用户名: 密码: 验证码:
化学计量学在食品分类鉴别及防腐剂含量分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品真实性鉴别和食品中的危害物质分析是食品质量与安全控制中两个重要的研究内容,关系到消费者切身利益和身体健康。研究快速有效的食品质量鉴别、分类和有毒有害物质分析技术具有重要的现实意义。
     化学计量学运用数学、统计学、计算机科学及其它相关科学的理论与方法,优化化学测量过程,分辨复杂波谱,最大限度从化学测量数据中获得有用的化学分类信息,是一门化学测量的理论与方法学。将化学计量学结合现代分析技术应用在食品质量与安全控制中,为食品安全与检测提供了新方法。
     本论文共分为六章。主要研究了将化学计量学模式识别方法结合可见-红外、原子吸收、同步荧光等分析技术,应用于不同种类和产地的酱油、食醋和料酒的分类鉴别;将多元校正技术结合紫外-可见分光光度法应用于食品防腐剂多组分重叠光谱解析和同时测定。
     第一章介绍了食品质量研究中常用的一些化学模式识别方法(聚类分析、主成分分析、判别分析)的基本原理,并介绍了模式识别结合红外、原子吸收、原子发射、气相色谱、液相色谱、质谱、传感器等检测技术在食品质量控制中的应用;介绍了多元校正技术(偏最小二乘、主成分回归、平行因子等)和人工神经网络在食品分析中的原理及应用,指出了化学计量学方法在食品质量控制和食品分析中的应用前景。
     第二章研究了以酱油的9个理化指标为变量,采用模式识别方法对不同种类和品牌酱油进行分类和质量鉴别。收集了三个不同品牌的53个酱油样品,其中26个生抽,27个老抽样品。通过化学方法测定了酱油的9个理化参数值(密度、酸度、总固形物、灰分、电导、氨基酸氮、食盐、粘度及总酸)作为酱油样品的特征变量。采用夹角余弦法计算了不同样品之间的相似度,评价产品质量的稳定信息和不同品牌样品的区分度。结果表明相似度法对判断酱油质量的的稳定性有一定作用,而对酱油品牌的区分有一定的局限性。聚类分析和主成分分析探讨不同品牌和种类酱油区分的可行性,结果显示不同品牌和种类的酱油能各自聚在一起,表明本研究所选择的变量的有效性。分别采用偏最小二乘、线性判别和K-最邻近法三种判别模型对预报集中酱油的品牌和种类进行判断,结果表明三种模型均能很好的判断酱油的品牌和种类。在建立线性判别和K-最邻近法判别模型前,采用Fisher权重法计算不同变量对酱油分类的贡献大小,采用交叉验证法计算变量个数对线性判别判断准确率关系曲线,得到前7个贡献大的变量对预报集中酱油的品牌和种类判断的准确率能达到100%,即选择密度、固形物、总酸、pH、氯化钠、电导、灰分的测量数据建立数据矩阵。
     第三章研究分别以食醋中8种微量元素含量值和5个理化指标值为变量,探讨模式识别方法对不同种类和产地食醋进行分类鉴别的可行性。实验购买4个不同品牌29个食醋样品,包括陈醋和白醋。采用原子吸收分光光度法测食醋中8种微量元素含量,化学方法测定食醋5个理化指标值,组成测量数据矩阵。采用向量相似法计算不同品牌和种类食醋的质量稳定性信息,研究两种不同类型变量(金属元素含量和理化指标值)对食醋的区分效果。主成分分析分别用理化指标、金属元素含量值及理化指标和金属元素含量的混合数据为变量,以其得出两种不同类型变量对食醋种类和品牌区分的贡献。从13个变量的载荷图可以得出,金属元素为变量对7个样品类别区分的贡献比5个理化指标的贡献大。在由PC1-PC2-PC3前三个主成分构成的三维得分图中,32个样本按种类和品牌被成功的区分为7组。采用夹角余弦计算样品的距离,32个样本能得到很好的聚类效果。采用建立的偏最小二乘和径向基人工神经网络判别模型分别对测试集进行种类预报,预报准确度分别达到100%和93%。
     第四章测定不同品牌料酒的可见-近红外光谱,建立模式识别方法对料酒品牌区分的新方法。实验购买了3个不同品牌共37个料酒样品,测定400-1400nm波长范围的可见近红外的吸收光谱,分别采用一阶导数法和小波变换技术对料酒的可见-近红外光谱数据去噪和压缩处理。探讨了小波分解尺度对光谱信号的影响,最后选择二阶的Daubechies (db2)小波函数、分解尺度5对原始光谱数据进行处理。对原始光谱数据、一阶导数法和小波变换技术处理后的数据进行主成分分析,比较了模糊聚类的效果。结果表明,小波变换能够有效去除光谱噪音和压缩光谱变量,得到较好的聚类效果。采用偏最小二乘和人工神经网络预报模型对料酒的品牌进行判断,预报正确率均为100%。
     第五章测定料酒的三维同步荧光,提取特征荧光变量,建立模式识别方法对料酒品牌区分的新方法。分别采用主成分分析降维和小波变换的方法提取三维荧光的特征变量。主成分分析取第一主成分作为料酒的荧光特征变量。通过比较小波分解尺度对光谱信号的影响的结果,最后选择二阶的Daubechies(db2)小波分解尺度4对原始的光谱数据进行处理,该方法能很好的压缩和保留原始的荧光信息。对主成分降维和小波变换的方法提取三维荧光的特征变量进行主成分分析和聚类分析,小波变换法能更好的对样品品牌进行区分。采用偏最小二乘和人工神经网络预报模型对料酒的品牌进行判断,预报正确率均为100%。
     第六章研究了多元校正技术和人工神经网络等化学计量学方法解析光谱严重重叠的苯甲酸、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯和山梨酸四种防腐剂的紫外吸收光谱,建立了同时测定四种防腐剂的新方法。考察酸度对吸收光谱的影响,发现在酸性溶液中,四种防腐剂的测定灵敏度较高。选择在pH 2.09的B-R缓冲溶液中,对四种防腐剂进行同时测定。在优化的酸度条件下苯甲酸、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯单组分的线性范围为0.5-20μg mL-1,山梨的线性范围为0.25~10μg mL-1。四种防腐剂的检测限分别为0.22μg mL-1,0.19μg mL-1,0.17μg mL-1,0.085μg mL-1。采用多种校正模型(经典最小二乘(CLS)、偏最小二乘(PLS)、主成分回归(PCR)、一阶导经典最小二乘(DCLS)、一阶导偏最小二乘(DPLS)、一阶导主成分回归(DPCR)及径向基人工神经网络(RBF-ANN)对四组分的合成样预报集浓度预报。结果表明,建立的校正模型均有较好的预报能力,相对预报误差(RPET)小于10%。其中,PCR、DPCR和RBF-ANN的预报误差相对较小,预报误差分别为4.53%,4.55%和4.67%。用建立的PCR和RBF-ANN模型结合光度法对实际样品中四种防腐剂直接同时测定,获得满意结果。
Discrimination of food authenticity and determination of toxic and harmful matter are two crucial issues in food safety and quality control. It is related to the consumers'interests and health. It is realistic significance to develop rapid and effective method for discrimination of food authenticity and determination of toxic and harmful materials.
     Chemometrics is an object on chemical theory of measurement and methodology. It can optimize the process of measurement, resolve overlapped spectra and extract maximum useful discrimination information of data from chemical measurement using mathematics, statistics, computer science and other related science theories and methods. It offers a new method to solve some problems about food safety and food quality control by using chemometrics and modern analytical means.
     There are six chapters in this thesis. The focuses of the research work are discrimination of soy sauce samples, vinegar samples and seasoning wine samples of different brands and kinds by NIR, AAS and SFS with the aid of chemical pattern recognition techniques, and resolution of overlapped spectra of four preservatives and determination simultaneously by UV-visible spectrometry with the aid of multivariate calibration.
     Chapter one The principals of some chemical pattern recognition and multivariate calibration techniques (CA, PCA, DA, PLS, PCR, ANN and PARAFAC), and application of IR, AAS, AES, GC, HPLC and MS in food safety and quality control combined with chemical pattern recognition techniques and in food analysis combined with multivariate calibration were reviewed and summarized. The outlook of chemometrics in food quality and food control was also discussed.
     Chapter two A new method of discrimination of soy sauce samples of different kinds and brands was developed according to 9 physico-chemical variables using pattern recognition.53 soy sauce samples of three different brands were collected including 26 light soy sauces and 27 dark soy sauces. The values of 9 physico-chemical properties (density, pH, dry matter, ashes, electro-conductivity, amino-nitrogen, salt and total acidity) were determined and acted as the characteristic variables of soy sauce samples. To evaluate the stability of the quality and degree of differentiation of different brands, the similarities of different products were calculated by vector similarity analysis. The results showed that SA was useful to evaluate the stability of soy sauce quality, but limited to differentiate the brands and kinds of soy sauce samples. We used cluster analysis and principal component analysis to study whether it was feasible to discriminate the brands and kinds of soy sauce samples. The results of cluster analysis and principal component analysis showed the effectiveness of discrimination and the correctness of variables selected to predict the brands and kinds of soy sauce samples in verification set. In order to predict the unknown samples, several calibration models were set up, such as partial least squares, linear discrimination analysis and K-nearest neighbor. The results of prediction showed that these models were effective to discriminate soy sauce samples. The variables for LDA and KNN were chosen by means of Fisher F-ratio approach, and the prediction ability of all classifier was evaluated by cross-validation. The first seven variables (density, dry matter, total acidity, pH, salt, electro-conductivity and ashes) were chosen according to the curve of the numbers of variables and correct classification rates. Among the three supervised discrimination analysis, LDA and KNN gave 100% predications according to the categories and brands of samples.
     Chapter three The research discussed the feasibility of discrimination of vinegar samples of different kinds and brands according to 8 metallic contents and 5 physico-chemical parameters with the aid of pattern recognition techniques.29 vinegar samples, including mature vinegar and white vinegar, were collected. The metallic contents were determined by AAS, and physico-chemical parameters were determined by chemical methods. The data measured were acted as characteristic variables of vinegar samples. To evaluate the stability of vinegar quality similarities of different products were calculated by SA. In order to comparing the contribution of the two kinds of data (metallic contents and physico-chemical parameters) to the discrimination of vinegar samples of different kinds and brands, they were used as variables for principal component analysis, respectively. The loading plot of 13 variables showed that metallic contents contributed greater than physico-chemical parameters.32 vinegar samples were divided into seven groups according to the kinds and brands in the three-dimensional space of the first three PCs.32 vingar samples were correctly clustered according to the distance calculated using Angle Cosine function. The correct prediction rate were 100% and 93% for verification set by PLS model and RBF-ANN models, respectively.
     Chapter four A new method of fast discrimination of brands of seasoning wine by means of visible-near infrared spectroscopy was developed. The visible-near infrared absorption spectroscopic signals of 37 seasoning wine samples from three different brands were measured between 400 nm and 1400 nm. The spectroscopic data were pretreated by first derivative and WT to denoise and compress data, and the impact of the level of wavelet decomposition on the original spectra was also discussed. In this study we employed second order Daubechies (db2) wavelet function and the fifth decomposition level to denoise and compress the original data. The results of PCA were compared by using original data, data treated by first derivative and WT as characteristic variables. From the clear classification result by PCA and CA, we showed that WT can denoise and compress data effectively. PLS and RBF-ANN calibration models were used to predict the brands of seasoning wine in verification set with 100% accuracy of prediction.
     Chapter five A new method for fast discrimination of brands of seasoning wine by using characteristic variables extracted from three dimensional SFS was developed. The original three dimensional fluorescence data was compressed and extracted by PCA and WT. The first PC was used as the characteristic fluorescence variables of seasoning wine samples by PCA. By comparing the effects on the signals of the different levels of decomposition, db2 wavelet function and the fourth decomposition level were chosen to extract and compress the data to obtain the original characteristic signal information. From the results of PCA and CA using the characteristic variables extracted by PCA and WT, brands of seasoning wine sample were correctly classified more by WT. The two supervised discrimination analysis calibration models, PLS and RBF-ANN gave 100% predications for unknown samples in the verification set according to the brands of seasoning wine samples.
     Chapter six Benzoic acid (BA), methylparaben (MP), propylparaben (PP) and sorbic acid (SA) are food preservatives, and they have well defined UV spectra. However, their spectra overlap seriously, and it is difficult to determine them individually from their mixtures without preseparation. The multivariate calibration and RBF-ANN of chemometrics were applied to resolve the overlapping spectra and to determine these compounds simultaneously. The influence of acidity on absorption spectra was investigated. It was discovered that in the acidic buffer solution the sensitivity of detection was higher than in basic buffer solution. Therefore, determination of four preservatives was conducted in pH 2.09 B-R buffer solution. Under the optimum acidic condition, the four compounds, when taken individually, behaved linearly in the 0.25-20 mg L-1 for BA, MP, PP and 0.25-10 mg L-1 for SA concentration range, and the limits of detection (LOD) were 0.22,0.19,0.17 and 0.085 mg L-1 for BA, MP, PP and SA, respectively. Multivariate calibration (CLS, PCR, PLS, DCLS, DPCR, DPLS) and RBF-ANN models were applied to predict the concentration of the four preservatives in the verification set. The results of prediction showed that the calibration models were effective to correctly predict the individual concentration in the mixture, and relative prediction errors (RPET) were under 10%. Among those models, PCR, DPCR and RBF-ANN gave more satisfactory results, and the RPETS were 4.53%,4.55% and 4.67%, respectively. It was obtained satisfactory results to determine the four preservatives simultaneously by UV-visible spectrometry with the aid of chemometrics.
引文
[1]陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671~674.
    [2]Coetzee P P, Steffens F E, Eiselen R J, Augustyn O P, Balcaen L, Vanhaecke F. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin[J]. Journal of Agricultural and Food Chemistry,2005,53:5060~5066.
    [3]Downey G, McIntyre P, Davies A N. Geographic classification of extra virgin olive oils from the Eastern Mediterranean by chemometric analysis of visible and near-infrared spectroscopic data[J]. Applied spectroscopy,2003,57(2):158~163.
    [4]冯宇,顾小红,汤坚,陈尚卫.中红外光谱与模式识别相结合鉴别茶叶种类[J].食品与生物技术学报,2007,26(2):7~11.
    [5]李晓丽,胡兴越,何勇.基于主成分和多类判别分析的可见-红外光谱水蜜桃品种鉴别新方法[J].红外与毫米波学报,2006,25(6):417~420.
    [6]王艳艳,何勇,邵咏妮,张志飞.基于可见-近红外光谱的咖啡品牌鉴别研究[J].光谱学与光谱分析,2007,27(4):702~706.
    [7]Jos A, Moreno I, Gonzalez A G. Differential of sparkling wines (cava and champagne) according to their mineral content[J]. Talanta,2004,63(2):377~382.
    [8]Padovan G J, De J D, Podrigues L P, Marchini J S. Detection of adulteration of commercial honey sample by the 13C/12C isotoperation[J]. Food Chemistry,2003,82:633~636.
    [9]Pontes M J C, Santos S R B, Araujo M C U, Almeida L F, Lima R A C, Gaiao E N, Souto U T C P. Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry[J]. Food Research International,2006,39:182~189.
    [10]Linda M R, O'Donnel C P, Downey G. Recent technological advances for the determination of food authenticity[J]. Trends in Food Science and Technology,2006,17(7):344~353.
    [11]Delphine J R B, Antonio S B, Douglas N R. Generalised PLS-Cluster:an extension of PLS-Cluster for interpretable hierarchical clustering of multivariate data[J]. Sensing and Instrumentation for Food Quality and Safety,2007,1(3):79~90.
    [12]Lachenmeier D W, Frank W, Humpfer E, Schafer H, Keller S, Mortter M, Spraul M. Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis[J]. European Food Research and Technology,2005,220(2):215~221.
    [13]Fernandez-Torres R, Perez-Bernal J L, Bello-Lopez M A, Callejon-Mochon M, Jimenez-Sanchez J C, Guiraum-perez A. Mineral content and botanical origin of Spanish honeys[J]. Talanta,2005,65(3):686~691.
    [14]Inon F A, Garrigues S, Guardia M. Combination of mid-and near-infrared spectroscopy for the determination of the quality properties of beers[J]. Analytica Chimica Acta,2006,571(2): 167~174.
    [15]Aguilar-Gaballos M P, Gomez-Hens D, Perez-Bendito D. Simultaneous kinetic determination butylated hydroxyanisole and propyl gattate by coupling stopped-flow mixing technique and diode-array detection[J]. Analytica Chimica Acta,1997,354(1):173~179.
    [16]Ni Y N, Wang Y R, Kokot S. Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics[J]. Talanta,2006,69:216~225.
    [17]Moberg L, Karlberg B, Blomqvist S, Larsson U. Comparison between a new application of multivariate regression and current spectroscopy methods for the determination of chlorophylls and their corresponding pheopigment[J]. Analytica Chimica Acta,2000, 411(1-2):137~143.
    [18]Mello C, Poppi R J, de-Andrade J C, Cantarella H. Pruning neural network for architecture optimization applied to near-reflectance spectroscopic measurements, Determination of the nitrogen content in wheat leaves[J]. Analyst,1999,124(11):1669~1682.
    [19]Ni Y N, Huang C F, Kokot S. Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides[J]. Chemometrics and Intelligent Laborary Systems,2004,71:177~193.
    [20]Natalia E L, Mariano G, Maria S D N, Band B S F. Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV-vis and multivariate curve resolution-alternating least squares[J]. Analytica Chimica Acta,2009,655(1-2):38~42.
    [21]许禄,邵学广.化学计量学方法(第2版)[M].北京:科学出版社,2004.
    [22]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.
    [23]Zhang G W, Ni Y N, Jane C, Kokot S. Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics[J]. Talanta,2006,70(2):293~300.
    [24]Massart D L, Vandeginste B G M, Buydens L M C, Jong S D, Lewi P J, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics:Part A[M], Elsevier, Amsterdam,1997.
    [25]Nalda M J N, Yague J L B, Calva J C D, Gomez M T M. Classifying honeys from the Soria Province of Spain via multivariate analysis[J]. Analytical and Bioanalytical Chemistry,2005, 382(2):311~319.
    [26]Lopez B, Latorre M J, Fernandez M I, Garcia M A, Garcia S, Herreroa C. Chemometric classification of honeys according to their type based on quality control data[J]. Food Chemistry,1996,55(3):281~287.
    [27]Latorre M J, Pena R, Pita C, Botana A, Garcia S, Herrero C. Chemometric classification of honeys according to their type. Ⅱ. Metal content data[J]. Food Chemistry,1999,66(2): 263~268.
    [28]Hernandez-Caraballo E A, Avila-Gomez R M, Capote T, Rivas F, Perez A G. Classification of Venezuelan spirituous beverages by means of discriminant analysis and artificial neural networks based on their Zn, Cu and Fe concentrations[J]. Talanta,2003,60(6):1259~1267.
    [29]Capron X, Massart D L, Smeyers-Verbeke J. Multivariate authentication of the geographical origin of wines:a kernel SVM approach[J]. European Food Research and Technology,2007, 225(3-4):559~568.
    [30]Downey G. Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics[J]. TrAC Trends in Analytical Chemistry,1998,17(7):418~424.
    [31]Gowen A A, O'Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging an emerging process analytical tool for food quality and safety control[J]. Trends in Food Science and Technology,2007,18(12):590~598.
    [32]Kelly J F D, Downey G, Fouratier V. Initial study of honey adulteration using midinfrared (MIR) spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry,2004, 52(1):33~39.
    [33]Cozzolino D, Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy [J]. Lebensmittel-Wissenschaft und-Technologie,2004,37(4): 447~452.
    [34]Reid L M, O'Donnell C P, Downey G. Potential of SPME-GC and chemometrics to detect adulteration of soft fruit purees[J]. Journal of Agricultural and Food Chemistry,2004,52(3): 421~427.
    [35]Li X L, He Y, Fang H. Non-destructive discrimination of Chinese bayberry varieties using Vis/NIR spectroscopy[J]. Journal of Food Engineering,2007,81(2):357~363.
    [36]韩东海,鲁超,刘毅,皮付伟.生鲜乳中还原乳的近红外光谱法鉴别[J].光谱学与光谱分析,2007,27(3):465~468.
    [37]陈全胜,赵杰文,张海东,刘木华.SIMCA模式识别方法在近红外光谱识别茶叶中的应用[J].食品科学,2006,27(4):186~189.
    [38]Galtier O, Dupuy N, Dreau Y L, Ollivier D, Pinatel C, Kister J, Artaud J. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra[J]. Analytica Chimica Acta,2007,595(1-2):136~144.
    [39]Yang H, Irudayaraj J. Rapid detection of food borne microorganisms on food surface using Fourier transform Raman spectroscopy [J]. Journal of Molecular Structure,2003,646(1-3): 35~43.
    [40]Yang H, Irudayaraj J, Paradkar M M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy [J]. Food Chemistry,2005,93(1):25~32.
    [41]Paradkar M M, Irudayaraj J. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy[J]. Food Chemistry,2002,76(2):231~239.
    [42]Schulz H, Ozkan G, Baranska M, Kruger H, Ozcan M. Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy[J]. Vibrational Spectroscopy,2005,39(2): 249~256.
    [43]Sola-Larranaga C, Navarro-Blasco I. Preliminary chemometric study of minerals and trace elements in Spanish infant formulae[J]. Analytica Chimica Acta,2006,555(2):354~363.
    [44]Hernandez O M, Fraga J M G, Jimenez A I, Jimenez F, Arias J J. Characterization of honey from the Canary Islands:determination of the mineral content by atomic absorption spectrophotometry[J]. Food Chemistry,2005,93(3):449~458.
    [45]Herrador M A, Gonzalez A G. Pattern recognition procedures for differentiation of Green, Black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry[J]. Talanta,2001,53(6):1249~1257.
    [46]Alcazar A, Pablos F, Martin M J, Gonzalez A G. Multivariate characterisation of beers according to their mineral content[J]. Talanta,2002,57(1):45~52.
    [47]Guerrero M I, Herce-Pagliai C, Camean A M, Troncoso A M, Gonzalez A G. Multivariate characterization of wine vinegars from the south of Spain according to their metallic content[J]. Talanta,1997,45(2):379~386.
    [48]Martin M J, Pablos F, Gonzalez A G. Characterization of green coffee varieties according to their metal content[J]. Analytica Chimica Acta,1998,358(2):177~183.
    [49]Martin M J, Pablos F, Gonza lez A G. Characterization of arabica and robusta roasted coffee varieties and mixture resolution according to their metal content[J]. Food Chemistry,1999, 66(3):365~370.
    [50]Jurado J M, Alcazar A, Pablos F, Martin M J, Gonzalez A G. Classification of aniseed drinks by means of cluster, linear discriminant analysis and soft independent modelling of class analogy based on their Zn, B, Fe, Mg, Ca, Na and Si content[J]. Talanta,2005,66(5): 1350~1354.
    [51]Alvarez M, Moreno 1 M, Jos A, Camean A M, Gonzalez A G. Differentiation of'two' Andalusian DO'fino'wines according to their metal content from ICP-OES by using supervised pattern recognition methods[J]. Microchemical Journal,2007,87(1):72~76.
    [52]Lee D S, Noh B S, Bae S Y, Kim K. Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics[J]. Analytica Chimica Acta,1998,358(2): 163~175.
    [53]Makris D P, Kallithraka S, Mamalos A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents[J]. Talanta,2006,70(5):1143~1152.
    [54]Mildner-Szkudlarz S, Jelen H H, Zawirska-Wojtasiak R, Sowicz E W. Application of headspace-solid phase microextraction and multivariate analysis for plant oils differentiation[J]. Food Chemistry,2003,83(4):515~522.
    [55]Marini F, Balestrieri F, Bucci R, Magri A L, Marini D. Supervised pattern recognition to discriminate the geographical origin of rice bran oils:a first study[J]. Microchemical Journal, 2003,74(3):239~248.
    [56]Cozzolino D, Smyth H E, Cynkar W, Dambergs R G, Gishen M. Usefulness of chemometrics and mass spectrometry-based electronic nose to classify Australian white wines by their varietal origin[J]. Talanta,2005,68(2):382~387.
    [57]Oliveros C C, Boggia R, Casale M, Armanino C, Forina M. Optimisation of a new headspace mass spectrometry instrument Discrimination of different geographical origin olive oils[J]. Journal of Chromatography A,2005,1076(1-2):7~15.
    [58]Guadarrama A, Fernandez J A, Iniguez M, Souto J, Saja J A D. Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro- extraction (SPME) technique[J]. Sensors and Actuators B,2001,77(1-2):401~408.
    [59]Steine C, Beaucousin F, Siv C, Peiffer G. Potential of semiconductor sensor arrays for the origin authentication of pure Valencia orange juices[J]. Journal of Agricultural and Food Chemistry,2001,49(7):3151~3160.
    [60]Zhang Q Y, Zhang S P, Xie C S, Zeng D, Fan C Q, Li D F, Bai Z K. Characterization of Chinese vinegars by electronic nose[J]. Sensors and Actuators B,2006,119(2):538~546.
    [61]Kallithraka S, Arvanitoyannis I S, Kefalas P, El-Zajouli A, Soufleros E, Psarra E. Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin[J]. Food Chemistry,2001, 73(4):501~514.
    [62]鲁小利,海铮,王俊.可口饮料的电子鼻检测研究[J].浙江大学学报,2006,32(6):677~682.
    [63]Penza M, Cassano G. Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks[J]. Food Chemistry,2004,86(2):283~296.
    [64]Ali Z, James D, O'Hare W T, Rowell F J, Scott S M. Application of a radial basis neural network for classification of fresh edible oils[J]. Journal of Thermal Analysis and Calorimetry,2003,71:147~154.
    [65]Brescia M A, Alviti G, Liuzzi V, Sacco A. Chemometric classification of olive cultivars based on compositional data of oils[J]. Journal of the American Oil Chemists Society,2003, 80(10):945~950.
    [66]Shaw A D, Camillo A D, Vlahov G, Kell D B, Rowland J. Discrimination of the variety and region of origin of extra virgin olive oils using 13C-NMR and multivariate calibration with variable reduction[J]. Analytica Chimica Acta,1997,348(1-3):357~374.
    [67]Charlton A J, Farrington W H H, Brereton P. Application of 1H NMR and Multivariate Statistics for Screening Complex Mixtures:Quality Control and Authenticity of Instant Coffee[J]. Journal of Agricultural and Food Chemistry,2002,50(11):3098~3103.
    [68]Le G G, Max P, Colquhoun I J. Discrimination between Orange Juice and Pulp Wash by 1H Nuclear Magnetic Resonance Spectroscopy:Identification of Marker Compounds[J]. Journal of Agricultural and Food Chemistry,2001,49(2):580~588.
    [69]耿玉珍,高吉刚,刘葵.多元线性回归光度法同时测定食品中钙镁[J].食品与发酵工业,2002,28(1):53~55.
    [70]Dine E, Baydan E, Kanbur M, Onur F. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods[J]. Talanta, 2002,58(3):579~594.
    [71]Berzas-Nevado J J, Guiberteau-Cabanillas C, Contneto-Salcedo A M, Martin-villamuelas R. Spectrophotometric simultaneous determination of amaranth, ponceau 4R, allura red and red 2G by partial least squares and principal component regression multivariate calibration [J]. Analytical Letters,1999,32(9):1879~1898.
    [72]Nivado J J B, Flores J R, Llerena M J V, Farinas N R. Simultaneous spectrophotometric determination of Tartrazine, Patent blue V and Indigo carmine in commercial products by partial least squares and principal component regression methods[J]. Talanta,1999,48(4): 895~903.
    [73]Bezas-Nivado J J, Rodriguez-Flores J, Villasenor-Llerena M J. Simultaneous spectrophotometric determination of Tartrazine, Sunset Yellow and Ponceau 4R in commericial products by partial least squares and principal-component regression methods[J]. Fresenius Journal of Analytical Chemistry,1998,361(5):465~472.
    [74]Ni Y N, Gong X F. Simultaneous spectrophotometric determination of mixture of food colorants[J]. Analytica Chimica Acta,1997,354(1):163~171.
    [75]任健敏,白玲,倪永年.偏最小二乘分光光度法同时测定茶叶中痕量铁、钴、镍[J].江西农业大学学报,2001,23(1):123~125.
    [76]白玲,倪永年.偏最小二乘光度法同时测定痕量铁、锰、铜、锌、钴和镍[J].分析试验室,2002,21(1):39~42.
    [77]Rumelhart D E, Mcclellant J L. Parallel distributed processing:explorations in the microstructure of cognition[M]. MIT Press, Cambridge M A,1986.
    [78]邓勃,莫华.人工神经网络及其在分析化学中的应用[J].分析试验室,1995,14(5):85~87.
    [79]Ni Y N, Liu C. Artificial neural networks and multivariate calibration for spectrophotometric different kinetic determination of food antioxidants[J]. Analytica Chimica Acta,1999, 396(2-3):221~230.
    [80]Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis[J]. Analytical Chemistry,1986,5(2):496~499.
    [81]Sanchez E, Kowalski B R. Tensorial resolution:A direct trilinear decomposition[J]. Journal of Chemometrics,1990,4(3):29~45.
    [82]Appellof C J, Davidson E R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents[J]. Analytical Chemistry,1981,53(13): 2053~2056.
    [83]Mitchell B C, Burdick D S. Slowly converging PARAFAC sequences:swamps and two factor degeneracies[J]. Journal of Chemometrics,1994,8(2):155~168.
    [84]Kiers H A L, Smilde A K. Some theoretical results on second-order calibration methods for data with and without rank overlap[J]. Journal of Chemometrics,1995,9(3):179~195.
    [85]Bro R. PARAFAC:Tutorial and applications[J]. Chemometrics and Intelligent Laborary Systems,1997,38(8):149~171.
    [86]Rodriguez-Cuesta M J, Boque R, Rius F X, Zamora D P, Galera M M, Frenich A G. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-emission matrix fluorescence and parallel factor analysis[J]. Analytica Chimica Acta,2003,491:47~56.
    [87]Singh K P, Basant N, Malik A, Singh V K, Mohan D. Chemometrics assisted spectrophotometric determination of pyridine in water and wastewater[J]. Analytica Chimica Acta,2008,630:10~18.
    [88]Zhang Y, Wu H L, Xia A L, Han Q J, Cui H, Yu R Q. Interference-free determination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD[J]. Talanta,2007,72:926~931.
    [89]Ni Y N, Huang C F, Kokot S. Simultaneous determination of iron and aluminium by differential kinetic spectrophotometric method and chemometrics[J]. Analytica Chimica Acta, 2007,599:209~218.
    [90]Stanimirova I, Walczak B, Massart D L, Simeonov V. A comparison between two robust PCA algorithms[J]. Chemometrics and Intelligent Laborary Systems,2004,71(1):83~95.
    [91]Branden K V, Hubert M. Robust classification in high dimensions base on the SIMCA method[J]. Chemometrics and Intelligent Laborary Systems,2005,79(1-2):10~21.
    [92]Word S, Trygg J, Berglund A, Antti H. Some recent developments in PLS modeling[J]. Chemometrics and Intelligent Laborary Systems,2001,58(2):131~150.
    [93]Barakat-Nasser A M, Jiang J H, Yu R Q. Bubble agglomeration algorithm for unsupervised classification:a new clustering methodology without a priori information[J]. Chemometrics and Intelligent Laborary Systems,2005,77(1-2):43~49.
    [94]Roger J M, Palagos B, Guillaume S, Bellon-Maurel V. Discrimination from highly multivariate data by focal eigen function discriminant analysis; application to NIR spectra[J]. Chemometrics and Intelligent Laborary Systems,2005,79(1-2):31~41.
    [1]Yamaguchi N, Fujimaki M. Studies on browning reaction products from reducing sugars and amino acid:part 14. Antioxidative activities of purified melanoidin and their comparison with those of legal antioxidants[J]. Fournal of Food Science and Technology,1974,21:6-12.
    [2]Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components[J]. Journal of Bioscience and Bioengineering,2005,100(3):227~234.
    [3]王生.配制酱油与酿造酱油的鉴别[J].中国卫生检验杂志,2008,18(4):749.
    [4]童晓星,鲍一丹,何勇.应用近红外光谱技术快速鉴别酱油品牌的研究[J].光谱学与光谱分析,2008,28(3):597~601.
    [5]Watson D G, Peyfoon E, Zheng L, Lu D, Seidel V, Johnston B, Parkinson J A, Fearnley J. Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin[J]. Phytochemical analysis,2006,17:323~331.
    [6]Olliver D, Artaud J, Pinatel C, Durbec J P, Guerere M. Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterisation by chemometrics[J]. Journal of Agricultural and Food Chemistry,2003,51:5723~5731.
    [7]Ariyama K, Aoyama Y, Mochizuki A, Homura Y, Kadokura M, Yasui A. Determination of the geographic origin of onions between three main production areas in Japan and other countries by mineral composition[J]. Journal of Agricultural and Food Chemistry,2007,55: 347~354.
    [8]Gavina M, Federica C, Gavina C C. Characterization of the geographical origin of Pecorino Cheese by casein stable isotope(13C/12C and 15N/14N) ratios and free amino acid ratios[J]. Journal of Agricultural and Food Chemistry,2001,49:1404~1409.
    [9]Arana A, Jaren C, Arazuri S. Maturity, variety and origin determination in white grapes (Vitis Vinifera L.) using near infrared reflectance technology[J]. Journal of Near Infrared Spectroscopy,2005,13:349~357.
    [10]Zhang G W, Ni Y N, Churchill J, Kokot S. Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics[J]. Talanta,2006,70(2): 293~300.
    [11]Millan R, Saavedra P, Sanjuan E, Castelo M. Application of discriminant analysis to physico-chemical variables for characterizing Spanish cheeses[J]. Food Chemistry,1996, 55(2):189~191.
    [12]Juarez M, Alcalde M J, Horcada A, Molina A. Southern Spain lamb types discrimination by using visible spectroscopy and basic physicochemical traits[J]. Meat Science,2008,80: 1249~1253.
    [13]Acquarone C, Buera P, Elizalde B. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys[J]. Food Chemistry,2007,101:695~703.
    [14]Anupama D, Bhat K K, Sapna V K. Sensory and physco-chemical properties of commercial sample of honey[J]. Food Research International,2003,36:183~191.
    [15]Al L M, Daniel D, Moise A, Bobis O, Laslo L, Bogdanov S. Physico-chemical and bioactive properties of different floral origin honey from Romania[J]. Food Chemistry,2009,112: 863~867.
    [16]Corbella E, Cozzolino D. Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometrics[J]. LWT,2006,39: 534~539.
    [17]Serrano S, Villarejo M, Espejo R, Jodral M. Chemical and physical parameters of Andalusian honey:classification of Citrus and Eucalyptus honey by discriminant analysis[J]. Food Chemistry,2004,87:619~625.
    [18]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
    [19]Golub H G, Loan C F V. Matrix Computations[M](3nd ed.). Johns Hopkins University Press, Baltimore Maryland,1996.
    [20]Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes in C[M](2nd ed.). Cambridge University Press, New York,1992.
    [21]Geladi P, Kowalski B R. Partial least-squares regression:a tutorial[J]. Analytica Chimica Acta,1986,185:1~17.
    [22]Cooman D, Jonckheer M, Massart D L, Broeckaert I, Blockx P. The application of linear discriminant analysis in the diagnosis of thyroid disease[J]. Analytica Chimica Acta,1978, 103:409~415.
    [23]Cover T M, Hart P E. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory,1967,13:21~27.
    [24]Derde M P, Buydens L, Guns C, Massart D L, Hopke P K. Comparision of rule-building expert systems with pattern recognition for the classification of analytical data[J]. Analytical Chemistry,1987,59:1868~1871.
    [25]王龙星,肖红斌,粱鑫淼,毕开顺.一种评价中药色谱指纹图谱相似形的新方法:向量夹角法[J].药学学报,2002,37(9):713~717.
    [26]酱油卫生标准的分析方法[S].GB/T5009.39,2003.
    [27]食品的相对密度的测定[S].GB/T5009.2,2003.
    [28]食品中灰分的测定[S].GB/T5009.4,2003.
    [29]Kowalski B R, Bender C F. Pattern recognition. A powerful approach to interpreting chemical data[J]. Journal of the American Chemical Society,1972,94:5632~5639.
    [30]Fernandez-Torres R, Perez-Bernal J L, Bello-Lopez M A, et al. Mineral content and botanical origin of Spanish honeys[J]. Talanta,2005,65(3):686~691.
    [31]Marini F, Magri A L, Balestrieri F, Fabretti F, Marini D. Supervised pattern recognition applied to the discrimination of the floral origin of six types of Italian honey samples[J]. Analytica Chimica Acta,2004,515:117~125.
    [1]徐清萍,敖宗华,陶文沂.食醋功能研究进展[J].中国调味品,2003,12(12):11.
    [2]夏红萍.以不同的醋调不同的酸[J].四川烹饪,2005,8:14~15.
    [3]Gerbi V, Zeppa G, Antonelli A, Carnacini A. Sensory characterisation of wine vinegars[J]. Food Quality and Preference,1997,8:27-34.
    [4]Tesfaye W, Morales M L, Garcia-Parrilla M C. Wine vinegar:technology, authenticity and quality evaluation[J]. Trends in Food Science and Technology,2002,13:12~21.
    [5]Lapa R A S, Lima J L F C, Perez-Olmos R, Ruiz M P. Simultaneous automatic potentiometric determination of acidity, chloride and fluoride in vinegar[J]. Food Control, 1995,6:155~159.
    [6]Guerrero M I, Herce-Pagliai C, Camean A M, Troncoso A M, Gonzalez A G. Multivariate charaterization of wine vinegars from the south of Spain according to their metallic content[J]. Talanta,1997,45(2):379~386.
    [7]Antonelli A, Zeppa G, Gerbi V, Carnacini A. Polyalcohols in vinegar as an origin discriminator[J]. Food Chemistry,1997,60:403~407.
    [8]. Signore A D. Chemometric analysis and volatile compounds of traditional balsamic vinegars from Modena[J]. Journal of Food Engineering,2001,50:77~90.
    [9]Mejias R C, Marin R N, Moreno M D V G, Barroso C G. Optimisation of headspace solid-phase microextraction for analysis of aromatic compounds in vinegar[J]. Journal of Chromatography A,2002,953:7~15.
    [10]Tesfaye W, Morales M L B, Benitez B, Garcia-Parrilla M C, Troncoso A M. Evolution of wine vinegar composition during accelerated aging with oak chip[J]. Analytica Chimica Acta, 2004,513:239~245.
    [11]Lipp M, Radovic B S, Anklam E. Characterisation of vinegar by pyrolysis-mass spectrometry[J]. Food Control,1998,9:349~355.
    [12]Anklam E, Lipp M, Radovic B, Chiavaro E, Palla G. Characterisation of Italian vinegar by pyrolysis-mass spectrometry and a sensor device ('electronic nose')[J]. Food Chemistry, 1998,61:243~248.
    [13]Zhang Q Y, Zhang S P, Xie C S, Zeng D W, Fan C Q, Li D F, Bai Z K. Characterization of Chinese vinegars by electronic nose[J]. Sensors and Actuators B,2006,119:538-546.
    [14]Pulido A, Ruisanchez I, Ruis F X. Radia basis functions applied to the classification of UV-visible spectra[J]. Analytica Chimica Acta,1999,388(3):273-281.
    [15]食醋卫生标准的分析方法[S],GB/T5009.41,2003.
    [16]食品的相对密度的测定[S],GB/T5009.2,2003.
    [17]食品中灰分的测定[S],GB/T 5009.4,2003.
    [1]王妍.料酒的调味增香机理[J].中国调味品,2005,7:3234.
    [2]严衍禄.近红外光谱分析技术与应用[M].北京:中国轻工业出版社,2005.
    [3]金钦汉.从2000年匹茨堡会议看分析化学和仪器发展的一些动向[J].现代科学仪器,2000,3:14~16.
    [4]郝勇,陈斌,朱锐.近红外光谱预处理中几种小波消噪方法的分析[J].光谱学与光谱分析,2006,26(10):1838~1841.
    [5]Chen Y, Xie M Y, Yan Y, Zhu S B, Nie S P, Li C, Wang Y X, Gong X F. Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques[J]. Analytica Chimica Acta,2008,618(2): 121-130.
    [6]Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra[J]. Applied Spectroscopy,1989,43:772-77.
    [7]Iversen A J, Palm T. Multiplicative Scatter Correction of Visible Reflectance Spectra in Color Determination of Meat Surfaces[J]. Applied Spectroscopy,1985,39(4):579-74.
    [8]Woody N A, Feudale R N, Myles A J, Brown S. Transfer of multivariate calibrations between four near-infrared spectrometers using orthogonal signal correction[J]. Analytical Chemistry, 2004,76:2595-2600.
    [9]叶正良,虞科,程翼宇.一种基于小波变换的近红外化学指纹图谱分析方法[J].高等学校化学学报,2007,28(3):441~444.
    [10]石雪,蔡文生,邵学广.基于小波系数的近红外光谱局部建模方法与应用研究[J].分析化学,2008,36(8):1093~1096.
    [11]Cocchi M, Corbellini M, Foca G, Lucisano M, Pagani M A, Tassi L, Ulrici A. Classification of bread wheat flours in different quality categories by a wavelet-based feature selection/classification algorithm on NIR spectra[J]. Analytica Chimica Acta,2005,544: 100-107.
    [12]Beltran N H, Duarte-Mermoud, Bustos M A, Salah S A, Loyola E A, Pena-Neira A I, Jalocha J W. Feature extraction and classification of Chilean wines[J]. Journal of Food Engineering, 2006,75:1-10.
    [13]李华北,陈斌,赵杰文,方如明.用小波变换技术提高食醋近红外光谱分析的精度[J].农业工程学报,2000,16(6):114~117.
    [14]吴静珠,王一鸣,张小超,耿朝曦.支持向量机-近红外光谱法用于真假奶粉的判别[J].农机化研究,2007,1:155~158.
    [15]张萍,闫继红,朱志华,刘庆生,范志影,李为喜.近红外光谱技术在食品品质鉴别中的应用研究[J].现代科学仪器,2006,1:60~62.
    [16]邵咏妮,何勇,潘家志,裘正军.基于光谱技术的桔子汁品种鉴别方法的研究[J].光谱 学与光谱分析,2007,27(9):1739~1742.
    [17]王莉,刘飞,何勇.应用可见-近红外光谱技术进行白醋品牌和pH值的快速检测[J].光谱学与光谱分析,2008,28(4):813~816.
    [18]陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671~674.
    [19]Woo Y A, Kim H J, Cho J H, Chung H. Discrimination of herbal medicines according to geographical origin with near-infrared reflectance spectroscopy and pattern recognition techniques[J]. Journal of Pharmaceutical and Biomedical Analysis,1999,21(2):407~413.
    [20]周向阳,林纯忠,胡祥娜,金同铭,王瑞.近红外光谱法(NIR)快速诊断蔬菜中有机磷农药残留[J].食品科学,2004,25(5):151~154.
    [21]Pontes M J C, Santos S R B, Araujo M C U, Almeida L F, Lima R A C, Gaiao E N, Souto U T C P. Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry[J]. Food Research International,2006,39:182~189.
    [22]Miralbes C. Discrimination of European wheat varieties using near infrared reflectance spectroscopy[J]. Food Chemistry,2007,106:386~389.
    [23]史永刚,冯新泸,孙萍.水中有机污染物的近红外光谱快速鉴别[J].光谱实验室,2005,22(3):575~577.
    [24]Cozzolino D, Smyth H E, Gishen M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemoetrics to discriminate between commerical white wines of different varietal origins[J]. Journal of Agricultural and Food Chemistry,2003,51: 7703~7708.
    [25]Savitzky A; Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36(8):1627~1639.
    [26]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528~542.
    [27]田高友,袁洪福,刘慧颖,陆婉珍.小波变换用于近红外光谱性质分析[J].分析化学,2004,32(9):1125~1130.
    [28]Jouan-Rimbaud D, Walczak B, Poppi R J, Noord O D, Massart D L. Application of wavelet transform to extract the relevant component from spectral data for multivariate calibration[J]. Analytical Chemistry,1997,69(21):4317~4323.
    [1]Lloyd J B F. Synchronous excitation of fluorescence emission spectra[J]. Nature,1971,231: 64.
    [2]Hou X L, Tong X F, Dong W J, Dong C, Shuang S M. Synchronous fluorescence determination of human serum albumin with methyl blue as fluorescence probe[J]. SpectrochimicaActaPart A,2007,66:552~556.
    [3]Wang L Y, Zhou Y Y, Wang L, Zhu C Q, Li Y X, Gao F. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe[J]. Analytica Chimica Acta,2002,466:87~92.
    [4]魏永峰,李小花,马冬梅.同步扫描荧光光谱法同时测定阿司匹林和水扬酸[J].光谱学与光谱分析,2005,25(4):588~590.
    [5]Jiang C Q, Gao M X, He J X. Study of the interaction between terazosin and serum albumin Synchronous fluorescence determination of terazosin[J]. Analytica Chimica Acta,2002, 452(2):185~189.
    [6]Ni Y N, Lin D Q, Kokot S. Synchronous fluorescence, UV-visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline) copper(Ⅱ) complex and neutral red with DNA[J]. Analytical Biochemistry,2006,352:231~242.
    [7]Woodcock T, Fagan C C, O'Donnell C P, Downey G. Application of Near and Mid-Infrared Spectroscopy to Determine Cheese Quality and Authenticity [J]. Food and Bioprocess Technology,2007,1(2):117~129.
    [8]Kosir I J, Lapornik B, Andrensek S, Wondra A G, Vrhovsek U, Kidric J. Identification of anthocyanins in wines by liquid chromatography, liquid chromatography-mass spectrometry and nuclear magnetic resonance[J]. Analytica Chimica Acta,2004,513:277~282.
    [9]Latorre M J, Pena R, Pita C, Botana A, Garcia S, Herrero C. Chemometric classification of honeys according to their type. Ⅱ. Metal content data[J]. Food Chemistry,1999,66: 263~268.
    [10]Cuny M, Vigneau E, Le Gall G, Colquhoun I, Lees M, Rutledge D N. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools[J]. Analytical and Bioanalytical Chemistry,2008,390(1):419~27.
    [11]Dupuy N, Le D Y, Ollivier D, Artaud J, Pinatel C, Kister J. Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous extraction-emission fluorescence spectra[J]. Journal of Agricultural and Food Chemistry, 2005,53:9361~9368.
    [12]Dufour E, Letort A, Laguet A, Lebecque A, Serra J N. Investigation of variety, typicality and intage of French and German wines using front-face fluorescence spectroscopy[J]. Analytica Chimica Acta,2006,563(1):292-299.
    [13]Karoui R, Bosset J O, Mazerolles G, Kulmyrzaev A, Dufour E. Monitoring the geographic origin of both experimental French Jura hard cheeses and Swiss Gruyere and L'etivaz PDO cheese using mid-infrared and fluorescence spectroscopies:A preliminary investigation[J]. Internation Dairy Journal,2005,15:275-286.
    [14]Karoui R, Dufour E, Pillonel L, Picque D, Cattenoz T, Bosset J O. Determining the geographic origin of Emmental cheeses produced during winter and summer using a technique based on the concentration of MIR and fluorescence spectroscopic data[J]. European Food Research and Technology,2004,219:184-189.
    [15]Zhang Q Q, Lei S H, Wang X L, Wang L, Zhu C J. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra[J]. Spectrochimica Acta Part A,2006, 63:361-369.
    [16]张前前,类淑河,王修林,王磊,于萍.浮游植物活体三维荧光光谱分类判别方法研究[J].光谱学与光谱分析,2004,24(10):1227~1229.
    [17]Eriksson L, Trygg J, Johansson E, Bro R, Wold S. Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process fluorescence data[J]. Analytica Chimica Acta,2000,420:181-195.
    [18]张芳,王良,苏荣国,宋志杰,王修林,祝陈坚.小波分析在活体浮游植物离散三维荧光光谱特征提取及识别中的应用研究[J].传感技术学报,2007,20(10):2143~2150.
    [19]田广军.基于三维荧光谱参数化及模式识别的水中油类鉴别与测定[D].中国优秀博士学位论文全文数据库,2005.
    [1]Russell A D. Mechanisms of bacterial resistance to non-antibiotics:food additives and food and pharmaceutical preservatives[J]. Journal of applied Microbiology,1991,71:191~201.
    [2]食品添加剂使用卫生标准[S].GB2760,2007,
    [3]李秀兰.如何正确使用食品添加剂[J].中国质量技术监督,2009,1:64~65.
    [4]林日高,林捷,周爱梅,廖北科,陈永泉.对羟基苯甲酸酯类钠盐的抑菌作用及其稳定性研究[J].中国食品添加剂,2002,(3):19~24.
    [5]Tfouni S A V, Toledo M C F. Determination of benzoic and sorbic acids in Brazilian food[J]. Food Control,2002,13:117~123.
    [6]Dong C Z, Mei Y, Chen L. Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography[J]. Journal of Chromatography A,2006,1117:109~114.
    [7]Dong C Z, Wang W F. Headspace solid-phase microextraction applied to the simultaneous determination of sorbic and benzoic acids in beverages[J]. Analytica Chimica Acta,2006, 562:23~29.
    [8]鲍忠定,许佳飞,许荣年,顾秀英.毛细管气相色谱内标法同时测定食品中8种防腐剂[J].分析化学,2004,32(2):270.
    [9]Saad B, Bari M F, Saleh M I, Ahmad K, Talib M K M. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography[J]. Journal of Chromatography A,2005, 1073:393~397.
    [10]Mikami E, Goto T, Ohno T, Matsumoto H, Nishida M. Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acid and salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,28:261~267.
    [11]陈悦鸣,巩卫东,刘长梅,栾秀坤.静电离子色谱法对食品添加剂含量的测定[J].中国公共卫生,2003,19(4):493~494.
    [12]蒋银土,朱岩,沈璞,胡美琴.离子色谱法测定苯甲酸及尼泊金系列防腐剂[J].分析化学,2001,29(10):1239.
    [13]Pant I, Trenerry C. The determination of sorbic acid and benzoic acid in a variety of beverages and foods by micellar electrokinetic capillary chromatography[J]. Food Chemistry, 1995,53:219~226.
    [14]Kaniansky D, Masar M, Madajova V, Marak J. Determination of sorbic acid in food products by capillary zone electrophoresis in hydrodynamically closed separation compartment[J]. Journal of Chromatography A,1994,677:179~185.
    [15]Trenerry V. The determination of sulphite content of some food and beverages by capillary electrophoresis[J]. Food Chemistry,1996,55:299~303.
    [16]彭振磊,薄涛,贡素萓,李深深,马立克·迪丽努尔,刘虎威.毛细管电泳多模式测定食品和化妆品中防腐剂的方法比较[J].广西师范大学学报,2003,21(3):92~93.
    [17]Wang L L, Zhang X, Wang Y P, Wang W. Simultaneous determination of preservatives in soft drinks, yogurts and sauces by a novel solid-phase extraction element and thermal desorption-gas chromatography[J]. Analytica Chimica Acta,2006,577:62~67.
    [18]Techakriengkrai I, Surakarnkul R. Analysis of benzoic acid and sorbic acid in Thai rice wines and distillates by solid-phase sorbent extraction and high-performance liquid chromatography[J]. Journal of Food composition and Analysis,2007,20:220~225.
    [19]Chen Q C, Wang J. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography[J]. Journal of Chromatography A,2001,937:57~64.
    [20]Boyce M C. Simultaneous determination of antioxidants, preservatives and sweeteners permitted as additives in food by mixed micellar electrokinetic chromatography[J]. Journal of Chromatography A,1999,847:369~375.
    [21]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
    [22]Diaz T G, Burguillos J M O, Salinas F, Guiberteau A. Comparison of chemometric methods: Derivative ratio spectra and multivariate methods (CLS, PCR and PLS) for the resolution of ternary mixtures of the pesticides carbofuran carbaryl and phemamifos after their extraction into chloroform[J]. Analyst,1997,122:513~517.
    [23]Ni Y N, Zhang G W, Serge K. Simultaneous spectrophotometric determination of maltol, ethylmaltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks[J]. Food Chemistry,2005,89:465~473.
    [24]Lozano V A, Camina J M, Boeris M S, Marchevsky E J. Simultaneous determination of sorbic and benzoic acids in commercial juices using the PLS-2 multivariate calibration method and validation by high performance liquid chromatography[J]. Talanta,2007,73: 282~286.
    [25]Kharintsev S S, Kamalova D I, Salakhov M K. Resolution enhancement of composite spectra with fractal noise in derivative spectrometry[J]. Applied Spectroscopy,2000,54:721~736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700