用户名: 密码: 验证码:
金属配合物分子磁体的合成结构与磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子磁体的设计研究是近年来材料领域的研究热点。在这个方面,由金属和有机配体构成的金属配合物由于其结构变化的多样性和磁性行为的丰富性而成为非常重要的一类分子磁体并得到了大量关注和研究。本论文通过超分子化学的自组装方法合成得到了一些具有不同结构和磁性的金属配合物分子磁体,研究了不同有机配体在与金属离子构筑金属配合物分子磁体中配位模式对结构和磁性的影响,讨论了配合物的磁结构关联,并设计合成了具有三维磁有序的分子基磁体,研究了有机配体在自旋倾斜的弱铁磁体中的作用。主要开展了以下几个方面的工作:
     1、研究了具有螯合结构配合物的磁性。以EDTA(乙二胺四乙酸)为配体合成得到了过渡金属铜(CuⅡ)和锰(MnⅡ)的配合物,详细表征了它们的结构、热稳定性及磁性。结构上分别为单核和三核螯合结构并由氢键形成三维网络结构,磁性为反铁磁耦合。利用相应理论模型和理论公式对磁性测试结果进行了拟合得出了反应实验结果的磁耦合常数J值。讨论了EDTA配体在结构和磁关联上的一些特点。
     2、研究了配位模式对配合物结构和磁性的影响。首先以反丁烯二酸为配体合成得到了钴(CoⅡ)、锰(MnⅡ)、铜(CuⅡ)三个过渡金属配合物,详细表征了它们的结构和磁性。结构上以反丁烯二酸为长程桥联配位模式形成了一维无限延伸链状结构或零维双核结构,磁性表现为链内或分子内反铁磁耦合作用。讨论了反丁烯二酸配体不同配位模式对配合物结构和磁性的影响。
     3、研究了羧酸三原子顺-反桥联配位模式配合物的磁性。以顺丁烯二酸为配体合成得到了具有羧酸顺-反三原子桥联模式的一维链状铜(CuⅡ)金属配合物。磁性显示为链内铁磁性交换作用并在理论和实验两个方面对磁性进行了研究。应用基于密度泛函理论(DFT)的全势线性缀加平面波(FPLAPW)方法,采用高度精确的广义梯度近似(GGA),精确计算自旋结构、电子结构并结合磁结构关联分析了具有羧酸顺-反三原子桥联模式磁性系统的铁磁性来源和磁交换作用的机理。
     4、研究了羧酸三原子顺-顺桥联配位模式配合物的磁性。以邻苯二甲酸单甲酯为配体合成得到了两个金属铜(CuⅡ)配合物,详细表征了它们的结构和磁性。结构上都形成了四羧基桥联双核铜的中心对称结构。磁性上,铜与铜之间通过羧酸三原子顺-顺桥联超交换通道产生强的反铁磁相互作用。结构与磁性分析表明,邻苯二甲酸单甲酯配体中羧酸形成的三原子桥O-C-O的电子结构是控制顺磁中心离子之间反铁磁交换作用大小的主要因素。
     5、研究了以镧系金属钆(GdⅢ)为顺磁中心的金属配合物磁性。以二氰胺(dca)和羧酸为配体合成得到了镧系金属钆(GdⅢ)的配合物。详细表征了它们的结构,并对二氰胺钆的配合物磁性进行了测试分析。通过与同配体过渡金属配合物比较,讨论了具有4f电子的镧系金属之间的磁交换作用
     6、研究了三维磁有序分子磁体的结构和磁性。利用有机化学方法合成得到了一个新的具有确定单晶结构的由两个三唑环构成的有机配体(3.4’-bi-1,2,4-triazole, btr)并对其结构进行了详细的分析。以此btr为配体水热法得到了一个锰MnⅡ的配合物,结构表征为一个少见的三维二元金属配合物。详细的磁性测试表明低温下存在自旋倾斜引起的三维磁有序,为自旋倾斜的弱铁磁体。对三维晶体结构和低温下的三维磁有序进行了分析讨论。
The design of molecule-based magnetic materials has been of considerable interest in recent years. In this field, coordination complexes with metal and organic ligands have received intense attention and studies, due to the versatility of the metal coordination complexes in strucrure and the versatility of the complexes in magnetic behavior. In this thesis some metal coordination complexes were obtained by self-assembly method of supermolecular chemistry which have different structure and different magnetic behavior. The impact of bridging conformations in different organic ligands on structure and magnetism has been investigated while the magnetostructural correlation in these complexes has been discussed. Moreover, a molecular magnet with 3D magnetic order state was synthesized and the abilities of a new organic ligand to construct the spin-canting weak-ferromagnet was also discussed. The main results in this thesis are as following:
     1. The Cu(Ⅱ)-EDTA and Mn(Ⅱ)-EDTA coordination complexes were synthesized and their structures, thermal stabilites and magnetic properties were characterized thoroughly. They are mono and tri metal centre 3D networks built through hydrogen bonds and showing antiferromagnetic coupling interactions. The magnetic data were fitted through the correspondent theoretical model and equations and obtained the value of magnetic coupling constant. The structure and magnetostructural correlations about EDTA ligand were discussed.
     2. The CoⅡ、MnⅡ、CuⅡcoordination complexes bridged by fumarate ligand were synthesized and their structures and magnetic properties were characterized thoroughly. They are 1D infinite chainlike structure or dimmer structure using fumarate ligand as bridge spacer indicating antiferromagnetic coupling interactions. The impact of bridging conformations in fumarate ligands on structure and magnetism has been investigated.
     3. A syn-anti triatomic carboxylate-bridged chain-like CuⅡcomplex was synthesized and magnetic properties were investigated experimentally and theoretically which show the weak ferromagnetic intrachain interaction. The magnetic data had been analyzed and interpreted in terms of Heisenberg chain model corrected by a mean molecular field. Density functional theroy (DFT) with generalized gradient approximation (GGA) was applied to calculate the electronic structure and spin distribution of the present complex. The structural and electronic factors controlling the magnetic interactions was also determined:
     4.Two hydrated tetra-carboxylato-bridged dinuclear CuⅡcoordination complex with 1,2-benzenedicarboxylate monoester ligand has been prepared and characterized by means of X-ray analysis and magnetic measurements. Both complexes adopt dimeric paddle-wheel cage structures. The magnetic data exhibited strong intramolecular antiferromagnetic interaction between the two paramagnetic metal ions. The structural and magnetic results are compared with those for other related dimmers.
     5. The lanthanide metal GdⅢcoordination complexes with dicyamide or carboxyl ate ligand were prepared and their structures were characterized thoroughly. The magnetic measurement of Gd-dca complex exhibited antiferromagnetic coupling interactions. The magnetic interactions between 4f metal Gd centre was discussed comparing to the transition metal centres.
     6.A new organic ligand containing two triazole rings was prepared and the single crystal structure was first obtained and discussed thoroughly. Hydrothermal treatment of MnⅡions and btr ligands provided an infrequent 3D binary manganese coordination complex. Detailed magnetic measurement exhibited the occurence of spin canting and spontaneous magnetic order at low temperature as a weak ferromagnet.
引文
[1] Vardeney Z V, Epstein A. J. Proceding of the international conference on synthetic metals (ICSM’96). Synthsis Meltal , 1997, 85:23-26
    [2] Nakamure T., Akutagana T.,Honda K., et al. A molecular metal with ion-conducting channels. Nature, 1998, 394:159-161
    [3]Wolliams J. M., Ferraro J. R.,Thorn R.J., et al. Organic superconductors:synthesis, structure, properties and theory. In: Grimes R.N. ed. New York: Prentice Hall Englewood Cliffs, 1992. 5-24
    [4] Lehn, J.M. the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angew. Chem. Int. Ed. Engl., 1988,27: 871-879
    [5] Simkin, D.J., Bernheim, R.A. M?ssbauer Study of the Magnetic Field Dependence of the Spin Flop inα-Fe2O3 near the Morin Transition. Physics Reviews,1967,153: 621-623
    [6] Kahn O. Magnetism: A Supramolecular Function, Weinheim:VCH, 1996. 5-252
    [7] Braga D., Grepioni, F., Orpen, A.G. Crystal Engineering: From Molecules and Crystals to Materials, Dordrecht:Kluwer Academic Publishers. 1999.125-267
    [8]游效曾.《分子材料-光电功能化合物》.第一版.上海:上海科学技术出版社.2001. 124-234
    [9] Carlin,R.L. Magnetochemistry; Springer-Verlag. Berlin:Heidelberg.1986.34-126
    [10] Miller,J.S.,Calabrese,J.C.,Epstein,A.J., et al. Ferromagnetic properties of one-dimensional decamethylferrocenium tetracyanoethylenide (1:1). Chem.Commun. ,1986,1026-1027
    [11] Miller,J.S., Drillon, M. Magnetism:Molecules to Materials.Vol. I-V, Germany: Wiley-VCH. 2002-2005. 23-156
    [12] Holmes,S.M., Girolami,G.S. Sol-Gel Synthesis of KVII[CrIII(CN)6]·2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100℃J. Am. Chem. Soc. , 1999,121:5593-5594
    [13] Gatteschi, D., Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. Engl. , 2003,42: 268-297
    [14]戴道生,钱昆明.《铁磁学》上册.第一版.北京:科学出版社,1987. 22-70
    [15]熊兆贤.《材料物理导论》,第一版.北京:科学出版社,2001.138-160
    [16] Crayston J. A., Devine J. N., Walton J. C., Conceptual and Synthetic Strategies for the Preparation of Organic Magnets . Tetrahedron, 2000, 56: 7829-7857
    [17]宛德福.《磁性理论及其应用》.第三版武汉:华中理工大学出版社.1996.54-88
    [18] Gaspar,A.B.,Ksenofontov,V., Seredyuk,M., et al. Multifunctionality in spin crossover materials. Coordination Chemical Reviews, 2005,249:2661-2676
    [19] Anderson,P.W. solid state physics. New York:Academic Press.1963.99-214
    [20] Anderson,P.W. New Approach to the Theory of Superexchange Interactions. Physics Reviews, 1959,115: 2-13
    [21] Goodenough J.B., Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. Physics Reviews, 1956,100:64-573
    [22] Ruderman, M.A., Kittel,C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Physics Reviews ,1954,96: 99-102
    [23]Yosida,K. Magnetic Properties of Cu-Mn Alloys. Physics Reviews ,1957,106: 893-899
    [24] Moriya,T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rew. , 1960,120: 91-98
    [25] Moriya,T. Theory of Magnetism of NiF2. Physics Reviews ,1960,117: 635-647
    [26] Ashcroft,N.W., Mermin,N.D. Solid state Physics. Philadelphia :Sauders Colledge Publishing.1976.5-43
    [27] Fisher, M. E. Lattice statistics in a magnetic field. I. A two-dimensional super-exchange antiferromagnet. Proc. Roy. Soc. 1960,A254:66-78
    [28]李荫远、李国栋.《铁氧体物理学》.第一版.北京:科学出版社.1978. 63-76
    [29] Kahn,O., Pei,Y., Verdaguer,M., et al. Magnetic ordering of manganese(II) copper(II) bimetallic chains; design of a molecular based ferromagnet. J. Am. Chem. Soc. ,1988,110: 782-789
    [30] Worlton, T.G., Decker, D.L. Neutron Diffraction Study of the Magnetic Structure of Hematite to 41 kbar. Physics Reviews, 1968, 171: 596-599
    [31] Herweijer, A., de Jonge, W.J.M., Botterman, A.C., Bongaarts, A.L.M., et al. Magnetic Studies of the Canted Ising Linear Chain CsCoCl3·2H2O. Physics Reviews B, 1972,5: 4618-4630
    [32] Keffer,F. Moriya Interaction and the Problem of the Spin Arrangem ents inβMnS. Physics Reviews , 1962, 126: 896-900
    [33] Hijmans, J.P.A., de Jonge, W.J.M., van den Leeden, P., et al. Application of the principle of corresponding states to the heats of mixing of binary n-alkane mixtures. Physica 1973, 69:76-87
    [34] Gao, E. Q., Wang, Z. M., Yan, C. H. From manganese(ⅱ)-azide layers to a novel three-dimensional molecular magnet. Chemical Communication , 2003,14: 1748-1749
    [35] Viertelhaus, M., Henke, H., Powell, A.K. Solvothermal Synthesis and Structure of Anhydrous Manganese(II) Formate, and Its Topotactic Dehydration from Manganese(II) Formate Dihydrate. Eur. J. Inorg. Chem., 2003: 2283-2289
    [36] Batten, S.R., Murray, K.S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord. Chem. Rev. 2003, 246, 103-130
    [37] Lappas, A., Wills, A.S., Prassides, K.,Kurmoo, M. Magnetic ordering in the rutile molecular magnets MII[N(CN)2]2 (M=Ni, Co, Fe, Mn, Ni0.5Co0.5, and Ni0.5Fe0.5) Phys. Rev. B 2003,67,144406-8
    [38] Feyerherm, R., Loose, A., Ishida, T., et al. Weak ferromagnetism with very large canting in a chiral lattice: Fe(pyrimidine)2Cl2 . Physics Reviews B 2004, 69:134427-8
    [39] Carlin, R.L., van Duyneveldt, A.J. Field-dependent magnetic phenomena. Acc. Chem. Res. , 1980,13: 231-236
    [40] Groenendijk, H.A., van Duyneveldt, A.J. Spin canting and exchange in the two-dimensional antiferromagnets. Physica, 1971,51:630-645
    [41] Crayston J. A., Devine J. N., Walton J. C., Conceptual and Synthetic Strategies for the Preparation of Organic Magnets. Tetrahedron, 2000, 56: 7829-7857
    [42] O. Kahn, Y. Galy, Y, Journaux, et al, Synthesis, crystal structure and molecular conformations, and magnetic properties of a copper-vanadyl (CuII-VOII) heterobinuclear complex: interaction between orthogonal magnetic orbitals. J. Am. Chem. Soc, 1982,104: 2165-2176
    [43] Y. Journaux, O. Kahn, J. Zarembowitch, et al, Symmetry of the magnetic orbitals and exchange interaction in copper iron (CuIIFeIII) and copper chromium (CuIICrIII) heterobinuclear complexes. J. Am. Chem. Soc, 1983,105: 7585-7591
    [44] Kahn O., Dinuclear Complexes with Predictable Magnetic Properties. Angew. Chem. Int. Ed. Engl., 1985, 24: 834-850.
    [45] Mallah T., Thiebaut S., Verdaguer M., et al. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science ,1993 , 262:1554-1556
    [46] Zhong Z. J., Mastumoto N., Okawa H., et al, Porphyrinic molecular conductors and magnets. Chem. Lett.,1990,87:34-37
    [47] H. McMnell, Ferromagnetism in Solid Free Radicals J Chem Phys, 1963, 39, 1910-1918
    [48]李正中.《固体理论》.第一版。北京:高等教育出版社.1985.76-134
    [49] D. A. Dixon and J. S. Miller, Crystal and molecular structure of the charge-transfer salt of decamethylcobaltocene and tetracyanoethylene (2:1). J. Am. Chem. Soc., 1987,109: 3656-3659
    [50] J. S. Miller, W. M. Reiff, J. H. Zhang, et al., Characterization of the charge-transfer reaction between decamethylferrocene and 7,7,8,8,-tetracyano-p-quinodimethane (1:1). J. Phys. Chem., 1987, 91:4344-4360
    [51] Yamaguchi J., Antiferromagnetic resonance of organic free radical, polycrystalline 1,3-bisdiphenylene-2- (p-chlorophenyl)–allyl. J. Chem. Phys.,1977, 67:2850-2855.
    [52] Kumano M., Ikegama Y., Sato T., Deuterium isotope effect on single vibronic level photochemistry of formaldehyde. Chem. Phys.Lett., 1976, 41: 52-54
    [53] Kahn O., Journaux Y., Inorganic Materials. New York: Wiley. 1993.45-123
    [54] A. Caneschi, D. Gatteschi, P. Rey, Toward molecular magnets the metal-radical approach. Acc. Chem. Res.,1987, 31,144-167
    [55] Iwamura H., Sugawara T., Itoh K., et al., high-spin organic molecular materials Mol. Cryst. Liq. Cryst.,1985,125: 251-256
    [56] Iwamura H., Ferro- and Ferrimagnetic Ordering in a Two-Dimensional Network Formed by Manganese. Pure Appl. Chem., 1986, 58: 187-198
    [57] Izoka A., Murata S., Sugawara T., Iwamura H. Molecular design and model experiments of ferromagnetic intermolecular interaction in the assembly of high-spin organic molecules. J. Am. Chem. Soc. , 1987,109:2631-2639
    [58] Slater J. C., Wave Functions in a Periodic Potential, Physics Reviews B, 1937, 51: 846-852
    [59] Miller J. S., Epstein A. J., Reiff W. M., Crystal structure of hexaazaoctadecahydro coronene dication, a singlet benzene dication. Science ,1988,240:40-42.
    [60] Miller J. S.,Epstein A. J., Prescription for stabilization of ferromagnetic exchange in molecular solids via admixing of the ground state with a virtual charge-transfer excited state. J. Am. Chem. Soc., 1987,109: 3850-3855.
    [61] Chittipedd S. i, Cromack K. R., Mille J. S., Ferromagnetism in molecular decamethylferrocenium tetracyanoethenide. Phys. Rev. Lett., 1987, 58: 2695-2698
    [62] Simkin, D.J., Bernheim, R.A. M?ssbauer Study of the Magnetic Field Dependence of the Spin Flop inα-Fe2O3 near the Morin Transition. Phys. Rew., 1967, 153: 621-623
    [63] Blaha P., Schwarz K., Madsen G.K.H. et al, Comput. Phys. Commun. 59, 399 (1990) (Wien2k,Vienna University of Technology, 2002, improved and updated Unix Version of the original copyrighted Wien-code, which was published by Blaha P., Schwarz K., Soranitin P., Trickey S.B.).
    [64] Dreizler R. M., Gross E. K. U., Density Functional Theory.Heidelberg: Springer-Verlag Berlin, 1990. 15-254
    [65]谢希德,陆栋.固体能带理论.第一版.上海:复旦大学出版社.1998.66-102
    [66] Olivia P., Lucia R., Giovanni O. et al, Computational Materials. Science ,2001,20 :300-302.
    [67] Franci M. Construction of the adiabatic connection. Chemical Physics Letters, 1996, 263(13): 499-506
    [68] Glossman M. Crystal structure and mechanism of a carbon-carbon bond hydrolase Journal of Molecular Structure: THEOCHEM, 1997, 390:67-76
    [69] Anderson O. K., Linear methods in band theory. Physics Reviews B, 1975, 12:3060 -3083.
    [70] Slater J. C., Wave Functions in a Periodic Potential, Physics Reviews B, 1937, 51: 846-852
    [71]Zhukov V. P., Usuda M., Chulkov E. V. et al, Lanthanide-containing monomers produced from unsaturated acids: synthesis, polymerization, and spectral and luminescent properties. Journal of Electron Spectroscopy and Related Phenomena, 2003, 129: 127-133
    [72] Cohen R. E., Deuterium isotope effect on single vibronic level photochemistry of formaldehyde. Journal of Physics and Chemistry of Solids ,1996, 57: 1393-1399
    [73] Togashi K, Imachi R, Tomioka K, et et al. Organic radicals exhibiting intermolecular ferromagnetic interactions with high probability.4-Arylmethyleneamino-2,3,6,6-tetra- methylpiperidin-1-yloxyls and related compounds. Bull Chem Soc Jpn, 1996, 69: 2821–30.
    [74] Matsushita MM, Izuoka A, Sugawara T, et al., Hydrogen-bonded organic ferromagnets, J Am Chem Soc, 1997, 119: 4369–4379.
    [75] Romero FM, Ziessel R, Bonnet M, Pontillon Y, Ressouche E, Schweizer J et al. Evidence for transmission of ferromagnetic interactions through hydrogen bonds in alkyne-substituted nitroxide radicals: magnetostructural correlations and polarizedneutron diffraction studies. J Am Chem Soc, 2000, 122(7): 1298–1309.
    [76] Chiarelli R, Novak MA, Rassat A, Tholence J.L. A ferromagnetic transition at 1.48 K in organic nitroxide. Nature, 1993, 363: 147–149.
    [77] Barr C.L., Chase P.A., Hicks R.G.,et al. Synthesis and characterization of verdazyl radicals bearing pyridine or pyrimidine substituents: a new family of chelating spin-bearing ligands. J Org Chem, 1999, 64(24): 8893–8897.
    [78] Rawson JM, McManus GD, Benzo-fused dithiazolyl radicals: from chemical curiosities to materials chemistry, Coord Chem Rev, 1999, 189(1): 135–168.
    [79] A. Rajca. J. Wongsiratanakul. S. Rajca. Magnetic ordering in an organic polymer. Science, 2001, vol 294:1503-1505.
    [80] Takeda, K., Yoshida, Y., Inanaga, Y., Shiomi, D., et al. Magnetic Ordering in a Genuine Organic Crystal of Triangular Antiferromagnetic Spin Units, Physics Reviews B, 2005, 72: 24435-5
    [81] Shiomi, D., Nozaki, M., Ise, T., Sato, K., Takui, T. Cytosine-Substituted Nitronylnitroxide Radical: A Key Component for Bio-Inspired Molecule-Based Magnetics, J. Phys. Chem. B, 2004, 108:16606-8
    [82] Shiomi, D.,Kanaya, T., Sato, K., Mito, M., et al. Single-Component Molecule-Based Ferrimagnetics. J. Am. Chem. Soc., 2001,123: 11823-11824
    [83] Fu H.H., Yao K.L., Liu Z.L. Magnetization studied on spin alignments in organic molecule-based ferrimagnetics. Solid State Communications, 2006, 139( 6):289-294.
    [84] Miller, J.S., Epstein, A.J. Organic and Organometallic Molecular Magnetic Materials - Designer Magnets. Angew. Chem. Int. Ed. , 1994, 33:385-415
    [85] Miller, J.S., Zhang, J.H., Reiff, W.M., et al. Characterization of the charge-transfer reaction between decamethylferrocene and 7,7,8,8,-tetracyano-p-quinodimethane (1:1). J. Phys. Chem. , 1987, 91, 4344-4360
    [86] Miller, J.S., Calabress, J.C., Dixon, D.A., et al. Structural and magnetic characterization of decamethylferrocenium tetracyanoethenide. J. Am. Chem. Soc., 1987,109: 769-781
    [87] Miller, J.S. Organometallic- and Organic-Based Magnets: New Chemistry and New Materials for the New Millennium. Inorg. Chem. , 2000, 39: 4392-4408
    [88] Zhou, P., Long, S.M., Miller, J.S. Static magnetic properties and critical behavior of V(TCNE)x(C4H8O y), a high Tc molecular-based disordered magnet. Phys. Lett. A , 1993,181: 71-9
    [89] Caneschi, A., Gatteschi,D., Renard, J.P., et al. Structure and magnetic properties of ferrimagnetic chains formed by manganese(II) and nitronyl nitroxides. Inorg. Chem. ,1988, 27 : 1756-1761
    [90] Caneschi, A., Gatteschi,D., Renard, J.P., et al. Structure and magnetic properties of a chain compound formed by copper(II) and a tridentate nitronyl nitroxide radical. Inorg. Chem. ,1991, 30 :3162-3166
    [91] Wickman, H.H., Troaaolo, A. M., Williams, H.J., et al. Spin-3/2 Iron Ferromagnet: Its M?ssbauer and Magnetic Properties. Physics Reviews, 1967,155: 563-566
    [92] Helms, J.H., Hatfield, W.E., Kwieeien, M.J., et al. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. J.Chem. Phys., 1985,113:185-191.
    [93] Burriel R., Casabo, J., Pons, J., et al. Deuterium isotope effect on single vibronic level photochemistry of formaldehyde. Physica, 1958, 132:105-115.
    [94] Verdaguer, M., Bleuzen, A., Marvaud, V., et al. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry Coord. Chem. Rev., 1999,190,1023-1047
    [95] Berlinguette, C.P., Vaughn, D., Canada-Vilalta, C., et al. A Trigonal-Bipyramidal Cyanide Cluster with Single-Molecule-Magnet Behavior: Synthesis, Structure, and Magnetic Properties of {[MnII(tmphen)2]3[MnIII(CN)6]2} Angew. Chem. Int. Ed. 2003, 42, 1523-1526
    [96] Toma, L.M., Lescouezec, R., Verdaguer, M., et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Chem. Commun. , 2003,1850-1852.
    [97] Miller, J.S. Unsolved Mysteries in Molecule-Based Magnet--- a Personal View. Polyhedron, 2001, 20: 1723-1725
    [98] a) Manson, J. L.; Kmety, C.R., Miller, J. S. et al. Structure and Magnetic Ordering of MⅡ[N(CN)2]2 [J]. Chem. Mater. 1998 , 10(9) :2552-2560..
    [99] Ribas, J., Escuer, A., Monfort, M., et al. Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior. Coord. Chem. Rev., 1999, 193-195: 1027-1068
    [100] Gao, E.Q., Bai, S.Q., Wang, Z.M., Yan, C.H. From Achiral Ligands to Chiral Coordination Polymers: Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism J. Am. Chem. Soc., 2004, 126: 1419-1429
    [101] Zhang, YS; Yao, K.L, Liu, Z.L .Two ferromagnetic azido-bridged copper(II) complexes studied by first-principle electronic-structure calculation. Journal of Chemical Physica, 123 (12): Art. No. 124308 SEP 22 2005
    [102] Kabesova, M., Boca, R., Melnick, M., et al. Bonding properties of thiocyanate groups in copper(II) and copper(I) complexes Coord. Chem. Rev., 1995,140: 115-135
    [103] Min, K.S., Rhinegold, A.L., Miller, J.S. Synthesis, Structure, and Magnetic Ordering of Layered (2-D) V-Based Tris(oxalato)metalates Inorg. Chem. 2005, 44: 8433-8441.
    [104] S. Noro, H. Miyasaka, S. Kitagawa, et al. Framework Control by a Metalloligand Having Multicoordination Ability: New Synthetic Approach for Crystal Structures and Magnetic Properties Inorg. Chem. 2005, 44:133-146
    [105] Yaghi, O.M., Li, H., Groy, T.L. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid J. Am. Chem. Soc. 1996,118: 9096-9101.
    [106] Robin, A.Y., Fromm, K.M. Coordination polymer networks with O- and N-donors: What they are, why and how they are made Coord. Chem. Rev., 2006,250: 2127-2157
    [107] Garcia, Y., Kahn, O.,Rabardel, L., et al. Two-Step Spin Conversion for the Three-Dimensional Compound Tris(4,4'-bis-1,2,4-triazole)iron(II) Diperchlorate Inorg. Chem. 1999, 38: 4663-4670
    [108] W. Z. Wang, K. L. Yao, H. Q. Lin, Boundary conditions, solitons, and spin configuration in interchain coupled organic ferromagnetic polymers J. Chem. Phys. 2000, 112: 487-491
    [109] H. H. Fu, K. L. Yao, and Z. L. Liu“Thermodynamic properties of a spin-1/2 diamond chain as a model for a molecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2”,Phys. Rev. B , 2006,73: 104454-8
    [110] L. E. Gerdom, N. A. Baenziger, H. M. Goff. Crystal and molecular structure of a substitution-labile chromium (III) complex: aquo(ethylenediaminetriacetato-acetic acid)chromium(III). Inorg. Chem. 1981, 20(5): 1606-1609.
    [111] T. Mizuta, T. Yamamoto, K. Miyoshi, Y. Kushi, The ligand field stabilization effect on the metal-ligand bond distances in octahedral metal complexes with edta-type ligands, Redetermination of the molecular structure of (ethylenediaminetriacetatoacetic acid) (aqua) iron(Ш), [Fe(Hedta)(H2O)], Inorg.Chim. Acta 1990, 175(1): 121-126.
    [112] H. Okazaki, K. Tomioka, H. Yoneda, The Crystal Structure of the Spontaneously Resolved (R,R)-Aquo(ethylenediaminetriacetatoacetic acid) Xobalt(Ш) Trihydrate (R,R)?(G,R)[Co(Hedta)H2O] 3H2O Inorg. Chim. Acta 1983, 74: 169-178.
    [113] C.-C. Wang, C.-H. Yang, C.-H. Lee, G.-H. Lee, Hydrothermal Synthesis and Structural Characterization of a Two-Dimensional Polymeric Copper(II) Complex Containing an Unusual Bridged H2edta2- Ligand. Inorg. Chem. 2002, 41(2): 429-432.
    [114] T. Mizuta, J. Wang, et al. An X-ray crystallographic study on the molecular structures of seven-coordinate (ethylenediamine-N,N,n′-triacetato-N′-acetic acid)(aqua)-titanium(III) and -vanadium(III), [TiIII(H-edta)(H2o)]·H2O and [VIII(Hedta)(H2O)]·H2O. Inorg. Chim. Acta, 1995, 228(2): 165-172.
    [115] J. D. Zubkowski, D. L. Pery, et al. A Seven Coordinate Co-EDTA Complex. Crystal and Molecular Structure of Aquo(ethylenediaminetriacetatoacetic acid)cobalt(III) Dihydrate Inorg. Chem. 1995, 34(25): 6409-6411.
    [116] E. Coronado, M. Drillon, et al. Structural and magnetic study of tetraaqua(EDTA)dinickeldihydrate[Ni2(EDTA)(H2O)4.cntdot.2H2O]. Alternating Lande factors in a two-sublattice 1D system J. Am. Chem. Soc. 1986,108(5): 900-905.
    [117] J. J Borrls-Almenar, R. Burriel, et al. Magnetic interactions and single-ion zero-field-splitting effects in the two-sublattice manganese chain MnMn(EDTA).cntdot.9H2O: magnetism and single-crystal EPR spectra. Inorg. Chem. 1991, 30(5): 947-950.
    [118] E. Coronado, M. Drillon, et al. Magnetic interactions and single-ion zero-field-splitting effects in the two-sublattice manganese chain MnMn(EDTA).cntdot.9H2O: magnetism and single-crystal EPR spectra. J. Am. Chem. Soc. 1989, 111(11): 387-3880.
    [119] F. Sapina, E. Coronado, et al. From 1-D to 3-D ferrimagnets in the EDTA family: magnetic characterization of the tetrahydrate series MtM(M'EDTA)2.cntdot.4H2O[Mt, M, M' = cobalt(II), nickel(II), zinc(II)]. J. Am. Chem. Soc. 1991, 113(21): 7940-7944.
    [120] G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of G?ttingen, Germany, 1997.
    [121] G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.
    [122] Richard L. Carlin. Magnetochemistry Berlin, New York :Springer-Verlag, c1986
    [123] Fisher M E. Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin[J]. Am. J. Phys., 1964, 32: 343-346.
    [124] T. K. maji, S. Sain, G. Mostafa, T.-H. Lu, J. Ribas, M. Monfort, N. R.Chaudhuri, Toward High-Yielding Supramolecular Synthesis. Inorg. Chem., 2003, 42:709-716
    [125] Dalai S., Mukherjee P. S., Zangrando E.,et al., Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions. J. Chem. Soc., Dalton Trans., 2002: 822-827
    [126] P. A. Marioni, W. Marty, S. Stoeckli-Evans, C. Whitaker, Coordination polymers of Mn(II) with the ligand pyrazine-2,3,5,6-tetracarboxylic acid Inorg. Chimi. Acta. 1994,219: 161-168
    [127] Devereux M., McCann M., Casey M. T., et al., Hydrothermal synthesis, crystal structures of two new transition metal coordination chain polymers with mixed ligands. Journal of Coordination Chemistry. J. Chem. Soc., Dalton Trans. 1995: 771-778
    [128] Zhang, Guoqi; Wang, Qian; Qian, Yan; Yang, Guoqiang; Jin, Shi Ma. Synthesis, characterization and photoluminescence properties of two new europium(III) coordination polymers with 3D open framework Journal of Molecular Structure(2006), 796(3): 187-194
    [129] Zou, Ying-Quan. Hydrothermal synthesis and crystal structure of a new europium fumarate compound. Journal of Coordination Chemistry,2006,59(10): 1131-1138
    [130] Wang Xiao-Qin; Wen Yi-Hang; Kang Yao; et al.. Four novel 3D copper(II) coordination polymers with different topologies. China .Jiegou Huaxue, 2006, 25(1): 17-20
    [131] Zheng, Yue-Qing; Xie, Hong-Zhen. Fumarato-bridged open layers: Syntheses and crystal structures of M(H2O)2L, with M = Cu, Cd and H2L = fumaric acid,2005, 58(6):539-548
    [132] Yue Lin; Zhou Qiu-Xiang; Wang Yan-Ji; et al. Synthesis and crystal structures of two cadmium coordination chain polymers. China. Jiegou Huaxue, 2005, 24(3): 287-290
    [133] Zh. Shi, L.-R. Zhang, Sh. Gao, G.-Y. Yang, J. Hua, L. Gao, Sh.-H. Feng, Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change Inorg. Chem. 2000, 39:1990-1993
    [134] Yao, KL; Fu, HH; Liu, ZL“Thermodynamics of a quasi-one-dimensional spin system for molecule-based ferrimagnets”, Solid State Commun., 2005,135 (3): 197-202
    [135] Liu, QM; Yao, KL; Liu, ZL“TMRG studies on spin alignment in molecule-based ferrimagnetics”, Physics Lett. A, 2005,338 (3-5): 315-322
    [136] Mukherjee, P. S.; Maji, T. K.; Mostafa, G.;et al. Observation of Dominant Ferromagnetic Interaction in Fumarate-Bridged 1-D Polymer of Cu(II). Inorg. Chem., 2001, 40(5): 928-931.
    [137] K.L.Yao.; L. Zhu.; Z.L. Liu, First-principles study of the ferromagnetic and half-metallic properties of the fumarate-bridged polymer, Eru. Phys. J. B, 2004, 39: 283 -287.
    [138] K.L. Yao, Q.M. Liu, and Z.L. Liu. A two-leg spin ladder model for fumarate-bridged chain-like polymer of Cu(II). Solid State Commun, 2005, 133(9): 599-603.
    [139] Young, U. Geiser, A.J. Schultz, H.H. Wang, Hydrothermal Synthesis of a Dense Metal-Organic Layered Framework That Contains Cu(I)-Olefinic Bonds, Cu2(O2CCH=CHCO2), J. Am. Chem. Soc. , 1998, 120(6): 1331-1332.
    [140] Caneschi, A. Dei, D. Gatteschi, V. Tangoulis, Antiferromagnetic Coupling in a Six-Coordinate High Spin Cobalt(II)-Semiquinonato Complex. Inorg. Chem. ,2002, 41(13): 3508-3512.
    [141] Konar, P.S. Mukherjee, M.G.B. Drew, et al, Syntheses of Two New 1D and 3D Networks of Cu(II) and Co(II) Using Malonate and Urotropine as Bridging Ligands:Crystal Structures and Magnetic Studies. Inorg. Chem., 2003, 42(8):2545-2552.
    [142] Y.-Q. Zheng, J.-L. Lin, B.-Y. Chen, New catenary coordination polymers using fumarato ligand as bridging spacer. J. Mol. Stru., 2003, 646 :151-159.
    [143] H.-B. Chen, H. Zhang, J.-M. Yang, Zh.-H. Zhou, Transformation of maleato manganese(II): temperature effect and coordination modes. Polyhedron, 2004, 23: 987-991
    [144] E. G. Bakalbassis, J. Mrozinski, C. A. Tsipis, Experimental and quantum-chemical investigation of the magnetic exchange mechanism in a series of (.mu.-terephthalato)bis[(polyamine)copper(II)] complexes. Inorg. Chem., 1986, 25: 3684-3690
    [145] Xanthopoulos C.E., Sigalas M. P., Katsoulos G. A., et al. Crystal and molecular structure and magnetism of (.mu.-terephthalato)bis[(N-(2-diethylamino)ethyl)salicylidenaminato) copper(II)]-water-methanol. Inorg. Chem., 1993, 32: 5433-5436
    [146] M. E. Fisher, Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin. Am. J. Phys., 1964,32:343-348
    [147] D. Gatteschi, O. Kahn, R. D. Willett,“Magnetostructural Correlations in Exchange Coupled Systems”; Eds.; Reidel Publishing Co.; Dordrecht, 1984; NATO Advanced Study Institute Series.
    [148] Dalai S., Mukherjee P. S., Rogez G., et al. Synthesis, Crystal Structures, and Magnetic Properties of Two New 1D Copper(II) Coordination Polymers Containing Fumarate(-2) and Chelating N,N -Donor as Ligands. Eur. J. Inorg. Chem., 2002, :3292-3297.
    [149]“Magnetostructural Correlations in Exchange Coupled Systems”; D. Gatteschi, O. Kahn, R. D. Willett, Eds.; Reidel Publishing Co.; Dordrecht, 1984; NATO Advanced Study Institute Series.
    [150] Journaux,Y;Sletten,J;Kahn,O. Tunable interaction in (.mu.-oxamido)copper(II) binuclear complexes. Inorg,chem.,1985,24: 4063-4069
    [151] Y.S. Zhang, K.L. Yao, Z.L. Liu, Two ferromagnetic azido-bridged copper(II) complexes studied by first-principle electronic-structure calculation. J. Chem. Phys.. 2005, 123 (12):124308-5
    [152] H.H. Fu, K.L. Yao, Z.L. Liu,Thermodynamic properties of a spin diamond chain as a model for amolecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2. Phys. Rev. B, 2006,73: 104454 -6
    [153]J. Mroziński, New trends of molecular magnetism. Coord. Chem. Rev. , 2005,249: 2534-2548.
    [154] E. Colacio, M. Ghazi, R. Kivek?s, J. M. Moreno,. Helical-Chain Copper(II) Complexes and a Cyclic Tetranuclear Copper(II) Complex with Single Syn-Anti Carboxylate Bridges and Ferromagnetic Exchange Interactions. Inorg. Chem., 2000, 39:2882-2890
    [155] Maji, T. K., Sain, S., Mostafa, G., Lu, T.-H., Ribas, J., Monfort, M., Chaudhuri, N. R., Magneto-Structural Correlations in 2D and 3D Extended Structures of Manganese(II)- Malonate Systems. Inorg. Chem., 2003, 42:709–716.
    [156] M. Kato, Y. Muto, Factors affecting the magnetic properties of dimeric copper(II) complexes Coord. Chem. Rev. ,1988,92: 45-83
    [157] K. Geetha, M. Nethaji, A. R. Chakravarty, N. Y. Vasanthacharya, Synthesis, X-ray Structure, and Magnetic Properties of Ferromagnetically Coupled Binuclear Copper(II) Complexes Having a ( -Hydroxo/methoxo)bis( -benzoato)dicopper(II) Core. Inorg. Chem. , 1996,35: 7666-7670
    [158] Kahn O., Comments. Inorg. Che,,. 1984, 3: 105-106
    [159] V. Mckee, M. Zvagulis, J. V. Dagdigian, et al, Hemocyanin models: synthesis, structure, and magnetic properties of a binucleating copper(II) system. J. Am. Chem. Soc., 1984, 106: 4765-4772
    [160] Coughlin P. K., Lippard S. J., A monohydroxobridged, strongly antiferromagnetically coupled dicopper(II) center in a binucleating macrocycle. Comparisons with binuclear copper sites in biology. J. Am. Chem. Soc. ,1981, 103: 3228-3229
    [161] Kahn O., Molecular Magnetism. Heidelberg: VCH. 1993.34-98
    [162] Martin R. L., Watermann R. J., The crystal structures of two linearly polymeric copper(II) complexes of 2,2'-bipyridine with threefold glycolato and oxalato bridges. J. Chem. Soc. ,1957: 2545-2548.
    [163] Lewis J., F. Mabbs E., Royston L. K.,. Properties and structural characterization of mixed complexes. The copper(II) complex with 2,2'-bipyridyl and oxydiacetate . J. Chem. Soc. A, 1969: 291-296
    [164] G. A. Baker, G. S. Rushbrooke, H. E. Gilbert, High-Temperature Series Expansions for the Spin-? Heisenberg Model by the Method of Irreducible Representations of the Symmetric Group. Phys. Rev., 1964, 135: A1272-1278
    [165] P. Chaudhuri, K. Oder, K. Wieghardt, et al. Moderately strong intramolecular magnetic exchange interaction between the copper(II) ions separated by 11.25 .ANG. in [L2Cu2(OH2)2. J. Am. Chem. Soc. 1988, 110: 3657-3658
    [166] Ma, C.B., Liu, C., Chen, Q., et al. From mono- and dinuclear to polynuclear cobalt(II) and cobalt(III) coordination compounds based on o-phthalic acid and 2,2'-bipyridine. Eur. J. Inorg. Chem. 2004,16: 3316-3321
    [167] Kahn O., Molecular Magnetism. Heidelberg: VCH. 1993.124-168
    [168] Gatteschi D., Kahn O., Miller J.S., F. Palacio (Eds.), Magnetic Molecualr Materials, NATO ASI Series E198. Dordrecht: Kluwer , 1991. 20-89
    [169] J. Mroziński, New trends of molecular magnetism. Coord. Chem. Rev., 2005, 249: 2534-2548.
    [170] P.J. Steel, Aromatic nitrogen heterocycles as bridging ligands. Coord. Chem. Rev. , 1990,106: 227-265
    [171] O. Kahn, Dinuclear Complexes with Predictable Magnetic Properties. Angew. Chem. Int. Ed. Engl., 1985,24: 834-850
    [172] R.D. Willet,; D. Gatteschi, O. Kahn(Eds.), Magneto-Structural Correlation in Exchange Coupled Systems.Dordrecht: Reidel, 1985.123-145
    [173] Mortensen G.K., Main K.M., Andersson A.-M., et al., Aerobic degradation of dimethyl phthalate ester and its isomers. Anal. Bioanal. Chem. ,2005,382: 1084-1092.
    [174] Main K. M., Mortensen G.K., Kaleva M.M.,et al. Human breast milk contamination with phthalates and alteration of endogenous reproductive hormones in infants three months of age. Environmental Health Perspectives, 2006, 114(2): 270-276.
    [175] L. Alfonso; S. Zimnik, N. Heinz, Teratogenic phthalate esters and metabolites activate the nuclear receptors PPARs and induce differentiation of F9 cells. Toxicology and Applied Pharmacology, 2003, 188(1):14-23.
    [176] J. Sussanne, B. Anders, Testicular toxicity of mono-n-butyl phthalate and relatedphthalates on bound iron in rat red blood cells. Environmental Toxicology and Chemistry ,2003, 22(12):3037-3043.
    [177] Melnik M., Kabe?ováM., Koman M.,et al., Equatorially Connected Diruthenium(II,III) Units toward Paramagnetic Supramolecular Structures with Singular Magnetic Properties. J. Coord. Chem., 1988, 45:147-152
    [178] M. Kato, Y. Muto, Factors affecting the magnetic properties of dimeric copper(II) complexes Coord. Chem. Rev. 1988, 92: 45-83.
    [179] Doedens R.J., Structure and metal-metal interactions in copper(II) carboxylate complexes. Progress in Inorganic Chemistry, 1976, 21: 209-231
    [180] Erre L.S., Micera G.., Piu P.,et al., Interaction of metal ions with humic acid-like models. Inorg. Chem. , 1985,24: 2297-2300.
    [181] Brown G.M., Chidambaram R., Synthesis and crystal structure of tetranuclear zinc benzoate. Acta Crystallogr., Sect. B 1973, B29:2393-2395
    [182] Meester S.R., Fletcher S.R., Skapski A.C., Synthesis, crystal structure and quantum chemical calculation of benzimidazole derivatives. J. Chem. Soc., Dalton Trans., 1973:2575-2579
    [183] Harrison W., Rettig S., Trotter J., The crystal and molecular structure of copper(II) complexes formed by 1,3-propanediamine and different substituted halobenzoates. J. Chem. Soc., Dolton Trans., 1972:1852-1856
    [184] Y.B. Koh, G.G. Christoph, Metal-metal bonding in dirhodium tetracarboxylates. Structure of the bis(diethylamine) adduct of tetra-.mu.-acetato-dirhodium(II) and systematics of the bonding in tetracarboxylate-bridged metal dimmers. Inorg. Chem., 1979, 18: 1122-1128.
    [185] B. Bleaney, K.D. Bowers, Anomalous paramagnetism of copper acetate. Proceedings of the Physical Society, 1952, A 214: 451-465
    [186] Kawata T., Uekusa H., Ohba S., et al., Synthesis, structure and properties of a new layered gadolinium benzenedicarboxylate with piperazine . Acta Cryst ,1992, B48: 253-261.
    [187] M.-H. Whangbo, H.-J. Koo, D. Dai, D. Jung. Effect of Metal-Ligand Bond Lengths on Superexchange Interactions in Jahn-Teller d4 Ion Systems: Spin Dimer Analysis of the Magnetic Structure of Marokite CaMn2O4. Inorginic Chemistry, 2002, 41 (6):5575-5581.
    [188] Y. Takano, Y. Kitagawa, T. Onishi, Y. Yoshioka, K. Yamaguchi, N. Koga, H. Iwamura. Theoretical Studies of Magnetic Interactions in Mn(II)(hfac)2{di(4-pyridyl)phenylcarbene} and Cu(II)(hfac)2{di(4-pyridyl)Phenyl carbene}. J. Am. Chem. Soc., 2002, 124 (3): 450-461.
    [189] Benelli, C.; Gatteschi, D. Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals. Chem. Rev 2002, 102 (6): 2369-2388.
    [190] Decurtins, S.; Gross, M.; Schmalle H. W.; Ferlay, S. Molecular Chromium(III)-Lanthanide(III) Compounds (Ln = La, Ce, Pr, Nd) with a Polymeric, Ladder-Type Architecture: A Structural and Magnetic Study. Inorg. Chem. ,1998, 37 (10): 2443-2449.
    [191] Batten,S.R.; Murray,K.S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord. Chem. Rev. , 2003,246 (1): 103-130
    [192] Kurmoo, M.; Kepert,C.J. Hard magnets based on transition metal complexes with the dicyanamide anion, N(CN)2-. New J. Chem., 1998, 22 (6):1515-1524.
    [193] Potocnak, I., Dunaj-Jurco, M., Miklos, D.,et al. Bis(dicyanamide)bis(1,10- phenanthroline)-copper(Ⅱ). J. Acta. Cryst., 1995, C51:600-602.
    [194] Zhe-Ming Wang, Jun Luo, Bai-wang Sun, et al. Catena-poly[[dicyanamido (1,10-phenanthroline)-copper(Ⅱ)]-u- dicyanamido] . Acta Cryst., 2000,C56:786-788.
    [195] Benelli,C.;Fei,A.;Gatteschi, D.;Pardi, L. Synthesis, redox behavior, magnetic properties, and crystal structure of a nickel(II)-semiquinone adduct with an unusually strong ferromagnetic coupling. Inorg. Chem. ,1988,27: 2831-2836.
    [196] Panagiotopoulos, A.;Zafiropoulos, T. F.;Perlepes,S. P.; et al, Molecular Structure and Magnetic Properties of Acetato-Bridged Lanthanide(Ⅲ) Dimer. Inorg Chem. ,1995,34 : 4918-4920.
    [197] A. Caneschi, A. Dei, D. Gatteschi, et al. Improved Electrochemistry in Low-Polarity Media Using Tetrakis(pentafluorophenyl)borate Salts as Supporting Electrolytes. Angew. Chem. Int. Ed. ,2000,39: 249-250
    [198] I. Ramade, O. Kahn, Y. Jeannin, et al. Design and Magnetic Properties of aMagnetically Isolated GdIIICuII Pair. Inorg. Chem. ,1997,36: 930-936
    [199] J.P. Costes, J. M. Clemen-Juan, F. Dahan, et al. Unprecedented Ferromagnetic Interaction in Homobinuclear Erbium and Gadolinium Complexes: Structural and Magnetic Studies. Angew. Chem. Int. Ed. , 2002,41: 323-325
    [200] J.G. Haasnoot, Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem. Rev., 2000, 200-202: 131-185
    [201] Y. Garcia, P.J. van Koningsbruggen, O. Kahn, et al Influences of Temperature, Pressure, and Lattice Solvents on the Spin Transition Regime of the Polymeric Compound [Fe(hyetrz)3]A2·3H2O. Chem. Mater. , 1998,10: 2426-2433
    [202] J. Kr?ber, E. Codjovi, O. Kahn, et al. A spin transition system with a thermal hysteresis at room temperature. J. Am. Chem. Soc., 1993,115 : 9810-9811
    [203] A. Ozarowski, Y. Shunzhong, B.R. McGarvey, et al. EPR and NMR study of the spin-crossover transition in bis(4,4'-bi-1,2,4-triazole)bis(thiocyanato)iron hydrate and bis(4,4'-bi-1,2,4-triazole)bis(selenocyanato)iron hydrate. X-ray structure determination of Fe(4,4'-bi-1,2,4-triazole)2(SeCN)2.cntdot.H2O. Inorg. Chem. , 1991,30 : 3167-3174
    [204] C.L. Zilverentant, W.L. Driessen, J.G. Haasnoot, et al. Synthesis, crystal structure and magnetic properties of the one-dimensional chain compound catena-poly[aquabis(4,4′-bis-1,2,4-triazole-N1) (thiocyanato-N)-manganese-μ- [4,4′-bis-1,2,4-triazole-N1,N1′]thiocyanate]. Inorg. Chim. Acta, 1998,282 :257-260
    [205] Garcia, Y., Kahn, O.,Rabardel, L., et al. Two-Step Spin Conversion for the Three-Dimensional Compound Tris(4,4'-bis-1,2,4-triazole)iron(II) Diperchlorate. Inorg. Chem. ,1999, 38: 4663-4670
    [206] Wang, X.Y., Wang, L., Wang, Z.M., Su, G., Gao, S. Coexistence of Spin-Canting, Metamagnetism, and Spin-Flop in a (4,4) Layered Manganese Azide Polymer. Chem. Mater. , 2005, 17: 6369-6380
    [207] B. Ding, L. Yi, P. Cheng, D.Z. Liao, et al. 4-[3-(1,2,4-triazolyl)-1,2,4-triazole complexes of four-coordinated Cu(II) and six-coordinated Fe(II). Inorg. Chem. Commun., 2005,8: 102-104
    [208] Y.Q. Huang, B. Ding, P. Cheng, D.Z. Liao, et al. Syntheses, structures and characterization of novel cobalt(II) mono- and bi-triazole complexes. J. Mol. Stru. 2005, 743: 201- 207
    [209] Guedira F., Idrissi M.S., Krautscheid., Ammari L.E. Bis(μ-1,2,4-triazole-κ2N1N2)-bis-[diaqua-(oxalato-copper(II)]. Acta Cryst. 2003, C59:m530-532
    [210] R.H. Willey, A.J. Hart, Reaction of Diformylhydrazine with Aminoheterocycles. J. Org. Chem., 1953,18:1368.
    [211] C.Ainsworth, R.G. Jones, Isomeric and Nuclear-substitutedβ-Aminoethyl- 1,2,4-Triazoles. J. Org. Chem., 1955,20: 621.
    [212] Manson, J.L., Kmety, C.R., Epstein, A.J., Miller, J.S. Spontaneous Magnetization in the M[N(CN)2]2 (M = Cr, Mn) Weak Ferromagnets. Inorg. Chem. ,1999, 38: 2552-2553
    [213] Batten,S.R.; Murray,K.S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide]. Coord. Chem. Rev., 2003, 246 (1): 103-130.
    [214] Batten,S.R.; Jensen P., Murray,K.S.,et al. Structure and molecular magnetism of rutile-related compounds M (dca)2. Chem. Commun. ,1998,2 :439-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700