. Rabai. Facile Catalyst Separation without Water: Fluorous BiphaseHydyoformylation of Olefins[J]. Science, 1994, 266(5182): 72-75.
    
    [45] I. T. Horvath, J. Rabai. Metal-Fluorinated and Metal-Perfluorinated Complexes asCatalysts and Extractants for Multiphase Systems[J]. Adv. Organomet. Chem., 1998,571, 201-204.
    
    [46] E. D. Wolf, G V. Koten, B. J. Deelmen. New Catalysts in Fluorous BiphasicConditions[J]. Chem. Soc. Rev., 1999,28,37-41.
    
    [47] I. T. Horvath, G. Kiss, R. A. Cook. Molecular Engineering in Homogeneous Catalysis: One-Phase Catalysis Coupled with Biphase Catalyst Separation. The Fluorous-Soluble HRh(CO){P[CH_2CH_2-(CF_2)_5CF_3]_3}_3 Hydroformylation System[J]. J. Am. Chem. Soc., 1998,120(13): 3 133-3 143.
    
    [48]V. Herrera, P. T. F. De Rege, I. T. Horvath. Tuning the Fluorous Partition Coefficients of Organometallic Complexes. The Synthesis and Characterization of [η~5-C_5H_4CH_2CH_2(CF_2)_9CF_3]Rh(CO)L (L=CO or P[CH_2CH_2-(CF_2)_5CF_3]_3) and Cl_2Ni-{P[CH_2CH_2(CF_2)_5CF_3]_3}_2[J]. Inorg. Chem. Commun., 1998,1(6): 197-199.
    
    [49] G Pozzi, F. Montanari, S. Quici. Cobalt Tetraarylporphyrin-Catalysed Epoxidation of Alkenes by Dioxygen and 2-methylpropanal under Fluorous Biphasic Conditions[J]. Chem. Commun., 1997, (1): 69-70.
    
    [50] G Pozzi, M. Cavazzini, F. Cinato. Enantioselective Catalysis in Fluorinated Media-Synthesis and Properties of Chiral Perfluoroalkylated (salen) manganese Complexes[J]. Eur. J. Org. Chem., 1999,1999(8): 1 947-1 955.
    
    [51]B. Cornils. Fluorous Biphase Systems-the New Phase-Separation and Immobilization Technique[J]. Angew. Chem. Int. Ed. Engl., 1997,36(19): 2 057-2 059.
    
    [52] I. Klement, H. Lutjens, P. Knochel. Transition Metal Catalyzed Oxidations in Perfluorinated Solvents[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(13): 1 454-1 456.
    
    [53] L. V. Dinh, J. A. Gladysz. Transition Metal Catalysis in Fluorous Media: Extension of a New Immobilization Principle to Biphasic and Monophasic Rhodium-Catalyzed Hydrosilylations of Ketones and Enones[J]. Tetrahedron Lett., 1999,40(51): 8 995-8 998.
    
    [54] R. Kling, D. Sinou, G Pozzi. Palladium(O)-Catalyzed Substitution of Allylic Substrates in Perfluorinated Solvents[J]. Tetrahedron Lett., 1998, 39(51): 9 439-9 442.
    
    [55] J. Moineau, G Pozzi, S. Quici. Palladium-Catalyzed Heck Reaction in Perfluorinated Solvents[J]. Tetrahedron Lett., 1999,40(43): 7 683-7 686.
    
    [56]J. G Huddleston, A. E. Visser, W. M. Reichert. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation[J]. Green Chem., 2001,3(4): 156-164.
    
    [57]T. Welton. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem. Rev., 1999,99(8): 2 071-2 084.
    
    [58] Y. Chauvin, B. Gilbert, I. Guibard. Catalytic Dimmerization of Alkenes by NickelComplexes in Organoaluminate Molten Salts[J]. J. Chem. Soc.: Chem. Commun.,1990:1 715-1 802.
    
    [59] R. Giemoth. Homogeneous Catalysis in Ionic Iiquids[J]. Top. Curr. Chem, 2007,276,1-23.
    
    [60] P. Wasserscheid, H. Waffenschmidt. Ionic Liquids in RegioselectivePlatinum-Catalysed Hydroformylation[J]. J. Mol. Catal. A: Chem., 2000, 164(1-2):61-67.
    
    [61]R. D. Rogers, K. R. Sedden. Ionic Liquids Solvents of the Future[J]. Science, 2003,302(5646): 792-793.
    
    [62] N. Karodia, S. Guise, C. Newlands. Clean Catalysis with Ionic SolventsPhosphonium Tosylates for Hydroformylation[J]. Chem. Commun., 1998, (21): 2341-2 342.
    
    [63] J. Dupont, S. M. Silva, R.. F. de. Souza. Mobile Phase Effects in Rh/ SulfonatedPhosphine/Molten Salts Catalysed the Biphasic Hydroformylation of HeavyOlefms[J]. Catal. Lett., 2001,77(1-3): 131-133.
    
    [64] T. M. Rahman, T. Fukuyama, N. Kamata. Low Pressure Pd-catalyzed in IonicLiquid Using a Multiphase Microflow System[J]. Chem. Commun., 2006, (21): 2236-2 238.
    
    [65] Y. Yang, C. X. Deng, Y. Z. Yuan. Characterization and HydroformylationPerformance of Mesoporous MCM-41-supported Water-Soluble Rh ComplexDissolved in Ionic Liquids[J]. J. Catal., 2005,232(1): 108-116.
    
    [66] P. J. Dyson, D. J. Ellis, T. Welton. A Temperature-Controlled Reversible IonicLiquid-water Two Phase Single Phase Protocol for Hydrogenation Catalysis[J]. CanJ Chem, 2001,79:705-708.
    
    [67] J. Dupont, G S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira.Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalystsfor Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc, 2002, 124(16): 4228-4 229.
    
    [68]A. Wolfson, I. F. J. Vankelecom, P. A. Jacobs. Co-immobilization of TransitionMetal Complexes and Ionic Liquids in a Polymeric Support for liquid-PhaseHydrogenations[J]. Terra. Lett. Pergamon, 2003,44,1195-1198.
    
    [69] L. Wei, J. Y. Jiang, Y. H. Wang. Selective Hydrogenation of SBS Catalyzed by Ru/ TPPTS Complex in Polyether Modified Ammonium Salt Ionic Liquid[J]. J. Mol.Catal. A: Chem., 2004,221(1-2): 47-50.
    [70] J. van den Broeke, F. Winter, B. J. Deelman. A Highly Fluorous Room Temperature Ionic Liquid Exhibiting Fluorous Biphasic Behavior and its Use in Catalyst Recycling[J]. Org. Lett., 2002,4(22):3 851-3 854.
    [71] G. Zou, Z.Y. Wang, J. R. Zhu. Developing an Ionic Medium for Ligandless-Palladium-Catalysed Suzuki and Heck Couplings[J]. J. Mol. Catal. A:Chem., 2003,206(1-2): 193-198.
    [72] C. C. Cassol, A. P. Umpierre, G. Machado. The role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction[J]. J. Am. Chem. Soc, 2005,127(10): 3 298-3 299.
    [73] M. M. Dellp Anna, V. Gallo, P. Mastrorilli. Metal Catalysed Michae Ladditions in Ionic Liquids[J]. Chem. Commun., 2002, (5): 434-435.
    [74] A. A. Valente, O. Petrovski, L. C. Branco. Epoxidation of Cyclooctene Catalyzed by Dioxomolybdenum(VI) Complexes in Ionic Liquids[J]. J. Mol. Catal. A: Chem.,2004, 218: 5-11.
    [75] Y. Chauvin, B. Gilbert, I. Guibard. Catalytic Dimerization of Alkenes by Nickel Complexes in Organochloroaluminate Molten Salts[J]. J. Chem. Soc., Chem.Commun., 1990, (23): 1 715-1 716.
    [76] P. Wasserscheid, C. M. Gordon, C. Hilgers. Ionic Liquids: Polar, but Weakly Coordinating Solvents for the First Biphasic Oligomerisation of Ethene to Higher a-olefins with Cationic Ni Complexes[J]. Chem. Commun., 2001, (13): 1 186-1187.
    [77] L. C. Simon, J. Dupont, R. F. De Souza. Two-Phase n-butenes Dimerization by Nickel Complexes in Molten Salt Media[J]. Appl. Catal. A: General, 1998,175(1-2):215-220.
    [78] Y. H. Wang, J. Y. Jiang, X. W. Wu. Thermoregulated Phase-Separable Phosphine Rhodium Complex Catalyst for Hydroformylation of Cyclohexene[J]. Catal. Lett.,2002,79(1-4): 55-57.
    [79] Y. H. Wang, J. Y. Jiang, R. Zhang. Thermoregulated Phase Transfer Ligands and Catalysis DC. Hydroformylation of Higher Olefins in Organic Monophase Catalytic System Based on the Concept of Critical Solution Temperature of the Nonionic Tensioactive Phosphine Ligand[J]. J. Mol. Catal. A: Chem., 2000, 157(1-2):111-115.
    
    
    [80] Y. H. Wang, J. Y. Jiang, F. Cheng. Hydroformylation of Diisobutylene UsingThermoregulated Phase-separable Phosphine Rhodium Complex Catalyst[J]. J. Mol.Catal. A: Chem., 2002,188(1-2): 79-83.
    
    [81] Y. H. Wang, X. W. Wu, F. Cheng. Thermoregulated Phase-Separable PhosphineRuthenium Complex for Hydrogenation Catalysis[J]. J. Mol. Catal. A: Chem., 2003,195(1-2): 133-137.
    
    [82] P. G. Jessop, Y. Hsiao, T. Ikariya. Homogeneous Catalysis in Supercritical Fluids:Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates,and Formamides[J]. J. Am. Chem. Soc., 1996,118(2): 344-355.
    
    [83]P. Bhattacharyya, D. Gudmunsen, E. G Hope. Phosphorus(III) Ligands withFluorous Ponytails[J]. J. Chem. Soc., Perkin Trans., 1997,1: 3 609-3 612.
    
    [84] T. Davis, C. Erkey. Hydroformylation of Higher Olefins in Supercritical CarbonDioxide with HRh(CO)[P(3,5-(CF_3)2-C6H_3)_3]3[J]. Ind. Eng. Chem. Res., 2000,39(10): 3 671-3 678.
    
    [85] D. R. Palo, C. Erkey. Effect of Ligand Modification on Rhodium-CatalyzedHomogeneous Hydroformylation in Supercritical Carbon Dioxide[J].Organometallics, 2000,19(1): 81-86.
    
    [86] M. F. Sellin, P. B. Webb, D. J. Cole-hamilton. Continuous Flow HomogeneousCatalysis: Hydroformylation of Alkenes in Supercritical Fluid-ionic Liquid BiphasicMixtures[J]. Chem. Commun., 2001, (8): 781-782.
    
    [87] K. Sabine, B. Axel, L. Walter. Iridium-catalyzed Enantioselective Hydrogenation ofImines in Supercritical Carbon Dioxide[J]. J. Am. Chem. Soc., 1999, 121(27): 6421-6 429.
    
    [88] A. Fushner, D. Koch, K. Langemann. Olefin Metathesis in Compressed CarbonDioxide[J]. Angew Chem. Int. Ed. Engl., 1997,36(22): 2 466-2 469.
    
    [89]N. Jeone, S. H. Hwang, Y. W. Lee. Catalytic Pauson-khand Reaction in SuperCritical Fluids[J]. J. Am. Chem. Soc., 1997,119(43): 10 549-10 550.
    
    [90]蒋景阳,杨玉川,王艳华.聚乙二醇两相体系及应用:中国,200410021175.7[P]. 2005-01-05.
    
    [91] N. E. Leadbeater, M. Marco. Preparation of Polymer-supported Ligands and Metal Comp lexes for Use in Catalysis[J]. Chem. Rev., 2002,102(10): 3 217-3 219.
    
    [92]J. Manassen. Homogeneous Catalysis with Macromolecular Ligands[J]. Platinum Met. Rev., 1971,15,142-144.
    
    [93]V. Schurig, E. Bayer. A New Class of Catalysts[J]. Chemtech., 1976, 6(3):212-214.
    
    [94] D. E. Bergbreiter, Y. S. Liu, P. L. Osburn. Thermomorphic Rhodium(I) andPalladium(0) Catalysts[J]. J. Am. Chem. Soc, 1998,120(17): 4 250-4 251.
    
    [95]D. E. Bergbreiter. Using Soluble Polymers to Recover Catalysts and Ligands[J].Chem. Rev., 2002,102(10): 3 345-3 347.
    
    [96] D. E. Bergbreiter, P. L. Osburn, T. Smith, C. M. Li, J. D. Frels. Using SolublePolymers in Latent Biphasic Systems[J]. J. Am. Chem. Soc., 2003,125(20): 6 254-6260.
    
    [97] D. E. Bergbreiter, S. Y. D. Sung, J. Li. Designing Polymers for BiphasicLiquid/Liquid Separations after Homogeneous Reactions[J]. Org. Process Res. Dev.,2004, 8(3): 461-468.
    
    [98] C. Bianchini, P. Frediani, V. Sernaula. Zwitterionic Metal Complexes of the NewTriphosphine NaO_3S(C_6H_4)CH_2C(CH_2PPh_2)_3 in Liquid Biphasic Catalysis: anAlternative to Teflon "Ponytails" for Facile Catalyst Separation without Water[J].Organometallics, 1995,14(12): 5 458-5 459.
    
    [99] W. A. Schulze, W. W. Crouch. Solution Viscosity of GR-S[J]. Ind. Eng. Chem.,1948,40(1): 151-154.
    
    [100] W. O. Baker. Microgel, A New Macromolecule[J]. Ind. Eng. Chem., 1949, 41(3):511-520.
    
    [101] M. J. Murray, M. J. Snowden. The Preparation, Characterisation and Application of Colloidal Microgels, Adv. Colloid lnterf. Sci., 1995,54,73-91.
    
    [102]袁才登,王艳君,张彤碹.反应性聚合物微凝胶的合成与应用,高分子通讯, 1999,(1):66-71.
    
    [103]房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状,高技术通讯, 2001,3,107-110.
    
    [104] P. J. Dowding, B. Vincent. Suspension Polymerization to Form Polymer Beads[J].Colloid Surface A, 2000,161,259-269.
    
    [105] I. Kimura, T. Kase, Y. Taguchi. Preparation of Titania/Silica CompositesMicrospheres by Sol-Gel Process in Reverse Suspension[J]. Mater. Res. Bull.,2003,38(4): 585-597.
    
    [106] M. Murray, D. Charlesworth, L. Swires. Microwave Synthesis of the ColloidalPoly(N-isopropylacrylamide) Microgel System[J]. J. Chem. Soc, Faraday Trans.,??1994,90(13): 1 999-2 000.
    
    [107] D. Ruckling, C. D. Vo, S. E. Wohlrab. Preparation of Nanogels withTemperature-Responsive Core and pH-Responsive Arms byPhoto-Cross-Iinking[J]. Langmuir, 2002,18(11): 4 263-4 269.
    
    [108] C. D. Vo, D. Kuckling, H. J. P. Adler. Preparation of Thermo-Sensitive Nanogelsby Photo-Cross-Linking[J]. Colloid Polym. Sci., 2002,280(5): 400-409.
    
    [109] R. H. Pelton, H. M. Pelton, A. Morphesis. Particle Sizes and ElectrophoreticMobilities of Poly(N-isopropylacrylamide) Latex[J]. Langmuir, 1989, 5(3):816-818.
    
    [110] C. B. Agbugba, B. A. Hendriksen, B. Z. Chowdhry. The Redispersibility andPhysico-Chemical Properties of Freeze-Dried Colloidal Microgels[J]. ColloidsSurf. A., 1998,137(1-3): 155-164.
    
    [111]E. A. Nieuwenhuis, A. Vrij. Preparation and Characterization of SphericalMonodisperes Silica Dispersions in Nonaqueous Solvents[J]. J. Colloid Interf.Sci., 1981,81(2): 354-368.
    
    [112] X. Wu, R. H. Pelton, A. E. Hamielec. The Kinetics of Poly(N-isopropylacrylamide)Microgel Latex Formation[J]. Colloid Polym. Sci., 1994, 272(4): 467-477.
    
    [113] R. Pelton. Temperature-Sensitive Aqueous Microgels[J]. Adv. Colloid Interf. Sci.,2000,85(1): 1-33.
    
    [114] P. J. Flory. Molecular Size Distribution in Three Dimensional PolymersGelation[J]. J. Am. Chem. Soc., 1941,63(11): 3 083-3 090.
    
    [115] K. Dusek, K. Patterson. Transition on Swollen Polymer Networks Induced byIntramolecular Condensation[J]. J. Polym. Sci., Polym. Phys. Ed., 1968, 6(7): 1209-1 216.
    
    [116] T. Tanaka. Collapse of Gels and the Critical End Point[J]. Phys. Rev. Lett., 1978,40(12): 820-823.
    
    [117] M. Ilavsk. Effect of Electrostatic Interactions on Phase Transition in the SwollenPolymeric Network[J]. Polymer, 1981,22(12): 1 687-1 691.
    
    [118] C. Konak, R. Bansil. Swelling Equilibria of Ionized Poly(methacrylic acid) Gelsin the Absence of Salt[J]. Polymer, 1989,30(4): 677-680.
    
    [119] B. R. Saunders, B. Vincent. Microgel Particles as Model Colloids: Theory,Properties and Applications[J]. Adv. Colloid Interf. Sci., 1999, 80(1): 1-25.
    
    [120] A. K. Lele, M. V. Badiger, R. A. Mashelkar, S Karode. Prediction of Re-Entrant??Swelling Behavior of Poly(N-isopropyl acrylamide) Gel in a Mixture ofEthanol-Water Using Lattice Fluid Hydrogen Bond Theory[J]. J. Chem. Phys.1997,107: 2 142-2 148.
    
    [121] B. R. Saunders, B. Vincent. Osmotic De-swelling of Polystyrene MicrogelParticles[J]. Colloid Polym. Sci., 1997,275(1): 9-17.
    
    [122] Y. Hirokawa, T. Tanaka. Volume Phase Transition in a Nonionic Gel[J]. Chem.Phys., 1984,81(12): 6 379-6 380.
    
    [123] E. S. Matsuo, T. Tanaka. Kinetics of Discontinuous Volume-Phase Transition ofGels[J]. J. Chem. Phys., 1988, 89(3): 1 695-1 703.
    
    [124]吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝 胶微球在水中的相变(上)[J].高分子通报,1998,(3):9-16.
    
    [125]曾钫,童真,佐藤尚弘.聚(N-异丙基丙烯酰胺)的分子链特性[J].中国科学, 1999,29(5):426-431.
    
    [126] K. Y. Lee, J. M. David. Hydrogels for Tissue Engineering[J]. Chem. Rev., 2001,101,1 869-1 879.
    
    [127] A. S. Hoffman. Hydrogels for Biomedical Applications[J]. Adv. Drug Deliver.Rev., 2002,43,3-12.
    
    [128] J. M. Rosiak, P. Ulanski, A. Rzeznicki. Hydrogels for Biomedical Purpose[J].Nucl. Inst. Meth. B, 1995,105,335-339.
    
    [129] R. Langer. Drug Delivery and Targeting[J]. Nature, 1998(6679), 392: 5-10.
    
    [130]莫建民,金宝玉,刘东升等.聚丙烯酰胺水凝胶在美容外科的临床应用[J].中 国美容医学,2001,10:62-68.
    
    [131]徐露,曾庆孝,张立彦.“智能”凝胶的合成及其在生物领域的应用[J].食品与 机械,2005,22(4):76-78.
    
    [132]姚康德,尹玉姬.组织工程相关生物材料[M].北京:化学工业出版社,2003. 49-69.
    
    [133]许凤兰,李玉宝,姚晓明.纳米羟基磷灰石/聚乙烯醇复合人工角膜材料[J]. 复合材料学报,2005,22(1):27-31.
    
    [134]郭兴林,谢琼丹,赵宁.仿生高分子的研究进展[J].化学进展,2004,16: 1023-1029
    
    [135] M. Ilavsky, J. Hrouz, K. Ulbrich. Phase Transition in Swollen Gels[J]. Polym.Bull., 1982,7(2-3): 107-113.
    
    [136] T. Tanaka, D. Fillmore, S. Sun. Phase Transition in Ionic Gels[J]. Phy. Rev. Lett.,??1980,45(20):1 636-1 639.
    
    [137]张新房.智能水凝胶[J].食品与药品,2005,7(3A):17-22.
    
    [138] M. Marchetti. Thermodynamics of Temperature Sensitive Gels. Ph D thesisUniversity of Minnesota, 1989.
    
    [139] K. K. Lee, E. L. Cussler. Pressure-Dependent Phase Transitions in Hydrogels[J].Chem. Eng. Sci., 1990,45 (3): 766-767.
    
    [140]钟兴,王宇新,王世昌.温敏凝胶体积相转变温度的压敏性[J].高分子学报, 1994,(1):113-116.
    
    [141] T. Shiga, Y. Hirose, A. Okada, T. Kurauchi. Bending of Poly(vinyl alcohol)-poly(sodium acrylate) Composite Hydrogel in Electric Fields[J]. J. Appl. Polym. Sci. 1992,44,249-253.
    
    [142] T. Miyata, N. Asami, T. Uragami. Preparation of an Antigen-Sensitive Hydrogel Using Antigen Antibody Bindings[J]. Macromolecules, 1999,32(6): 2 082-2 084.
    
    [143]顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社,2005.1.
    
    [144] R. H. Schmedlen, K. S. Masters, J. L. West. Photocrosslinkable Polyvinyl AlcoholHydrogels that Can be Modified with Cell Adhesion Peptides for Use in TissueEngineering[J]. Biomaterials, 2002,23(22): 4 325-4 332.
    
    [145] M. L. Zhai, N. Liu, J. Li. Radiation Preparation of PVA-g-NIPAAm in aHomogeneous System and its Application in Controlled Release[J]. RadiationPhys. Chem., 2000, (57): 481-484.
    
    [146] M. R. de Moura, M. R. Guilherme, G. M. Campes. Porous Algihate-Ca~(2+)Hydrogels Interpenetrated with PNIPAAm Networks; Interrelationship betweenCompressive Stress and Pore Morphology [J]. Eur. Polym. J., 2005, 41(12): 2845-2 852.
    
    [147]蔡立彬,刘正堂,崔英德.有机硅改性共聚物水凝胶接触镜材料的合成与性 能研究[J].化工进展,2005,24(4):399-402.
    
    [148] D. C. Fernandez, R. A. Pizarro, E. E. Smolko. Hydrogels for Immobilization of Bacteria Used in the Treatment of Mital-Contaminated Wastes[J]. Radiation Phys. Chem., 2002,63(1): 109-113.
    
    [149]鲁开化,周智,曹景敏.医用聚丙烯酰胺水凝胶国内基础研究评析[J].中国美 容医学,2001,10(1):54-57.
    
    [150]田菲,鲁开化,艾玉峰.聚丙烯酰胺凝胶的组织相容性实验[J].第四军医大学 学报,1999,20(11):966-968.
    
    [151] H. Y. Kweon, M. K. Yoo, I. K. Park. A Novel Degradable PolycaprolactoneNetworks for Tissue Engineering[J]. Biomaterials, 2003,24(5): 801-808.
    
    [152] J. Q. Zhao, L. Z. Cai. Preparation of Hydrogel for Intelligent Window[J]. Chin.Syn. Rubb. Ind., 2000, 23(5): 325-330.
    
    [153] J. W. Bums. Bacteria Derived Sodium Hyaluronate Based Products for PostSurgical Adhesion Prevention. 211 AcS National Meeting. New Orleans: LA,March 24-28,1996, Abstracts, BTEC 004.
    
    [154] N. J. Kavimandan, L. Elena. Novel Delivery System Based on ComplicationsHydrogels as Delivery Vehicles for Insulin-Transferring Conjugates[J].Biomaterials, 2006,27(20): 3 846-3 854.
    
    [155]田建广,夏照帆.创面敷料的研究进展[J].解放军医学杂志,2003,28(5): 470-471.
    
    [156] N. Katsutoshin, O. Takeshi. Preparation and Applications of Polymeric Microspheres Having Active Ester Groups[J]. Colloid Surface A, 1999, 153(1-3): 133-136.
    
    [157]夏范武.反应性微凝胶的制备及其在水性涂料中的应用[J].涂料工业,1998, 10:33-38.
    
    [158]陈其道,游凤祥,洪啸吟.活性微凝胶的制备、性能及其在涂料中的应用[J]. 涂料工业,1996,(5):29-32.
    
    [159] M. Okaniwa. Synthesis of Poly(dimethyl-silicone) and Poly (butadiene)Composite Particles and the Properties of Grafted Polymer Particles[J]. Polymer,2000,41(2): 453-460.
    
    [160] T. O. Katsutoshin. Preparation and Applications of Polymeric MicrospheresHaving Active Ester Groups[J]. Colloid Surface A, 2003,155(8): 133-136.
    
    [161] K. Ishii. Synthesis of Microgels and Their Application to Coatings[J]. ColloidSurface A, 1999,153(1-3): 591-595.
    
    [162] Wright, J. Howard, Leonard. Acrylic Resin-Acrylic Microgel Compositions[P].US 4377661,1983-3-22.
    
    [163] P. J. Dowding, B. Vingcent, E. Williams. Preparation and Swelling Properties ofpoly(NIPAM) "Minigel" Particals Prepared by Inverse Suspension Polymerization.J. Colloid Interf. Sci., 2000,221(2): 268-272.
    
    [164] M. Snowden, D. Thomas, B. Vincent. Use of Colloidal Microgels for theAbsorption of Heavy Metal and Other Ions from Aqueous Solution[J]. Analyst,??1993,118,1 367-1369.
    
    [165] G E. Morris, B. Vincent, M. J. Snowden. Adsorption of Lead Ions ontoN-isopropylacrylamide and Acrylic Acid Copolymer Microgels[J]. J. ColloidInterf. Sci., 1997,190(1): 198-205.
    
    [166] J. G Zhang, S. Q. Xu, E. Kumacheva. Polymer Microgels: Reactors forSemiconductor, Metal, and Magnetic Nanoparicles[J]. J. Am. Chem. Soc., 2004,126(25): 7 908-7 914.
    
    [167] H. Y. Xia, Y. Zhang, J. X. Peng, Y. Fang, Z. Z. Gu. Preparation ofSilver-Poly(acrylamide-co-methacrylic acid) Composite Microspheres withPatterned Surface Structures[J]. Colloid. Polym. Sci., 2006,284(11): 1 221-1 228.
    
    [168] H. Y. Xia, Y. Zhang, S. Sun, Y. Fang. Ag-Polymer Composite Microspheres withPatterned Surface Structures[J]. Colloid. Polym. Sci., 2007,285(15): 1 655-1 663.
    
    [169] Y. Zhang, Y. Fang, H. Y. Xia. Preparation of AgCl-polyacrylamide CompositeMicrospheres via Combination of a Polymer Microgel Template Method and aReverse Micelle Technique[J]. J. Colloid Interf. Sci., 2006,300(1): 210-218.
    
    [170] C. L. Bai, Y. Fang, Y. Zhang. Synthesis of Novel Metal Sulfide-PolymerComposite Microspheres Exhibiting Patterned Surface Structures[J]. Langmuir,2004, 20(1): 263-265.
    
    [171] Y. Fang, C. L. Bai, Y. Zhang. Preparation of Metal Sulfide-Polymer CompositeMicrospheres with Patterned Surface Structures[J]. Chem. Commun., 2004, (7):804-805.
    
    [172] J. X. Yang, Y. Fang, C.L. Bai. CuS-poly(N-isopropylacrylamide-co-acrylic acid)Composite Microspheres with Patterned Surface Structures: Preparation andCharacterization[J]. Chin. Sci. Bull., 2004,19(19): 2 026-2 032.
    
    [173] Y. Zhang, Y. Fang, S. Wang. A Novel Template Method for the Preparation ofSpherical Nano-Structured Organic-Inorganic Composites[J]. J. Colloid Interf.Sci., 2004,272(2): 321-325.
    
    [174] B. D. Korth, P. Keng, I. Shim. Polymer-Coated Ferromagnetic Colloids fromWell-Defined Macromolecular Surfactants and Assembly into NanoparticleChains[J]. J. Am. Chem. Soc, 2006,128(20): 6 562-6 563.
    
    [175]王公正,夏慧芸,张颖,彭世杰.表面图案化磁性复合微球的原位制备与表征 [J].化学学报,2007,65(18):2 051-2 056.
    
    [176] J. X. Yang, D. D. Hu, Y. Fang. Novel Method for Preparation of Structural??Microspheres Poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2[J]. Chem. Mater.,2006,18(20): 4 902-4 907.
    
    [177] M. I. Martinez-Rubio, T. G Ireland, G R. Fern. A New Application for Microgels:Novel Methed for the Synthesis of Spherical Particles of the Y_2O_3:Eu~(3+) PhosphorUsing a Copolymer of NIPAM and Acrylic Acid[J]. Langmuir, 2001, 17(22): 7145-7 149.
    
    [178] X. J. Wang, D. D. Hu, J. X. Yang. Synthesis of PAM/TiO_2 CompositeMicrospheres with Hierarchical Surface Morphologies[J]. Chem. Mater., 2007,19(10): 2 610-2 621.
    
    [179] T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira. Preparation of MacroporousSnO_2 Films Using PMMA Microspheres and their Sensing Properties to NO_x andH_2[J]. Sensor Actuat. B Chem., 2005,106(2): 580-590.
    
    [180]梁朝林.高硫原油加工[M].北京:中国石化出版社,2001:112-114.
    
    [181]洪丽雁,王桂英,刘峰阳.石油产品硫含量分析方法适应性研究[J].河南石油, 2003,17(6):53-56.
    
    [182] H. P. Tuan, H. G Janssen, C. A. Cramers. Determination of Sulfur Components in Natural Gas: a Review[J]. J. High Resolu. Chromatogr., 1994,17(6): 373-389.
    
    [183] A. Depauw, G F. Froment. Molecular Analysis of the Sulphur Components in a Light Cycle Oil of a Catalytic Cracking Unit by Gas Chromatography with Mass Spectrometric and Atomic Emission Detection[J]. J. Chromatogr. A, 1997,761(1): 231-247.
    
    [184]杨永坛,杨海鹰,陆婉珍.催化柴油中硫化物的气相色谱-原子发射光谱分析 方法及应用[J].色谱,2002,20(6):493-497.
    
    [185]杨永坛,王征,宗保宁.催化裂化汽油中硫化物类型分布的气相色谱-硫化学 发光检测的方法研究[J].色谱,2004,22(3):216-219.
    
    [186] J. Guieze, G. Devant, D. Loyaux. Identification of Sulfur Compounds in a Gasoline by Gas Chromatography/quadrupole Mass Spectrometry[J]. Int. J. Mass. Spectrom Ion Phys., 1983,46, 313-316.
    
    [187] S. Yoshimitsu. Selective Detection of Sulfur Compounds with a Gas Electrode Detector[J]. Bunseki Kagaku, 1986,35(1): 54-57.
    
    [188] N. J. Sung, S. J. Johnson. Determination of the Total Amount Sulfur in Petroleum Fractions by Capillary Gas Chromatography in Combination with Cold Trapping and a Total Sulfur Analyzer[J]. J. Chromatogr, 1988,468,345-358.
    [189] E. Jochen, W. Peter, J. Andreas. Deep Desulfurization of Oil Refinery Streams by Extraction with Ionic Liquids[J]. Green Chem., 2004, (6): 316-322.
    [190] C. Huang, B. Chen, J. Zhang. Desulfurization of Gasoline by Extraction with New Ionic Liquids[J]. Energy Fuels, 2004,18(6): 1 862-1 864.
    [191] B. Castro, M. J. Whitcombeb, E. N. Vulfson. Molecular Imprinting for the Selective Adsorption of Organosulphur Compounds Present in Fuels[J]. Anal.Chim. Acta., 2001,435, 83-90.
    [192] A. Takashi, R. T. Yang. New Sorbents for Desulfurization by Complexation:Thiophene /Benzene Adsorp tion [J]. Ind. Eng. Chem. Res., 2002, 41(10): 2487-2 496.
    [193] A. S. H. Salem. Naphtha Desulfurization by Adsorption[J]. Ind. Eng. Chem. Res.,1994,33(2): 336-340.
    [194] C.O. Ania, J.B. Parra, A. Arenillas. On the Mechanism of Reactive Adsorption of Dibenzothiophene on Organic Waste Derived Carbons[J]. A. Surf. Sci., 2007,253(13): 5 899-5 903.
    [195] C. O. Ania, T. J. Bandosz. Sodium on the Surface of Activated Carbons as a Factor Enhancing Reactive Adsorption of Dibenzothiophene[J]. Energy Fuels,2006, 20(3): 1 076-1 080.
    [196] K. Tawara, J. Imai, H. Iwanami. Ultra-Deep Hydrodesulfurization of Kerosene for Fuel Cell System. Part 1. Evaluations of Conventional Catalysts[J]. Sekiyu Gakkai shi., 2000,43(1): 35-41.
    [197] N. Chen, R. T. Yang. Ab Initio Molecular Orbital Study of Adsorption of Oxygen,Nitrogen, and Ethylene on Silver-Zeolite and Silver Halides[J]. Ind. Eng. Chem.Res., 1996,35(11): 4 020-4 027.
    [198] H. Y. Huang, J. Padin, R. T. Yang. Anion and Cation Effects on Olefin Adsorption on Silver and Copper Halides: Ab Initio Effective Core Potential Study of Complexation[J]. J. Phys. Chem. B., 1999,103, 3 206-3 212.
    [199] R. T. Yang, A. J. Hernandez-Maldonado, F. H. Yang. Desulfurization of Transportation Fuels with Zeolites under Ambient Conditions[J]. Science, 2003,301,79-81.
    [200] A. J. Hernandez-Maldonado, F. H. Yang, G. Qi, et. al. Desulfurization of Transportation Fuels by p-complexation Sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites[J]. Appl. Catal. B: Environ., 2005,56(1-2): 111-126.
    [201] M. Seredych, T. J. Bandosz. Template-Derived Mesoporous Carbons with Highly Dispersed Transition Metals as Media for the Reactive Adsorption of Dibenzothiophene[J]. Langmuir, 2007,23(11): 6 033-6 041.
    [202] W. W. Y. Vivian, H. Y. C. Kenneth, M. C. W. Keith. Luminescent Dinuclear Platinum(II) Terpyridine Complexes with a Flexible Bridge and "Sticky Ends"[J].Angew. Chem. Int. Ed., 2006,45(37): 6 169-6 173.
    [203] C. O. Ania, T. J. Bandosz. Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene[J]. Langmuir,2005, 21(17): 7 752-7 759.
    [204] C. O. Ania, T. J. Bandosz. Metal-Loaded Polystyrene-Based Activated Carbons as Dibenzothiophene Removal Media via Reactive Adsorption[J]. Carbon, 2006,44(12): 2 404-2 412.
    [205] S. K. Rhee, J. H. Chang, Y. K. Chang. Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated Gordona Strain CYKS1[J]. Appl. Environ.Microbiol., 1998, 64(6): 2 327-2 331.
    [206] B. R. Folsom, D. R. Schieche, P. M. Digrazia. Microbial Desulfurization of Alkylated Dibenzothiophenes from a Hydrodesulfurized Middle Distillate by Rhodococcus Erythropolis I-19[J]. Appl. Environ. Microbiol., 1999, 65(11): 4967-4 972.
    [207] M. Kobayashi, T. Onaka, Y. Ishi. Desulfuriztion of Alkylated Forms of Both Dibenzothiophenea and Benzothiophene by a Single Bacterial Strain. FEMS[J].Microbiol. Lett., 2000,187(2): 123-126.
    [208] D. Paolo, S. Marco. Oxidative desulfurization: Oxidation Reactivity of Sulfur Compounds in Different Organic Matrixes[J]. Energy Fuels, 2003,17(6): 1 452-1455.
    [209] S. Otsukis, Nonaka T, Takashima N, Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J]. Energy Fuels, 2000,14(6): 1 232-1 239.
    [210] S. Yasuhiro, H. Takayuki. Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by liquid-Liquid Extraction[J] Energy Fuels, 2004, 18(1):37-40.
    [211] M. Satoru, M. Kazutaka, K. Koh, N. Masakatsu. A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence??of Cobalt Catalysts and Aldehydes[J].Energy Fuels,2004,18(1):116-121.
    
    [212]余国贤,陆善祥,陈辉,朱中南.FCC柴油催化氧化深度脱硫的研究[J].石油 炼制与化工,2004,35(4):63-66.
    
    [213]李忠铭,余国贤,陆善祥.亚铁离子及甲酸催化过氧化氢氧化柴油深度脱硫 研究[J].石油与天然气化工,2006,35(4):285-288.
    
    [214]戴咏川,亓玉台,赵德智.柴油超声波-Fenton试剂氧化脱硫反应研究[J].石 油炼制与化工,2007,38(1):35-38.
    
    [215] C. Li, Z. X. Jiang, J. B. Gao. Ultra-Deep Desulfurization of Diesel: Oxidationwith a Recoverable Catalyst Assembled in Emulsion[J]. Chem. Eur. J., 2004, 10,2 277-2 280.
    
    [216] C. Li, J. B. Gao, Z. X. Jiang. Selective Oxidations on Recoverable CatalystsAssembled in Emulsions[J]. Top. Catal., 2005,35(1-2): 169-175.
    
    [217] H. Y. Lu, J. B. Gao, Z. X. Jiang. Ultra-Deep Desulfurization of Diesel bySelective Oxidation with [C_(18)H_(37)N(CH_3)_3]_4[H_2NaPW_(10)O_(36)] Catalyst Assembled inEmulsion Droplets[J]. J. Catal., 2006,239(2): 369-375.
    
    [218] J. B. Gao, S. G. Wang, Z. X. Jiang. Deep Desulfurization from Fuel Oil viaSelective Oxidation Using an Amphiphilic Peroxotungsten Catalyst Assembled inEmulsion Droplets[J]. J. Mol. Catal. A: Chem., 2006,258(1-2): 261-266.
    
    [219] H. Y. Lu, J. B. Gao, Z. X. Jiang. Oxidative Desulfurization of Dibenzothiophenewith Molecular Oxygen Using Emulsion Catalysis[J}. Chem. Commun., 2007, (2):150-152.
    
    [220] D. Huang, Y. J. Wang, L. M. Yang. Chemical Oxidation of Dibenzothiophenewith a Directly Combined Amphiphilic Catalyst for Deep Desulfurization[J]. Ind.Eng. Chem. Res., 2006,45(6): 1 880-1 885.
    
    [221] K. Yazu, Y. Yorihiro, F. Takeshi. Oxidation of Dibenzothiophenes in an OrganicBiphasic System and Its Application to Oxidative Desulfurization of light Oil[J].Energy Fuels, 2001,15(6): 1535-1 538.
    
    [222] K. Yazu, T. Furuya, K. Miki. Tungstophosphoric Acid-catalyzed OxidativeDesulfurization of light Oil with Hydrogen Peroxide in a light Oil/Acetic AcidBiphasic System[J]. Chem. Lett., 2003,32(10): 920-921.
    
    [223] L. C. Caero, E. Hernandex, P. Francisco. Oxidative Desulfurization of SyntheticDiesel Using Supported Catalysts Part I. Study of the Operation Conditions with aVanadium Oxide Based Catalyst[J]. Catal. Today, 2005,107-108,564-69.
    [224] H. Vasile, F. Frangois, B. Jacques. Mild Oxidation with H_2O_2 over Ti-Containing Molecular Sieves-A Very Efficient Method for Removing Aromatic Sulfur Compounds from Fuels[J]. J. Catal., 2001,198(2): 179-186.
    [225] Y. M. A. Yamada, M. Ichinohe, H. Takahashi. Development of a New Triphase Catalyst and Its Application to the Epoxidation of Allylic Alcohols[J]. Org. Lett.,2001,3(12): 1 837-1 840.
    [226] Y. M. A. Yamada, H. Tabata, M. Ichinohe. Oxidation of Allylic Alcohols, Amines,and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate and Non-Cross-Linked Amphiphilic Copolymer[J]. Tetrahedron, 2004, 60(18): 4087-4 096.
    [227] H. Hamamoto, Y. Suzuki, Y. M. A. Yamada. A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst[J]. Angew. Chem. Int. Ed., 2005,44,4 536-4 538.
    [228] H. Hamamoto, M. Kudoh, H. Takahashi. Novel Use of Cross-Linked Poly(N-isopropylacrylamide) Gel for Organic Reactions in Aqueous Media[J].Org. Lett., 2006,8(18): 4 015-4 018.
    [229] K. Yamaguchi, C. Yoshida, S. Uchida, N. Mizuno. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide[J]. J. Am. Chem. Soc, 2005,127(2): 530-531.
    [230] K. Jun, N. Yoshinao, U. Sayaka. [γ-1,2-H_2SiV_2W_(10)O_(40)] Immobilized on Surface-Modified SiO_2 as a Heterogeneous Catalyst for Liquid Phase Oxidation with H_2O_2[J]. Chem. Eur. J., 2006,12(15): 4 176-4 184.
    [231]K. Babak, G. N. Maryam, H. C. James. Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica Based Tungstate Interphase Catalyst[J]. Org. Lett., 2005,7(4): 625-628.
    [232] Y. Shiraishi, T. Harai, I. Komasawa. A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System[J]. Ind. Eng. Chem. Res., 1998,37: 203-211.
    [233] D. H. Wang, E. W. Qian, H. Amano. Oxidative Desulfurization of Fuel Oil Part I.Oxidation of Dibenzothiophenes Using tert-butyl Hydroperoxide[J]. Appl. Catal.,A, 2003, 253: 91-99.
    [234] A. Ishihara, D. H. Wang, F. Dumeignil. Oxidative Desulfurixation and Denitrogenation of a Light Gas Oil Using an Oxidation/Adsorption Continuous??Flow Process[J].Appl.Catal.,A,2005,279:279-287.
    
    [235]李建源,周新锐,赵德丰.过氧化环己酮对二苯并噻吩的氧化脱硫研究[J].燃 料化学学报,2006,34(2):49-51.
    
    [236]大庆石油学院化学化工学院.用高铁酸钾氧化生产超低硫油品的方法:中国, 200510069861.6[P].2006-01-25.
    
    [237] S. Z. Liu, B. H. Wang, B. C. Cui, L. L Sun. Deep Desulfurization of Diesel Oil Oxidized by Fe(VI) Systems[J]. Fuel, 2008,87(3): 422-428.
    
    [238]杨金荣,侯影飞,孔瑛等.柴油臭氧氧化脱硫研究.石油大学学报(自然科学 版),2002,26(4):84-89.
    
    [239]唐晓东,刘亮.一种柴油催化氧化脱硫的方法:中国,200410040923.6[P]. 2005-06-08.
    
    [240]张竹梅.生产低硫汽油的新技术[J].石油化工环境保护,2004,27(1):53-56.
    
    [241] X. J. Zhao, G. Krishnaiah, K. R. Novak. What will Gasoline Sulfur ComplianceCost You S-Brane Membrane Technology Economic Analysis[C]. NPRAM205206, San Antonio, TX, 200.
    
    [242] H. Mei, B. W. Mei, T. F. Yen. A New Method for Obtaining Ultra-Low SulfurDiesel Fuel via Ultrasound Assisted Oxidative Desulfurization[J]. Fuel, 2003, 82:405-414.
    
    [243] E. G Gjietty. New Routes for Gasoline Deep Desulfurization[J]. Chem. Eng.,2001,108(11): 17-21.
    
    [244]刘万楹,雷正兰,吕伟.有机硫化物的等离子体液相氧化脱硫[J].应用化学, 1997,5:83-85.
    
    [245] W. Y. Liu. Kinetics and Mechanism of Plasma Oxidative Desulfurization in LiquidPhase[J]. Energy Fuels, 2001,15: 38-43.
    
    [246] Y. M. Osnat, S. Jakob, J. Sren. Microfabricated High-Temperature Reactor forCatalytic Partial Oxidation of Methane[J]. Appl. Catal. A Gen., 2005, 284(1-2):5-10.
    
    [247] Z. Q. Chang, G. Liu, F. Fang. γ-Ray-Initiated Dispersion Polymerization of PMAin Microreactor[J]. Chem. Eng. J., 2004,101(1-3): 195-199.
    
    [248] M. Miyazaki, J. Kaneno, R. Kohama. Preparation of FunctionalizedNanostructures on MicroChannel Surface and Their Use for EnzymeMicroreactors[J]. Chem. Eng. J., 2004,101(1-3): 277-284.
    
    [249] M. P. Plieni. Water in Oil Colloidal Droplets Used as Microreactors[J]. Adv.??Colloid Interface Sci., 1993,46(1): 139-163.
    
    [250] M. Boutonnet, J. Kizling, P. Stenius, G Maire. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions[J]. Colloids Surf., 1982, 5(3): 209-225.
    
    [251]成国祥,沈锋,姚康德.智能微反应器及纳米微粒制备[J].化工进展,1998, (2):39-42.
    
    [252] M. T. Patel, R. Nagarajan, A. Kilara. Characteristics of Iipase CatalyzedLiydrolysis of Triacylglycerols in AOT/isooctane Revrese Micellar Media[J].Biotechnol. Appl. Biochem., 1995,22,1-14.
    
    [253] R. N. Patel, R. L. Hanson, A. Banerjee, L. J. Szarka. Biocatalytic Synthesis ofSome Chiral Drug Intermediates by Oxidoreductases[J]. J. Am. Oil Chem. Soc,1997,74(11): 1 345-1 360.
    
    [254] M. P. Pileni. Reverse Micelles as Microreactors[J]. J. Phys. Chem., 1993, 97, 6961-6 973.
    
    [255] P. Tundo, P. Venturello, E. Angeletti. Anion-Exchange Properties of AmmoniumSalts Immobilized on Silica Gel[J]. J. Am. Chem. Soc, 1982, 104(24): 6 547-6551.
    
    [256] G D. Yadav, S. S. Naik. Clay-Supported Liquid-Liquid-Solid Phase TransferCatalysis: Synthesis of Benzoic Anhydride[J]. Org. Process Res. Dev., 2000, 4:141-146.
    
    [257] P. Tundo, P. Venturello, E. Angeletti. Phase-Transfer Catalysts Immobilized andAdsorbed on Alumina and Silica Gel[J]. J. Am. Chem. Soc, 1982, 104(24): 6551-6 555.
    
    [258] T. Saito, T. Takatsuka, T. Kato. Adherence of oral Streptococci to an ImmobilizedAntimicrobial Agent[J]. Archs. Oral. Biol., 1997,42(8): 539-545.
    
    [259]毕颖丽,阚秋斌,杜秉忱.MCM-41负载型过氧磷钨杂多酸季铵盐催化剂的制 备和结构性能的考察[J].燃料化学学报,2001,29,46-48.
    
    [260]毕颖丽,王敏,庄红.负载型过氧磷钨杂多化合物上正己醇催化氧化成正己 酸[J].高等学校化学学报,2002,23(5):953-954.
    
    [261] K. Yamaguchi, C. Yoshida, S. Uchida, N. Mizuno. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide[J]. J. Am. Chem. Soc, 2005,127(2): 530-531.
    
    [262] R. Annunziata, M. Benaglia, M. Cinquini. Tocco Poly(ethylene glycol)- Supported??Quaternary Ammonium Salt: an Efficient, Recoverable, and RecyclablePhase-Transfer Catalyst[J]. Org. Lett., 2000,2(12): 1 737-1 739.
    
    [263] Y. M. A. Yamada, H. Tabata, M. Ichinohe. Oxidation of Allylic Alcohols, Amines,and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate andNon-Cross-Linked Amphiphilic Copolymer[J]. Tetrahedron, 2004, 60(18): 4087-4 096.
    
    [264] C. Venturello, E. Alneri, M. Ricci. A new, Effective Catalytic System forEpoxidation of Olefins by Hydrogen Peroxide under Phase-Transfer[J]. J. Org.Chem., 1983,48(21): 3 831-3 833.
    
    [265] D. Kuckling, C. D. Vo, S. E. Wohlrab. Preparation of Nanogels withTemperature-Responsive Core and pH-Responsive Arms by Photo-Cross-Linking[J]. Langmuir. 2002,18(11): 4 263-4 269.
    
    [266] G. Birrenbach, P. P. Speiser. Polymerized Micelles and Their Use as Adjuvants inImmunology[J]. J. Pharm. Sci., 1976, 65,1 763-1 766.
    
    [267] B. R. Saunders, B. Vincent. Microgel Particles as Model Colloids: Theory,Properties and Applications [J]. Adv. Colloid Interface Sci., 1999, 80:1-25.
    
    [268] L. M. Bronstein,. C. Linton, R. Karlinsey. Functional Polymer Colloids withOrdered Interior[J]. Langmuir 2004, 20(4): 1100-1 110.
    
    [269] N. J. Campbell, A. C. Dengel, C. J. Edwards. Studies on Transition Metal PeroxoComplexes. Part 8. The Nature of Peroxomolybdates and Peroxotungstates inAqueous Solutiont[J]. J. Chem. Soc. Dalton. Trans. 1989,1 203-1 208.
    
    [270] B. Gottenbosa, H. C. van der Meia, F. Klatterb. In vitro and in vivo AntimicrobialActivity of Covalently Coupled Quaternary Ammonium Silane Coatings onSilicone Rubber[J]. Biomaterials, 2002, 23,1417-1 423.
    
    [271] R. V. Adams, R. W. Douglas. Infrared Studies on Various Samples of Fused Silicawith Special Reference to the Bands due to Water[J]. J. Soc. Glass Technol., 1959,43,147-149.
    
    [272] Conley R T. Thermal Stability of Polymers[M]. New York: Marcel Dekker. Inc.,1970,1, 254.
    
    [273]沈海霞,许小平.不同制备条件对阿霉素磁性抗癌毫微粒形貌及粒径大小的 影响[J].海峡药学,2004,16(4):18-20.
    
    [274]高庆,陈正国,路国红.可交联AA/AM反相乳液聚合的稳定性研究[J].湖北 大学学报,2001,23(3):255-257.
    
    [275] G De, D. Kundu, B. Karmakar, D. Ganguli. FTIR Studies of Gel to GlassConversion in TEOS-Fumed Silica-Derived Gels[J]. J. Non-Cryst. Solids, 1993,155,253-258.
    
    [276] M. Tomozawa, K.M. Davis. An Infrared Spectroscopic Study of Water-RelatedSpecies in Silica Glasses[J]. J. Non-Cryst. Solids, 1996,201,177-198.
    
    [277] R. V. Adams, R. W. Douglas. Infrared Studies on Various Samples of Fused Silicawith Special Reference to the Bands due to Water[J]. J. Soc. Glass Technol., 1959,43,147-149.
    
    [278] S. M. Abo El Ola, R. Kotek, W. C. White. Unusual Polymerization of3-(trimethoxysilyl)-propyldimethyloctadecylammonium Chloride on PETSubstrates[J]. Polymer, 2004,45(10): 3 215-3 225.
    
    [279] W. P. Tang. Preparation of Anatase-Type TiO_2 Nanocrystal/acetylene BlackComposites by a Dry Process, and Ttheir Electrochemical Lithium Insertion[J]. J.Mater. Chem., 2004,14(23): 3 457-3 461.
    
    [280] Conley R T. Thermal stability of Polymers[M]. NewYork: Marcel Dekker. Inc.,1970,1, 254.
    
    [281] US EPA, Regulatory Announcement, Heavy-Duty Engine and Vehicle Standardsand Highway Diesel Fuel Sulfur Control Requirements[S]. December, 2000.
    
    [282] R. T. Yang, A. J. Hernμndez-Maldonado, F. H. Yang. Desulfurization ofTransportation Fuels with Zeolites Under Ambient Conditions[J]. Science, 2003,301:79-81.
    
    [283] Omid Etemadi, Teh Fu Yen. Aspects of Selective Adsorption among OxidizedSulfur Compounds in Fossil Fuels[J]. Energy Fuels, 2007,21(5): 1 622-1 627.
    
    [284] W. S. Zhu, H. M. Li, X. Jiang. Oxidative Desulfurization of Fuels Catalyzed byPeroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids[J]. EnergyFuels, 2007,21(5): 2 514-2 516.
    
    [285] P. S. Tam, J. R. Kittrell, J. W. Eldridge. Desulfurization of Fuel Oil by Oxidationand Extraction. 1. Enhancement of Extraction Oil Yield[J]. Ind. Eng. Chem. Res.,1990,29(3): 321-324.
    
    [286] O. Etemadi, T. F. Yen. Selective Adsorption in Ultrasound-Assisted OxidativeDesulfurization Process for Fuel Cell Reformer Applications[J]. Energy Fuels,2007,21(4): 2 250-2 257.
    
    [287] E. Gomez, V. E. Santos, Almudena Alcon. Oxygen-Uptake and Mass-Transfer??Rates on the Growth of Pseudomonas putida CECT5279: Influence onBiodesulfurization(BDS), Capability[J]. Energy Fuels, 2006,20(4): 1565-1571.
    
    [288] I. S. Lee, H. S. Bae, H. W. Ryu. Biocatalytic Desulfurization of Diesel Oil in anAir-lift Reactor with Immobilized Gordonia nitida CYKS1 Cells[J]. Biotechnol.Prog. 2005,21(3): 781-785.
    
    [289] S. Yasuhiro, H. Takayuki. Desulfurization of Vacuum Gas Oil Based on ChemicalOxidation Followed by liquid-Liquid Extraction[J]. Energy Fuels, 2004, 18(1):37-40.
    
    [290] P. D. Filippis, M. Scarsella. Oxidative Desulfurization: Oxidation Reactivity ofSulfur Compounds in Different Organic Matrixes[J]. Energy Fuels, 2003,17(6): 1452-1 455.
    
    [291] W. H. Lo, H. Y. Yang, G. T. Wei. One-pot Desulfurization of Light Oils byChemical Oxidation and Solvent Extraction with Room Temperature IonicIiquids[J]. Green Chem., 2003, (5): 639-642.
    
    [292] A. Treiber, P. M. Dansette, H. El Amri. Chemical and Biological Oxidation ofThiophene: Preparation and Complete Characterization of Thiophene S-OxideDimers and Evidence for Thiophene S-Oxide as an Intermediate in ThiopheneMetabolism in Vivo and in Vitro[J]. J. Am. Chem. Soc, 1997, 119(7): 1 565-1571.
    
    [293] V. Hulea, F. Fajula, J. Bousquet. Mild Oxidation with H_2O_2 over Ti-ContainingMolecular Sieves-A Very Efficient Method for Removing Aromatic SulfurCompounds from Fuels[J]. J. Catal., 2001,198(2): 179-186.
    
    [294] F. M. Collins, A. R. Lucy, C. Sharp. Oxidative Desulphurisation of Oils viaHydrogen Peroxide and Heteropolyanion Catalysis[J]. J. Mol. Catal. A: Chem.,1997,117(1-3): 397-403.
    
    [295] S. Gao, M. Li, Y. Lv. Epoxidation of Propylene with Aqueous Hydrogen Peroxideon a Reaction-Controlled Phase-Transfer Catalyst[J]. Org. Process Res. Dev.,2004, 8(1): 131-132.
    
    [296] K. Yamaguchi, C. Yoshida. Peroxotungstate Immobilized on Ionic liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with HydrogenPeroxide[J]. J. Am. Chem. Soc., 2005,127: 530-531.
    
    [297] Yadav G D., Bhagat R D. Synthesis of Methyl Phenyl Glyoxylate via CleanOxidation of Methyl Mandelate over a Nanocatalyst Based on Heteropolyacid??Supported on Clay[J]. Org. Process Res. Dev., 2004,8:879-882.
    
    [298] Funakoshi, Izumi, Aida; Tetsuo. Process for Recovering Organic Sulfur Compounds from Fuel Oil. United States, 5 753 102[P], 1998-05-19.
    
    [299]宋少飞.基于复合微反应器催化氧化脱硫研究[D].陕西师范大学:图书馆, 2006年.
    
    [300] J. M. Campos-Martin, M. C. Capel-Sanchez, J. L. G Fierro. Highly Efficient Deep Desulfurization of Fuels by Chemical Oxidation[J]. Green Chem., 2004, (6): 557-562.
    
    [301]卢国冬,燕青芝,宿新泰.多孔水凝胶研究进展[J].化学进展,2007,19(4): 485-493.
    
    [302] N. Kato, F. Takahashi. Acceleration of Deswelling of Poly(N-isopropyl-acrylamide) Hydrogel by the Treatment of a Freeze-Dry and Hydration Process[J].Bull. Chem. Soc. Jpn., 1997,70:1289-1295.
    
    [303] N. Kato, Y. Sakai, S. Shibata. Wide-Range Control of Deswelling Time forThermosensitive Poly(N-isopropylacrylamide) Gel Treated by Freeze-Drying[J].Macromolecules, 2003,36(4): 961-963.
    
    [304] N. Kato, S. H. Gehrke. Microporous. Fast Response Cellulose Ether HydrogelPrepared by Freeze-Drying[J]. Colloid Surface B, 2004,38(3-4): 191-196.
    
    [305] H. W. Kang, Y. Tabata, Y. Ikada. Fabrication of Porous Gelatin Scaffolds forTissue Engineering[J]. Biomaterials, 1999,20(14): 1339-1344.
    
    [306] M. M. Pradas, J. L. G Ribelles, A. S. Aroca. Porous Poly(2-hydroxyethyl Acrylate)Hydrogels[J] Polymer, 2001, 42(10): 4 667-4 674.
    
    [307] A. S. Aroca, A. J. C. Fernandez, J. L. G Ribellesa. Porous Poly- (2-hydroxy-ethylAcrylate) Hydrogels Prepared by Radical Polymerisation with Methanol asDiluent[J]. Polymer, 2004,45(26): 8 949-8 955.
    
    [308]Q. Liu, E. L. Hedberg, Z. W. Liu. Preparation of MacroporousPoly(2-hydroxyethyl Methacrylate) Hydrogels by Enhanced Phase Separation[J]Biomaterials, 2000,21(21): 2 163-2 169.
    
    [309] Y. S. Nam, T. G Park. Biodegradable Polymeric Microcellular Foams by ModifiedThermally Induced Phase Separation Method[J]. Biomaterials, 1999, 20(19): 1783-1 790.
    
    [310]高长有,胡小红,管建均.热致相分离技术制备聚氨酯多孔膜的条件控制[J]. 高分子学报,2001,(3):351-356.
    
    [311] B. G. Kabra, S. H. Gehrke, R. J. Spontak. Microporous, ResponsiveHydroxypropyl Cellulose Gels. 1. Synthesis and Microstructure[J].Macromolecules, 1998,31(7): 2166-2173.
    
    [312] R. Kishi, H. Kihara, T. Miura. Microporous Poly(vinyl methyl ether) HydrogelsPrepared by γ-ray Iirradiation at Different Heating Rates[J]. Radiat. Phys. Chem.,2005,72(6): 679-685.
    
    [313] S. G Hirsch, R. J. Spontak. Temperature-Dependent Property Development inHydrogels Derived from Hydroxypropylcellulose[J]. Polymer, 2002, 43(1):123-129.
    
    [314] A. Imhof, D. J. Pine. Uniform Macroporous Ceramics and Plastics by EmulsionTemplating[J]. Adv. Mater., 1998,10(9): 697-700.
    
    [315] S. Partap, I. Rehman, J. R. Jones, J. A. Darr. Supercritical Carbon Dioxide inWater Emulsion-Templated Synthesis of Porous Calcium Alginate Hydrogels[J].Adv. Mater., 2006,18(4): 501-504.
    
    [316] R. Butler, C. M. Davies, A. I. Cooper. Emulsion Templating Using High InternalPhase Supercritical Fluid Emulsions[J]. Adv. Mater., 2001,13(19):1459-1 463.
    
    [317] R. Butler, I. Hopkinson, A. I. Cooper Synthesis of Porous Emulsion-TemplatedPolymers Using High Internal Phase CO_2-in-Water Emulsions[J]. J. Am. Chem.Soc., 2003,125(47): 14 473-14 481.
    
    [318] M. Antonietti, C. Goltner, H. P. Hentze. Polymer Gels with a Micron-Sized,Layer-Like Architecture by Polymerization in Lyotropic Cocogem Phases[J].Langmuir, 1998,14(10): 2 670-2 676
    
    [319] M. Antonietti, R. A. Caruso, C. G Goltner. Morphology Variation of PorousPolymer Gels by Polymerization in Lyotropic Surfactant Phases[J].Macromolecules, 1999,32(5): 1 383-1 389.
    
    [320] B. Zhao, J. S. Moore. Fast pH- and Ionic Strength-Responsive Hydrogels inMicrochannels[J]. Langmuir, 2001,17(16): 4 758-4 763.
    
    [321] M. J. Monteiro, G Hall, S. Gee. Protein Transfer through PolyacrylamideHydrogel Membranes Polymerized in Lyotropic Phases[J]. Biomacromolecules,2004,5(5): 1 637-1 641.
    
    [322] X. Z. Zhang, Y. Y. Yang, T. S. Chung. Preparation and Characterization of FastResponse Macroporous Poly(iV-isopropylacrylamide) Hydrogels[J]. Langmuir,2001,17(20): 6 094-6 099.
    
    [323] T. Serizawa, K. Wakita, M. Akashi. Rapid Deswelling of PorousPoly(N-isopropylacrylamide) Hydrogels Prepared by Incorporation of SilicaParticles[J]. Macromolecules, 2002,35(1): 10-12.
    
    [324] J. Chen, H. Park, K. Park. Synthesis of Superporous Hydrogels: Hydrogels withFast Swelling and Superabsorbent Properties [J]. J. Biomed. Mater. Res., 1999,44(1): 53-62.
    
    [325] J. Chen, K. Park. Synthesis and Characterization of Superporous HydrogelComposites[J]. J. Control. Release, 2000,65(1-2): 73-82.
    
    [326] K. Kabiri, H. Omidian, S. A. Hashemi, M. J. Zohuriaan-Mehr. Synthesis ofFast-Swelling Superabsorbent Hydrogels: Effect of Crosslinker Type andConcentration on Porosity and Absorption Rate[J]. Eur. Polym. J., 2003, 39(7): 1341-1 348.
    
    [327] Q. Z. Yan, W. F. Zhang, G D. Lu. Frontal Copolymerization Synthesis andProperty Characterization of Starch-graft-poly(acrylic acid) Hydrogels[J]. Chem.Eur. J., 2005,11(22): 6 609-6 615.
    
    [328] Q. Z. Yan, W. F. Zhang, G D. Lu. Frontal Polymerization Synthesis ofStarch-Grafted Hydrogels: Effect of Temperature and Tube Size on PropagatingFront and Properties of Hydrogels[J]. Chem. Eur. J., 2006,12(12): 3 303-3 309.
    
    [329] X. Z. Zhang, D. Q.Wu, C. C. Chu Synthesis. Characterization and ControlledDrug Release of Thermosensitive IPN-PNIPAAm Hydrogels[J]. Biomaterials,2004, 25(17): 3 793-3 805.
    
    [330] M. R. De Moura, M. R. Guilherme, G M. Campese. Porous alginate-Ca~(2+)Hydrogels Interpenetrated with PNIPAAm Networks: Interrelationship betweenCompressive Stress and Pore Morphology [J]. Eur. Polym. J., 2005, 41(12): 2845-2 852.
    
    [331] K. Fujiia, T, S. Hayashi. Hydrothermal Syntheses and Characterization ofAlkylammonium Phyllosilicates Containing CSiO_3 and SiO_4 Units[J]. AppliedClay Science, 2005,29,235-248.
    
    [332] R. P. Washington, O. Steinbock. Frontal Polymerization Synthesis of Temperature -Sensitive Hydrogels[J]. J. Am. Chem. Soc, 2001,123(32): 7 933-7 934.
    
    [333] E. S. Matsuo, M. Orkiszj, S. T. Sun. Origin of Structural Inhomogeneities inPolymer Gels[J]. Macromolecules, 1994,27(23): 6 791-6 796.
    
    [334] E. Ruiz-Hitzky, S. Letaief, V. Prevot. Novel Organic-Inorganic Mesophases:??Self-Templating Synthesis and Intratubular Swelling[J]. Adv. Mater. 2002,14(6):439-443.
    
    [335] D. Stenger, J. Georger, C. Dulcey, J. Hickman, A. Rudolph, T. Nielson, S.McCort, J. Calvert. Coplanar Molecular Assemblies of Amino- and PerfluorinatedAlkylsilanes: Characterization and Geometric Definition of Mammalian CellAdhesion and Growth[J]. J. Am. Chem. Soc. 1992,114(22): 8 435-8 442.
    
    [336] M. Sain. X-ray Photoelectron Spectroscopy Study of Ultrathin-Film-FormingChemical-Precursor-Engineered Lignocellulosic Fiber and Fiber-Matsurfaces[J].Appl. Surf. Sri., 20001,58(1-2): 92-103.
    
    [337] T. Blasco, A. Corma, A. Martinez, et. al. Supported Heteropolyacid Catalysts forthe Continuous Alkylation of Isobutene with 2-butene: the Benefit of UsingMCM-41 with Larger Pore Diameters[J]. J. Catal., 1998,177(2): 306-313.
    
    [338] Y. Izumi, K. Urabe. Catalysis of Heteropolyacids Entrapped in ActivatedCarbon[J]. Chem. Lett., 1981,113, 663-667.
    
    [339] M. A. Schwegler, P. Vinke, M. van der Eijk. Activated Carbon as a Support forHeteropolyanion Catalysts[J]. Appl. Catal. A, 1992, 80(1): 41-57.
    
    [340] Z. Obali, T. Dogu. Activated Carbon-Tungstophosphoric Acid Catalysts for theSynthesis of tert-amyl Ethyl Ether (TAEE)[J]. Chem. Eng. J., 2008, 138(1-3):548-555.
    
    [341] B. R. Jermya, A. Pandurangan. Synthesis of Geminal Diacetates(acylals) UsingHeterogeneous H_3PW_(12)O_(40) Supported MCM-41 Molecular Sieves[J]. Catal.Commun., 2008, 9(5): 577-583.
    
    [342] M. S. Strano, H. C. Foley. Synthesis and Characterization of HeteropolyacidNanoporous Carbon Membranes[J]. Catalysis Letters. 2001,74(3-4): 177-184.
    
    [343] Y. Shiraishi, T. Naito, T. Hirai. Vanadosilicate Molecular Sieve as a Catalyst forOxidative Desulfurization of light Oil[J]. Ind. Eng. Chem. Res., 2003, 42(24): 6034-6 039.
    
    [344] G G Janauer, A. Dobley, J. Guo. Novel Tungsten, Molybdenum, and VanadiumOxides Containing Surfactant Ions[J]. Chem. Mater., 1996, 8(8): 2 096-2 101.
    
    [345] A. Stein, M. Fendorf, T. P. Jarvie. Salt-Gel Synthesis of Porous Transition-MetalOxides[J]. Chem. Mater. 1995,7(2): 304-313.
    
    [346] L. Chu, Y. M. Zhang, X. Mao. Synthesis of a Porous Silica-Containing HeteropolyAcid by Salt-Gel Reaction[J]. Chem. J. Inter., 2002,4(6): 046026pe.
    
    [347] Y. Goto, K. Kamata, K. Yamaguchi. Synthesis, Structural Characterization, and Catalytic Performance of Dititanium-Substituted-Keggin Silicotungstate[J]. Inorg. Chem., 2006,45,2 347-2 356.
    
    [348]孙渝,乐英红,李惠云.MCM-41负载钨磷杂多酸催化剂的性能研究[J].化学 学报,1999,57:746-753.
    
    [349] A. Lapkin, C. Savill-Jowitt, K. Edler. Microcalorimetric Study of AmmoniaChemisorption on H_3PW_(12)O_(40) Supported onto Mesoporous Synthetic Carbons andSBA-15[J]. Langmuir, 2006,22(18): 7 664-7 671.
    
    [350] F. Figueras, J. Palomeque, S. Loridant. Influence of the Coordination on theCatalytic Properties of Supported W Catalysts[J]. J. Catal., 2004,226(1): 25-31.
    
    [351] H. Nur, S. Ikeda, B. Ohtani. Phase-Boundary Catalysis of Alkene Epoxidationwith Aqueous Hydrogen Peroxide Using Amphiphilic Zeolite Particles Loadedwith Titanium Oxide[J]. J. Catal., 2001,204(2): 402-408.
    
    [352]邓谦,吕晓萌,蔡铁军.磷钨酸表面修饰TiO_2光催化降解空气污染物[J].中国 环境科学,2005,25(3):375-379.
    
    [353]马荣华,李宝利,赵宝中.三过氧铌钨磷杂多酸盐的合成表征及催化性能,东 北师范大学学报,1996,2:64-68.
    
    [354] F. X. Liu-Cai, B. Sahut, E. Faydi. Study of the Acidity of Carbon Supported andUnsupported Heteropolyacid Catalysts by Ammonia Sorption Microcalorimetry[J].Appl. Catal. A, 1999,185(1): 75-83.
    
    [355] Y. C. Lin, C. H. Chang, C. C. Chen. Supported Vanadium Oxide Catalysts inSelective Oxidation of Ethanol: Comparison of TiO_2/SiO_2 and ZrO_2/SiO_2 asSupports[J]. Catal. Commun., 2008,9(5): 675-679.
    
    [356]单国彬,刘会洲.多孔聚合物载体的制备及吸附脱除二苯并噻吩的初步探索 [J].过程工程学报,2002,12(6):497-500.
    
    [357]余味钊,郑经堂,何小超,王振.负载金属球形活性炭的制备及噻吩吸附研究 [J].现代化工(增刊),2007,27(2):370-372.
    
    [358]高峰,孙经武,钟顺和.炭化树脂负载杂多酸催化剂的制备和表征[J].催化学 报,1998,19(2):187-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700