用户名: 密码: 验证码:
贵州罗甸玉矿物岩石学特征及成因机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗甸玉,中国最重要的玉石——软玉家族里的新成员,于2009年于贵州省罗甸县发现,研究证实是一种新成因类型的软玉。本研究在结合《贵州省罗甸-望谟地区软玉矿调查评价》项目工作基础上,较为系统而深入地研究了罗甸玉的矿物岩石学及玉石学的基本特征及其地球化学特征,初步探讨了罗甸玉的成因机制,提出了罗甸玉分类命名及品质评价标准。
     罗甸玉矿(床)点及矿化点主要分布于辉绿岩体上接触变质带,结合野外及室内研究结果,罗甸玉的矿化分为方解石大理岩带、透辉~透闪石大理岩带、硅质(石英)大理岩~硅质(石英)岩带以及透闪石(玉石)带,透闪石(玉石)带为罗甸玉的主矿化带,呈现出经过多次交代变质作用的特征。矿区蚀变类型主要有大理岩化、透闪石化(矿化)及高岭石化,辉绿岩下伏围岩仅见大理岩化,透闪石化及高岭石化仅见于上覆围岩。蚀变带一般呈长透镜状,偶见囊状体;外接触蚀变带除常见的大理岩化、透闪石化外,还出现透辉石、硅灰石及滑石化。矿体赋存岩石主要为大理岩化灰岩、含透闪石大理岩、石英方解大理岩、石英岩、含透闪硅灰石石英岩等。
     罗甸玉矿物组成以透闪石为主,玉石中透闪石含量一般在95%以上,含有少量的透辉石、方解石、石英等,普遍存在的透辉石,是与其它软玉不同的显著特征。玉石显微结构主要以变晶结构为主,主要包括柱状、斑状变晶交织结构、毡状变晶交织结构、片状变晶交织结构、纤维状变晶交织结构及粒状变晶结构等几种显微结构特征,有致密块状、细脉条带状、角砾状、交代残余等构造特征。交代结构主要以交代残余结构为主,包括残留岛状交代、网脉状交代、脉状交代、假像交代、溶蚀-骸晶交代等为代表的结构类型。
     以XRF、ICP-MS及常规化学分析方法为主要研究手段,对贵州罗甸玉的岩石化学特征进行研究,玉石常量化学特征表明,罗甸玉中透闪石的形成经历了Mg相对饱和及不饱和两个阶段。微量元素研究表明,罗甸玉中的白色与青色系列,由不同微量元素组合所表征的三个主因子有所差异,同时,罗甸玉中青色主要由其化学组成中微量的V、Cr引起;罗甸玉的稀土元素配分具有δCe和δEu异常的特点,稀土配分模式与围岩辉绿岩及灰岩均较为一致。罗甸玉的硅氧稳定同位素的研究与成矿流体中δ~(18)O分镏方程计算结果,表明罗甸玉属于中低温热液矿床。在罗甸玉岩石化学特征研究的基础上,认为罗甸玉的形成是罗甸玉为岩床状辉绿岩顺层侵入时带来气液流体,与灰岩围岩发生长期的交代蚀变所形成的,由于热液活动各阶段的物化条件和地质作用不同,罗甸玉的成矿表现为多阶段性,从而形成在同一成矿期内不同结构特征、不同玉性表现的不同成矿阶段的罗甸玉矿体。
     罗甸玉基本物理光学性质测试表明,玉石颜色主要以白、青白、青颜色为主,并有着铁锰质浸染形成的“花斑玉”。玉石在矿层(体)中一般呈瓷状、蜡状及弱油脂光泽,在自然断口或人工切割面,则多为蜡状光泽到油脂光泽。罗甸玉折射率、维氏显微硬度、摩氏硬度及密度等与其它软玉相似,但罗甸玉在紫外下均有不同的发光现象,一般在长波紫外下以绿色荧光为主色调,短波紫外则以带有褐色调的黄绿色荧光为特征,且在阴极发光下也有不同程度强弱的发光现象,有别于其它软玉类。
     扫描电镜(SEM)结果表明,罗甸玉中透闪石颗粒间的结构紧密程度与玉石的玉质有着最为直接的联系。X射线衍射(XRD)测试证实,罗甸玉的结晶度较新疆、青海软玉高,晶体结构与标准透闪石有少许差异,高温XRD实验证实了在透闪石-方解石-石英共存的体系中透辉石的形成机制;电子顺磁共振(EPR)表明,罗甸玉中Fe~(3+)和Mn~(2+)的EPR共振谱均很相似,Mn~(2+)离子的共振吸收近于各向同性,其配位多面体都具有近于立方对称的结构环境,Fe~(3+)离子在160mT附近的共振谱近于各向同性,其对称性较高,晶体中普遍存在着以类质同象置换置换了八面体位置的Mg~(2+)形式进入的Mn~(2+)离子。罗甸玉IR测试样品中,大部分样品出现了840cm-1~860cm-1较弱但是非常清晰的肩状吸收带,这一在天然透闪石中没有的频率带内的吸收,是罗甸玉所特有的,是由于其玉化过程中残留的透辉石所致。利用电子探针结果结合IR测试提供的精细结构特征,详细地推算了罗甸玉中透闪石的晶体化学式。
     通过吸收光谱测试及吸光度的测定,认为罗甸玉所表现出的颜色,一方面是其在可见光区的吸收所致,主要是由Fe~(2+)→Ti~(4+)荷移谱(490nm~500nm)、Fe~(3+)的~6A_1→~4T_2(~4G)的电子跃迁(615nm~632nm,685nm~694nm)和Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)的电子跃迁(549nm~560nm)引起的,另一方面也涉及到玉石成分中杂质离子的种类、含量和存在形式以及杂质离子的相对含量,是各种因素的综合结果;对罗甸玉吸光度的测试表明,罗甸玉的感观透明度与罗甸玉中矿物的组成展布有密切关系。不同结构中透闪石的结晶粒度、矿物展布方式的不同,其感观透明度亦不同。铁锰浸染的程度、裂隙发育的程度、位置等,也是引起罗甸玉感观透明度变化的因素;从格里菲斯微裂纹理论(Griffith crack theory)的原理结合扫描电镜的研究,对罗甸玉所具有的高韧性进行了研究。认为罗甸玉的高韧性是与其内部晶粒界面、解理面、微裂纹和孔隙及其发育的大小有关。
     提出罗甸玉以颜色分类为主的分类命名方案,将颜色作为主要的分类依据;在罗甸玉品质分级时主要考虑包括了结构构造、透明度、净度等因素,将罗甸玉质地划分为优~Ⅲ四个级别,综合颜色、质地、净度以及工艺四个方面因素,将罗甸玉石的综合品质划分为三级。
     通过罗甸玉与其它产地软玉的对比研究以及对罗甸玉加世性能的初步研究,认为罗甸玉除少数外,玉石的油性大多与高质量的新疆、青海等地的软玉还存在一定的差距,从直观上影响了罗甸玉产品的质量;另外,瑕疵也是影响罗甸玉工艺性能的另一因素。罗甸玉只有在加工工艺上围绕这两方面,通过一定的技术手段加以解决,才有可能提升罗甸玉的市场价值。
     本文的创新点主要体现在以下方面:
     (1)采用传统与现代测试技术相结合的研究手段,较为系统的厘定了罗甸玉的岩石矿物学特征。首次利用红外光谱测试在天然软玉样品中获得了透辉石的特征吸收谱,以及采用显微光度计、扫描电镜技术、X射线衍射的技术手段,比较深入地研究了罗甸玉的呈色机理、光泽、透明度的影响因素;利用高温原位XRD方法,初步探讨了罗甸玉中透辉石的形成机制。
     (2)首次从格里菲斯微裂纹理论(Griffith crack theory)的原理结合扫描电镜的研究,对罗甸玉所具有的高韧性进行了研究。认为罗甸玉的高韧性是与其内部晶粒界面、解理面、微裂纹和孔隙及其发育的大小有关。
     (3)确认了罗甸玉是一种新的成因类型。根据罗甸玉矿床地质特征、成矿物质来源及流体性质等方面综合分析,认为罗甸玉的成玉机理与基性岩同碳酸盐岩的接触变质作用有关,由于热液活动各阶段的物化条件和地质作用不同,罗甸玉的成矿表现为多阶段性,气成热液变质带控制了罗甸玉的分布。
     (4)根据罗甸玉的自身特点,提出了以颜色为主要分类依据的罗甸玉分类命名方案,根据对罗甸玉市场情况、室内分析和鉴定及颜色、质地、净度、工艺、块度等五个方面要素的分析,首次提出将罗甸玉质地的分级划分为优~Ⅲ四个级别、品质划分为三个品级。
Luodian Jade, a new members of the nephrites’ family,which is the mostimportant jade in China, was found in Luodian country from Guizhou province in2009,been after preliminary study confirmed that it is a new kind of nephrite on genesis. Inthis paper, not only did the author systematic and deeply study the characteristics ofmineral petrology and geochemical of Luodian Jade in combination with the projectnamed 《the survey evaluation of nephrite ore region in Luodian-Wangmo fromGuizhou》, but preliminary discussed the genetic mechanism and proposed aclassification and quality evaluation criteria of Luodian Jade as well.
     The ore or mineralization points of Luodian Jade are mainly dispersed through outcontact with metamorphic zone on diabase body. The ore was classified as calcitemarble, diopside~tremolite marble, siliceous (quartz) marble~siliceous rock zone(quartz) and tremolite jade belt combined with the field and indoor study, and in whichtremolite jade (jade) band is a main mineralization belt of Luodian Jade and presentscharacteristics by many metasomatic metamorphism. The mainly alteration typesinclude marmorization, tremolitization and kaolinization, in which, marbleizationgenerally only take place on diabase underlying rock but, tremolitization andkaolinization are restricted to overlying rock. Usually, the shape of alteration zone islong lenticular and cystic body occasionally, and that outside contact of alteration zonehas also diopsidization, wollastonitization and steatitization besides marbleization andtremolitization. Ore body occurred mainly as marmorization limestone, whichcontaining tremolite marble, quartz-calcite marble, quartzite and tremolite-wollastonitequartzite, etc.
     Mineral composition of Luodian Jade priority is tremolite, which content in commonly is more than95%and contains a small amount of diopside, calcite, quartz,etc. Microstructure of jade mainly is blastic texture including several kinds ofmicrostructure characteristics such as fiber-needle, porphyroblast metacryst pilotaxitictexture, blanket crystalloblastic metacryst pilotaxitic texture, flake crystalloblasticmetacryst pilotaxitic texture, fibrous crystalloblastic metacryst pilotaxitic texture andgranular metacryst pilotaxitic texture and so on, and there are some kinds of structurecharacteristics of jade such as dense block, veinlet belt, brecciated structure,replacement of residual tectonic etc. Replacement texture mainly metasomatismresidual structure, including residual island metasomatism, net vein metasomatism,vein metasomatism, alteration-pseudomorphism and corrode.
     Petrochemical characteristics of Luodian Jade from Guizhou Province werestudied by XRF, ICP-MS and conventional chemical analysis. Tremolite in LuodianJade experienced two stages of relative saturated and unsaturated in Mg.
     Analysis of trace element shows that the formation of white jade series and greenjade series is affected by different trace element associations, especially, Cr-V, Co-Niand Mn-Sr. It is indicated that Cr and V ions in chemical composition are responsiblefor the green color of Luodian Jade. Moreover, REE analysis of Luodian Jade revealedt abnormal characteristics in δCe and δEu, and chondrite-normalized REE distributionpattern is similar to that of the surrounding rock of diabase and limestone. Analysis ofsilicon and oxygen isotope and results ofδ~(18)O fractionating equation calculation in theore-forming fluid show that Luodian Jade belongs to the low temperature liquid deposit.On the basis of petro-chemical characteristics study of Luodian Jade, it is consideredthat Luodian Jade is a new type of nephrite jade formed in a long-term contactmetasomatism between the limestone and gas-liquid fluid brought by diabase intrusive.In the process of metallogenic metasomatism, the limestone provides Ca and Mg, andthe gas-liquid fluid mainly provides Si for Luodian Jade. Because each stage ofhydrothermal activity, physico-chemical conditions and geological processes wasdifferent then the mineralization of Luodian Jade has multiple stages, so that it formingore body of Luodian Jade has different structure characteristic and jade’s performance.
     Test of basic physical and optical properties in Luodian Jade show that jade’s coloris given priority to with white, bluish white, green color and named "spotted jade"because of iron and manganese disseminated. Luster of jade from deposits general isporcelain, waxy and weak oily, and which from natural fracture or artificial cut surfaceis more than waxy and oily. The refractive index, Vickers-hardness, mohs hardness anddensity of Luodian Jade are similar to other neiphrite, and it is different from other types of nephrite that luminescence on UV, which feature is send out green fluorescencein the long wave UV and short-wave UV with brownish tone in the yellow-greenfluorescence, moreover, also has different intensity on the cathode luminescence.
     Results of SEM showed that the quality of jade is association with granularstructure and close degree of tremolite in Luodian Jade. XRD test confirmed that thecrystallinity of Luodian Jade is higher than other nephrite from Xinjiang, Qinghai,which crystal structure has a little difference with standard tremolite, and HT-XRDexperiment confirmed the mechanism of diopside formation in tremolite+calcite+quartz coexistence system; EPR show that the EPR of Fe~(3+)and Mn~(2+)in Luodian Jaderesonance spectra are very similar, the Mn~(2+)ion resonance absorption to isotroPhoto, itscoordination polyhedra are nearly cubic symmetry of the structure environment, Fe~(3+)ions in the vicinity of160mT to resonance spectrum nearly isotroPhoto, its symmetry ishigher, in which there is a widespread isomorphism replacement with Mn~(2+)to Mg~(2+)ionin the position of octahedral. Weak but very clear shoulder shape absorption band at840cm-1~860cm-1was appear on the most of the samples of IR test in Luodian Jade,which within the frequency band of absorption is unique to Luodian Jade but didn’tappear on natural neiphrite, that is caused by residue diopside in the process offormation jade. By using the result of EMPA and IR tests provide the fine structurefeatures, the crystals chemical formula of tremolite in Luodian Jade had beencalculated.
     On the one hand, the color of Luodian Jade is caused by the absorption in thevisible area, mainly by Fe~(2+)→Ti~(4+)charge transfer spectrum (at490nm~500nm),~6A_1→~4T_2(~4G) of Fe~(3+)electron transition (at615nm~632nm,685nm~694nm) and~4T_1(~4G)→~6A_1(~6S) of Mn~(2+)electron transition (549nm~560nm), on the other hand alsoinvolves some impurity ions in the composition of jade, content and form, and therelative content of impurity ions, which is the integrated result of various factors; Thetest of Luodian Jade absorbance show that the transparency has a close relationship tocomposition and distribution of the mineral in Luodian Jade. Different crystals grainsize and mineral distribution of tremolite of different structures, its sensorytransparency also is different. Otherwise, impregnation degree of iron and manganese,fracture, location, etc., are the factors lead to the change of the sensory transparency;High toughness of Luodian Jade was studied basing on the principle of Griffith cracktheory and combinating the results of scanning electron microscopy (SEM), it wasconsided as related to its internal grain interface, the cleavage plane and the size of themicro cracks and pore and its development.
     In this paper, it was put forward that the classification and naming scheme ofLuodian Jade, which the color was mainly consided as the main classification basis; Inquality grading of Luodian Jade which was mainly consided that including factors suchas structure, transparency, clarity etc, could be divided into four levels from Optimal toⅢ, the comprehensive quality ofLuodian Jade could be divided into three levels on thepremise that comprehensive consider color, texture and clarity as well as.
     By preliminary comparative researching with nephrite of other regions and theproperties of curing of Luodian Jade, however, except a few most of Luodian Jade itwas thought that there is a certain gap comparison with others high quality neiphritefrom Xinjiang, Qinghai and other places on the oiliness, which impacted the productsquality of Luodian Jade’s visual of; In addition, the defect was also another factor toinfluence the curing performance of Luodian Jade. Market value of Luodian Jade willbe likely to increased only around these two aspects in the machining process and to besolved by certain technical.
     The innovation of this study is mainly reflected in the following aspects:
     (1)Systematically analysised the petrological, mineralogical and geochemicalcharacteristics of Luodian Jade using testing technology of traditional combinationwith modern. For the first time, to obtained the characteristic absorption spectrum ofdiopside in natural nephrite samples by IR testing, and more deeply to study themechanism of color, influence factors of luster and transparency by using microscopephotometer, SEM and XRD; Further, preliminary to discussion on the formingmechanism of diopside in Luodian Jade using high temperature in situ XRD method.
     (2)High toughness of Luodian Jade was studied basing on the principle ofGriffith crack theory and combinating the results of SEM for the first time, it wasconsided as related to its internal grain interface, the cleavage plane and the size of themicro cracks and pore and its development.
     (3)Confirmed that Luodian Jade is a kind of new genetic types. Comprehensiveanalysed suggest that the ore-forming mechanism of Luodian Jade is concluded andregarded that as the contact metamorphism between basite and carbonatite according todeposit geological characteristics, metallogenic material source and fluid properties, etc.Because each stage of hydrothermal activity, physico-chemical conditions andgeological processes was different then the mineralization of Luodian Jade has multiplestages, so that it forming ore of Luodian Jade has different structure characteristic andjade’s performance.
     (4)According to Luodian Jade’s own specialties to put forward the scheme of classification and naming to focus on color as the main factor; Comprehensivelyevaluated from some factors including color, texture, purity, cure and size combine withlaboratory analysis and appraisal, simultaneously, according to Luodian Jade’s marketconditions, for the first time, Luodian Jade’s classification is put forward to be dividedinto Optimal~Ⅲ four levels and the quality is divided into three grades.
引文
1杨伯达《中国古代玉器面面观》。
    2国土资源部贵阳矿产资源监督检测中心科技发展基金(2010年度)《贵州省岩石类型及典型显微结构》。
    4GB/T16553—2010,珠宝玉石鉴定[S]。
    [1]张蓓莉主编.系统宝石学(第二版)[M].北京:地质出版社,2006:365-367.
    [2]唐延龄,刘德权,周汝洪.论透闪石玉命名及分类[J].矿物岩石,1998,18(12):17-21.
    [3] Leaming S F. Jade in Canada[J]. Geological Survey of Canada,1978,59:18-19.
    [4] Leaming S F. Jade in British Columbia and Yukon Territory[J].Geological Survey of Canada.Special Volume,1984,29:270-273.
    [5] Harlow G E, Sorensen S S. Jade: Occurrence and metasomatic origin—extended abstractfrom International Geological Congress2000[J]. The Australian Gemm-ologist,2001,21:7-10.
    [6] Harlow G E,Sorenesn S S. Jade(nephrite and Jadeite) and serpentinite: metasomaticconnections[J].International Geology Review,2004,46:1-16.
    [7] Harlow G E,Sorensen S S. Jade (Nephrite and Jadeitite) and serpentinite: metasomaticconnections[J].International Geology Review,2005,47:1-16.
    [8] Adams C J,Beck R J,Campbell H J. Characterisation and origin of New Zealand nephrite jadeusing its strontium isotopic signature[J]. Lithos,2007,97:307-322.
    [9] Nichol D. Two Contrasting Nephrite Jade Types[J].J. Gemm.,2000,27(4):193-200.
    [10] Yui T F,Kwon S T.Origin of a Dolomite-Related Jade Deposit at Chuncheon, Korea[J].Economic Geology,2002,97:593-601.
    [11]蒋壬华.和田玉成因类型、成矿模式及分布规律的初步探讨[J].新疆地质,1986,4(4):1-12.
    [12]蒋壬华.和田玉[J].上海地质,1998,(2):49-58.
    [13]邓燕华.宝(玉)石矿床[M].北京工业大学出版社,1991:104-112.
    [14]唐延龄,陈葆章,蒋壬华.中国和阗玉[M].新疆:新疆人民出版社,1975:1-259.
    [15]唐延龄,刘德权,周洪汝.新疆玛纳斯碧玉的成矿地质特征[J].岩石矿物学杂志,2002,21(增刊):21-25.
    [16]钟华邦.梅岭玉地质特征及成因探讨[J].宝石和宝石学杂志,2000,2(1):39-44.
    [17]张晓晖,吴瑞华,王乐燕.俄罗斯贝加尔湖地区软玉的岩石学特征研究[J].宝石和宝石学杂志,2001,3(1):12-17.
    [18]王时麒,赵朝洪,于洸,等.中国岫岩玉[M].北京:科学出版社,2007:1-244.
    [19] Tan L P, Lee C W, Chen C C,et al. A mineralogical study of the Fengtien nephritedeposits of Hualien, Taiwan [C].台北:Proceedings of the National Science Council,1978,2(3):249-250.
    [20]陶正章.台湾的软玉[J].矿物岩石,1992,12(4):21-27.
    [21]林篙山.台湾软玉(闪玉)的种属及特征[J].宝石和宝石学杂志,1999,1(3):18-19.
    [22]王时麒,段体玉,闫欣.岫岩软玉的初步研究[J].珠宝科技,1998,10(2):46—49.
    [23]王时麒,段体玉.岫岩软玉[J].中国宝石,1998,7(1):125—126.
    [24]王时麒,段体玉,郑姿姿.岫岩软玉(透闪石玉)的矿物岩石学特征及成矿模式[J].岩石矿物学杂志,2002,21(增刊):79-89.
    [25]周征宇,廖宗廷,马婷婷,等.青海三岔口软玉成矿类型及成矿机制探讨[J].同济大学学报(自然科学版),2005,(9):1191-2000.
    [26]周征宇,廖宗廷,马婷婷,等.东昆仑三岔口软玉成矿机制及成矿物源分析[J].地质找矿论丛,2006,21(3):195-198.
    [27]谢意红,张珠福.加州软玉和缅甸软玉特征及矿物成分的研究[J].岩矿测试,2004,23(1):33-36.
    [28]刘飞,余晓艳.中国软玉矿床类型及其矿物学特征[J].矿产与地质,2009,23(4):374-380.
    [29]汤红云,钱伟吉,陆晓颖,等.青海软玉产出的地质特征及物质成分特征[J].宝石和宝石学杂志,2012,14(1):24-31.
    [30]杨先仁,赵文亮,王君杰,等.东昆仑地区软玉矿成矿地质特征及成矿预测[J].青海国土经略,2012,3:39-42.
    [31]魏元柏.几种软玉的矿物学特征[J].矿床地质,1996,15:94-95.
    [32]吴瑞华,李雯雯,白峰.新疆和田玉岩石学特征及其扫描电镜研究[J].岩石学报,1999,15(4):639-644.
    [33]杨主恩,王士元.和田玉的电镜显微形貌和能谱特征[J].岩石矿物学杂志,2002,21(增刊):57-60.
    [34]伏修锋,干福熹,马波,等.几种不同产地软玉的岩相结构和无破损成分分析[J].岩石学报,2007,23(5):1197-1202.
    [35]李洁.和田玉显微镜下鉴定[J].新疆有色地质,2008(增刊):52-53.
    [36]许佳君,廖宗廷,周征宇.和田、格尔木与溧阳三地软玉微观结构的对比研究[J].上海地质,2008,(1):66-68.
    [37]李举子,吴瑞华,凌潇潇,等.和田软玉的化学成分和显微结构研究[J].宝石和宝石学杂志,2009,11(4):9-14.
    [38]冯晓燕,张蓓莉.青海软玉的成分及结构特征[J].宝石和宝石学杂志,2004,6(4):7-9.
    [39]周征宇,廖宗廷,陈盈,等.青海软玉的岩石矿物学特征[J],2008,27(1):17-20.
    [40]周振华,冯佳睿.新疆软玉、岫岩软玉的岩石矿物学对比研究[J].岩石矿物学杂志,2010,29(3):331-339.
    [41]崔文元,吴伟娟,刘岩.江苏溧阳透闪石玉的研究[J].岩石矿物学杂志,2002,21(增刊):91-98.
    [42]周征宇,陈盈,廖宗廷,等.溧阳软玉的岩石矿物学研究[J].岩石矿物学杂志,2009,28(5):491-494.
    [43]何明跃,朱友楠,李宏博.江苏省溧阳梅岭玉(软玉)的宝石学研究[J].岩石矿物学杂质,2002,9(增刊):99-194.
    [44]钟华邦,张洪石.江苏梅岭玉的基本特征[J].岩石矿物学杂志,2002,9(增刊):105-109.
    [45]王春云.龙溪软玉的矿物学研究[J].地质地球化学,1989,(3):21-22.
    [46]王春云.龙溪软玉矿床地质及物化特征[J].1993,7(3):201-205.
    [47]张晓晖,吴瑞华.俄罗斯贝加尔湖地区软玉的岩石学特征研究[J].宝石和宝石学杂志,2001,3(1):12-17.
    [48] Richard C B,Robert E N,Biggers J V. The Toughness of Jade.[J]. Am. Mineral.,1973,58:727-732.
    [49] Rowclffe D J,Frohauf V.The fracture of jade[J].Journal of Materials Science,1977,12:35-42.
    [50]卢保奇,亓利剑,夏义本,等.四川软玉(透闪石玉)猫眼的矿物学研究[J].岩石矿物学杂志,2004,23(3):268-272.
    [51]卢保奇,元利剑,夏义本.四川软玉猫眼赋存的围岩显微结构研究[J].上海地质,2005,(2):58-62.
    [52]卢保奇,元利剑,夏义本,等.四川软玉猫眼的显微结构及扫描电镜研究[J].上海地质,2007,(2):64-67.
    [53]钱向丽,周开灿,亓利剑.四川软玉猫眼的宝石学特征[J].矿产综合利用,2005,(3):18-22.
    [54]任戍明,张良钜,张杰.台湾软玉的显微结构研究[J].中国非金属矿工业导刊,2012,1:61-63.
    [55]史淼,郭颖.碧玉的矿物学特征及其扫描电镜的研究[J].矿床地质,2012,29(增刊):833-834.
    [56] Hutchison J L,Jefferson D A,Mallinson L G,et al. Structural irregularities in nephrite jade:An electron microscope study[J].Materials Research Bulletin,1976,11(Issue,12):1557-1561.
    [57] Jefferson D A,Malinson L G, Hutchison J L,et al. Multiple-chain and other unusual faultsin amphiboles[J].Contrib Mineral Petrol,1978,66:1-4.
    [58] Mallinson L G,Thomas J M,Hutchison J L. The Internal Structure of Nephrite:Experimental and Computational Evidence for the Coexistence of Multiple-Chain Silicates withinan Amphibole Host[J].Mathematical and Physical Sciences,1980,295(1416):537-552.
    [59] Hutchison J L,Nissen H U,Wessicken R. Observation of Talc-Tremolite Interfaces by HighResolution Electron Microscopy [J]. Phys. Chem. Mineral.,1979(4),275-280.
    [60] Wang C Y,Zhang H F,Ren G H. Sub-microscopic Textures and RetrogressiveMetamorphic origin of Longxi Nephrite[J]. Chinese Jouranl of Geochemistry,1990,9(2):182-187.
    [61]王春云,任国浩,谢源章,等.透闪石、滑石拓扑定向反应一龙溪软玉的电子衍射研究[J].矿物学报,1989,9(4):315-323.
    [62] Krassimir N B,David M J. Analytical electron microscopy of tremolite[J]. Modern Researchand Educational Topics in Microscopy,2007:616-625.
    [63]董必谦.青海省格尔木玉地质简况及玉石特征[J].建材地质,1996,(5):23-24.
    [64]柴凤梅,帕拉提阿布都卡迪尔.和田软玉与青海软玉的宝石学特征对比研究[J].新疆工学院学报,(3):77-80.
    [65]汤德平,林国新,江爱耕.福建首次发现软玉[J].高校地质学报,1997,(12):396-399.
    [66]凌潇潇,吴瑞华,白峰,等.河南栾川透闪石玉的化学组成特征研究[J].岩石矿物学杂志,2008,(3):157-163.
    [67]钱向丽,周开灿,元利剑.四川软玉猫眼颜色品种划分及呈色机理初步研究[J].中国矿业,2005,14(1):73-75.
    [68]徐泽彬,曹姝旻,王铎,等.“韩国料”软玉的宝石学研究[J].宝石和宝石学杂志,2009,11(4):24-27.
    [69]李雯雯,吴瑞华.和田玉的颜色及其色度学研究[J].矿物岩石地球化学通报,1999,18(4):418-422.
    [70]那宝成,冷莹莹,李祥虎.软玉致色元素的研究[J].超硬材料工程,2008,20(3):55-58.2012年
    [71] Tan L P,Tsui P C.Trace Elements and Color of the Fengtien Nephrite,Taiwan (in Amineralogical study of the Fengtien nephrite deposits of Hualien, Taiwan, NSC SpecialPublication)[M].台北:Taiwan,National Science Council,1978:29-41.
    [72] Wilkins C J,Tennant W C,Williamson B E,et al.Spectroscopic and Related Evidence on theColoring and Constitution of New Zealand Jade[J]. Am. Mineral.,2003,88:1336–1344.
    [73] Flint D.澳大利亚的软玉[J].王家枢译.国外非金属矿与宝石,1990,(2):40-42.
    [74]孔蓓,邹进福,郑仙群.青海某地软玉的宝石学特征[J].矿产与地质,1997,11(4):268-271.
    [75]陈图华,李向红.主要玉石的物性特征及成分研究[J].建材地质,1992,(1):8-14.
    [76]李平,钱俊峰.子料黄褐皮的成因研究[J].科技通报,2011,27(1):121-12.
    [77]曾明果,颜承锡,李一平,等.贵州省非金属矿产资源调及开发利用建议[R].贵阳:贵州省地质矿产局地质科学研究所,1987:81-87.
    [78]贵州省科技厅专家组.贵州罗甸和田玉科学考察调研报告[R].贵阳:贵州省科技厅,贵州省地质矿产勘查开发局,2011.
    [79]杨林,王兵,王雷,等.贵州罗甸玉特征初步研究[J].贵州地质,2011,28(4):241-246.
    [80]支颖雪,廖冠琳,陈琼,等.贵州罗甸软玉的宝石矿物学特征[J].宝石和宝石学杂志,2011,13(4):8-13.
    [81]杨林,林金辉,王雷,等.贵州罗甸玉岩石化学特征及成因意义[J].矿物岩石,2012,32(2):12-19.
    [82]范二川,兰永文,戴朝辉,等.贵州省罗甸透闪石矿床地质特征及找矿预测[J].矿物学报,2012,32(2):304-309.
    [83]黄勇,郝家栩,白龙,等.贵州省冗里软玉矿的发现及意义[J].岩石矿物学杂志,2012,31(4):612-620.
    [84]王宾,邵臻宇,廖宗廷,等.广西大化软玉的宝石矿物学特征[J].宝石和宝石学杂志,2012,14(3):6-11.
    [85]蔡继锋,邓贻永,张进容,等.贵州省罗甸县地质、矿产资源评价报告[R].贵阳:贵州省地质矿产局地质科学研究所,1988.
    [86] Puhan D. Metamorphic evolution of the assemblage tremolite+talc+calcite+dolomite+quartz within a sample of siliceous dolomitefrom the southern Damara Orogen(Namibia)[J].Contrib Mineral Petrol,1995,120:180-185.
    [87] Park M E,Kang J M. Texture and Toughness of Chuncheon Nephrite,Korea(in Korean withEnglish abstract)[J]. The Journal of Mineralogy Society of Korea,1995,8(1):29-36.
    [88] Ryu K W,Lee M G,Jang Y Nam.Mechanism of tremolite carbonation[J]. AppliedGeochemistry,2011,26:1215–1221.
    [89] Maresch W V, Czank M, Schreyer W.Growth mechanisms, structural defects andcomposition of synthetic tremolite:what are the effects on macroscopic properties?[J].ContribMineral Petrol,1994,118:297-313.
    [90] Gondim A C,蒋少涌.Geologic charaeteristics and genetic models for the talc deposits inParand and Bahia,Brazil[J]. Acta Petrologica Sinica,2004,20(4):829-836.
    [91]胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社,2004.
    [92] John C. Schumacher.角闪石电子探针分析数据中三价铁比值的估算(王立本编译)[J].岩石矿物学杂志,2001,20(2):189-198.
    [93] Leake B E. Nomenclature of amphiboles: report of the subcommittee on amphiboles of theinternational mineralogical association, commission on new minerals and mineral names[J].TheAm. Mineral.,1997,82:1019-1037.
    [94] IMA-CNMMN. Nomenclature of Amphiboles:Report of the Subcommittee on Amphibolesof the International Mineralogical Association Commission on New Minerals and MineralNames[J].Mineralogical Magazine,1997,61:295-321.
    [95] Leake B E, Woolley A R, Birch W D, et al. Nomenclature of amphiboles:additions andrevisions to the International Mineralogical Association’s amphibolenomenclature[J].Mineralogical Magazine,2004,68(1):209-215.
    [96] Nichol D. Two contrasting nephrite jade types[J].J.Gemm.,2000,27(4):193-200.
    [97]王濮,潘兆橹,翁玲宝.系统矿物学(中册)[M].北京:地质出版社,1984:331-347.
    [98]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘(中国地质大学,北京),2000,7(2):299-320.
    [99]段体玉,王时麒.岫岩软玉(透闪石玉)的稳定同位素研究[J].岩石矿物学杂志,2002,21(增刊):115-119.
    [100]万德芳,王海平,邹天人.和田玉、玛纳斯碧玉及岫岩老玉(透闪石玉)的硅、氧同位素组成[J].岩石矿物学杂志,2002,21(增刊):110-114.
    [101] Cipriani C. Amphiboles: Historical Perspective[j]. Reviews in Mineralogy andGeochemistry,2007,67(1):517-546.
    [102] Leake B E. Nomenclature of Amphiboles[J].Mineralogical Magazine,1978,42:533–563.
    [103]秦善编著.结构矿物学[M].北京:北京大学出版社,2011:115-117.
    [104] Hawthorne F C,Roberta O. Classification of the Amphiboles[J].Rewiews in Mineralogy&Geochemistry,2007,67:55-88.
    [105] Hawthorne F C. The crystal chemistry of the amphiboles[J]. Canadian Mineralogist,1983,21:173–480.
    [106] Burke E A J,Leake B E. Named Amphiboles:A new category of amphiboles recognized bythe International Mineralogical Association(IMA) and a defined sequence order for the use ofprefixes in amphibole names[J].Am. Mineral.,2005,90:516–517.
    [107] Verkouteren J R, Wylie A G.The tremolite-actinolite-ferro–actinolite series: Systematicrelationships among cell parameters, composition, optical properties, and habit, and evidence ofdiscontinuities[J]. Am. Mineral.,2000,85:1239–1254.
    [108]杨维丰,李永得,刘远,等.昆仑白玉的高温原位X射线衍射实验研究[J].青海师范大学学报(自然科学版),2011,(4):21-24.
    [109] Dachs E,Metz P.The mechanism of the reaction1tremolite+3calcite+2quartz=5diopside+3CO2+1H20:results of powder experiments[J]. Contrib Mineral Petrol,1988,100:542-551.
    [110]姜传海,杨伟铮.X射线衍射技术及其应用[M].上海:华东理工大学出版社,2010(1):120-121.
    [111] Fernandes S, Khan M, Cheudhary G.特殊宝石的红外吸收光谱汇编[J].宝石和宝石学杂志,2003,5(2):34-37.
    [112]亓利剑,红外光谱在宝石学中的应用[J].珠宝科技,1994(2):35-37.
    [113]亓利剑,袁心强,曹姝旻.宝石的红外反射光谱表征及其应用[J].宝石和宝石学杂志,2005,7(4):21-25.
    [114]袁心强,亓利剑,郑南.镜反射红外光谱的原理和测试技术[J].宝石和宝石学杂志,2005,7(4):17-20.
    [115]郭立鹤,韩景仪,罗红宇.宝石的红外反射光谱及红外光谱鉴定系统[J].岩石矿物学杂志,2006,25(4):349-356.
    [116]李建军,田亮光,程佑法,等.红外光谱仪在宝石鉴定中的常规化应用及须注意的问题——与KBr压片法比较[J].红外,2009,29(1):28-36.
    [117]宋绵新,潘兆橹.翡翠的漫反射红外光谱特征及其对翡翠鉴定[J].中国矿业,2004(12):78-80.
    [118]高媛.绿色翡翠的傅里叶红外光谱分析[J].光谱实验室,2008,25(6):1120-1122.
    [119]苏文宁.翡翠透射红外光谱解析[J].云南地质,2008,27(3):422-429.
    [120]吕璐,熊燕,袁婷.翡翠红外光谱特征的测量与分析[J].超硬材料工程,2009,21(3):54-57.
    [121] Ou Yang C M,Qi L J.Htelongsein-a new variety of chrome jadeite jade[J].The Journal ofGemmology,2001,27(6):321-327.
    [122]卢保奇,亓利剑,夏义本.软玉猫眼的红外吸收光谱及热相变机制研究[J].硅酸盐学报,2005,33(2):186-190.
    [123]卢保奇,亓利剑,夏义本.四川软玉猫眼的谱学综合鉴定[J].上海地质,2008(3):57-60.
    [124]郭立鹤,韩景仪.和田玉、玛纳斯碧玉和岫岩老玉中M1、M3阳离子占位的红外光谱分析[J].岩石矿物学杂志,2002,21(增刊):68-71.
    [125]王春云,张惠芬.软玉的热谱特征与热转变机制[J].矿物学报,1991,11(3):251-257.
    [126] Ventura G D,Robert J L,Raudsepp M,Hawthorne F C,Welch M D. Site occupanciesinsynthetic monoclinic amphiboles:Rietveld structure refinement and infrared spectroscopy of(nickel,magnesium,cobalt)-richterite. Am. Mineral.,1997,82:291-301.
    [127] Gottschalk M,Najorka J,Andrut M. Structural and compositional characterization ofsynthetic (Ca,Sr)-tremolite and (Ca,Sr) diopside solid solutions by EMP, HRTEM,XRD andOH-valence spectroscopy. Phys. Chem. Minerals,1998,25:415-428.
    [128] Hawthorne F C,Ventura G D,Robert J L. Short-range order of (Na,K) an Al in tremolite:an infrared study. Am. Mineral,1996,81:782-784.
    [129] Melzer S, Gottschalk M, Andrut M, et al. Crystal chemistry ofK-richterite-richterite-tremolite solid solutions:a SEM, EMP, XRD, HRTEM and IR study.Eur. J. Minera.,2000,12:273–291.
    [130] Ishida K,Hawthorne F C, Ando Y. Fine structure of infrared OH-stretching bands in naturaland heat-treated amphiboles of the tremolite-ferro-actinolite series[J].American Mineralogist,2002,87:891–898.
    [131] Hawthorne F C,Ventura G D, Robert J L,et al. A rietveld and infrared study of syntheticamphiboles along the potassium-richterite-tremolite join. Am. Mineral.,1997,82:708-716.
    [132] Gottschalk M, Andrut M,Melzer S. The determination of the cummingtonite content ofsynthetic tremolite. Eur. J. Minera,1999,11:967-982.
    [133] Hofmeister A M,Bowey J E. Quantitative infrared spectra of hydrosilicates and relatedminerals[J]. Monthly Notices of the Royal Astronomical Society,2006,367:577–591.
    [134] Kloprogge J T,Visser D,Ruan H,et al.Infrared and Raman spectroscopy of holmquistite,Li2(Mg,Fe2+)3(Al,Fe3+)2(Si,Al)8O22(OH)2[J].Journal of Materials Science Letters,2001,20:1497–1499.
    [135] Ishida K, Jenkins D M,Hawthorne F C. Mid-IR bands of synthetic calcic amphiboles oftremolite-pargasite series and of natural calcic amphiboles[J]. Am. Mineral.,2008,93:1112–1118.
    [136]彭文世,刘高魁.矿物红外光谱学[M].北京:科学出版社,1982.351-398.
    [137]闻辂.矿物红外光谱学[M].重庆,重庆大学出版社,1989,71-118.
    [138] Strens R G J.Infrared spectra of minerals[M],Mineralogical Society Monograph4,London,1974,305-309.
    [139] Ventura G D,Hawthorne F C,Robert J L,et al.Synthesis and infrared spectroscopy ofamphiboles along thetremolite-pargasite join. Eur. J. Mineral.2003,15,341–347.
    [140]卢保奇.四川石棉软玉猫眼和蛇纹石猫眼的宝石矿物学及谱学研究[D].上海:上海大学,2005.
    [141] Bozhilov K N,Jenkins D M,Veblen D R. Pyribole evolution during tremolite synthesisfrom oxides[J]. Am. Mineral.,2004,89:74–84.
    [142] Andrut M,Gottschalk M,Melzer S,et al. Lattice vibrational modes in synthetictremolite-Sr-tremolite and tremolite-richterite solid solutions. Phys. Chem. Minerals,2000,27:301–309.
    [143]阴江宁.河南栾川玉石的岩石学和矿床学研究[D].北京:中国地质大学(北京),2006
    [144]王铎,徐泽彬,孙猛,等.不同产地碧玉的红外光谱研究[J].红外技术,2009,31(12):698-701.
    [145] Pawley A R,Graham C M,Navrotsky A. Tremolite-richterite amphiboles: Synthesis,compositional and structural characterization, and thermochemistry.Am. Mineral.,1993,78:23-35.
    [146] Hawthorne F C.The crystal chemistry of amphiboles.Can. Mineral.,1983,21:173-480.
    [147]百科名片.电子顺磁共振[EB/OL].[2012-08-10].http://baike.baidu.com/view/2005266.htm.
    [148]马尔福宁,A S.矿物物理学导论[M].李高山译.北京:地质出版社,1984,55-117.
    [149] Blak A R,Isotani S,Watanabe S,et al. Optical absorption and electron spin resonance inblueand green beryl [J]. Phys. Chem. Mineral.,1982,8:161-166.
    [150] Barnett J D, Nelson H M, Tyagi S D.High-pressure EPR study of the calcite-CaCO3(II)displacive phase transformation near1.6GPa[J]. Phys Rev.1985,31:1248-1257.
    [151]彭明生,郑楚生,温元凯.阿尔泰海蓝宝石的谱学研究[J].矿物学报,1985,5(2):140-146.
    [152] Calas G.Electron paramagnetic resonance. Rev Mineral.1988,18:513–571.
    [153]何宏平,张惠芬.我国北方两种高岭石的ESR谱研究[J].矿物学报,1994,14(3):265-269.
    [154] Calemma V,Iwanski P,Nali R.Structural characterization of asphaltenes of different origins.Energy&Fuel.1995,9:225-230.
    [155]林金辉,曹志敏.雪宝顶绿柱石的谱学研究[J].岩石矿物学杂志,2000,19(4):370-375.
    [156] Shames A I,Panich A M, Kempinski W., et al. Defects and impurities in diamond:EPR,NMRand TEM study[J]. J. Phys. Chem. Solids.,2002,63:1993-2001.
    [157] Botis S M, Nokhrin S,Pan Y M,et al.Natural radiation-induced damage in quartz. I.Correlations between cathodoluminescence colors and paramagnetic defects. Can. Mineral,2005,43:1565-1580.
    [158] Pan Y M, Botis S M, Nokhrin S.Applications of natural radiation-induced defects inquartz to exploration in sedimentary basins. J China Univ Geosci,2006,17:258-271.
    [159] Botis S M, Pan Y M.Theoretical modeling of the Al paramagnetic center and its precursorsin stishovite. Phys. Chem. Minerals.,2010,37:119-127.
    [160] Pan Y M, Mao M, Lin J.Single-crystal EPR study of Fe3+and VO2+in prehnite from theJeffrey mine, Asbestos, Quebec. Can. Mineral.,2009,47:933-945.
    [161] Pan Y M, Mashkovtsev RI, Huang D,et al.Mechanisms of Cr and H incorporation instishovite determined by single-crystal EPR spectroscopy and DFT calculations. Am. Mineral.,2011,96:1333-1342.
    [162] Schumacher J C. Nomenclature of Amphiboles:Appendix2The estimation of ferric iron inelectron microprobe analysis of amphiboles[J]. Mineralogical Magazine,1997,(61),312-321.
    [163]孟祥振,赵梅芳.维氏硬度的法定计量单位及换算[J].宝石与宝石学杂志,2007,9(2):53
    [164]甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘(中国地质大学,北京),2003,10(2):445-454.
    [165]燕守勋,张兵,赵永超,等.矿物与岩石的可见一近红外光谱特性综述[J].遥感技术与应用,2003,18(4):191-201.
    [166] Sherman D V. Electronic spectra of Fe3+oxides and oxide hydroxides in the near IR tonearUV[J].Am. Mineral.1985,70:584-609.
    [167]何明跃,郭涛.山东昌乐蓝宝石矿物学及其改色[M].北京:地质出版社,2000,29-35.
    [168] Marusak L A, Messier R. Optical absorption spectrum of hematite α-Fe2O3near IR to UV[J].J.Phys.Chem.Solids,1908,41:986-1103.
    [169] Lehman G,Harder H. Optical spectra of di-and trivalent iron in corundum [J]. Am.Mineral.,1970,55:98-105.
    [170] Sherman D M. Molecular orbital theory of metal-metal charge transfer processes in mineralsⅠ:application to and electron delocalization in mixed-valence iron oxides and silicates[J].Phy.Chem. Minerals.,1987,14:1121-1139.
    [171] Krebs J J,Maisch W G. Exchange effects in optical absorption spectrum of Fe3+inAl2O3[J].Phys. Review B,1971,4(3):757-769.
    [172]丁竞,薛秦芳.山东黄色蓝宝石紫外-可见吸收光谱表征[J].超硬材料工程,2005,17(2):57-60.
    [173] Marra A, Lane M D, Orofino V,et al. Midinfrared spectra and optical constants of bulkhematite: Comparison with particulate hematite spectra[J]. Icarus,2011,211:839–848.
    [174] Anbalagan G, Murugesan S K, Balakrishnan M,et al. Structural analysis, opticalabsorption and EPR spectroscopic studies on chrysotile[J]. Applied Clay Science,2008,42:175–179.
    [175] Cloutis E A.,Klima R L,Kaletzke L,et al. The506nm absorption feature in pyroxenespectra: Nature and implications for spectroscopy-based studies of pyroxene-bearing targets[J].Icarus,2010,207:295–313.
    [176]张秀荣等.掺Ti宝石的光谱研究[J].发光学报,1990,4:51-57.
    [177]汤洪高等.掺Ti白宝石的生长和光谱[J].硅酸盐学报,1987,12:39-46.
    [178] Ferguson J,Fielding P E. The origins of the colors of natural yellow, blue and greensapphires [J]. Aust.T.Chem.,1972,25:1371-1385.
    [179] Fristsch E,Mercer M. Letter: blue color in sapphire caused by Fe2+/Fe3+intervalencecharge transfer [J]. Gems&Gemology,1993,29(3):151-226.
    [180] Moon A R,Phillips M R. Defect clustering and color in Fe, Ti: α-Al2O3[J].J. Am. Ceram.Soc.,1994,77(2):365-367.
    [181] Schmetzer K,Bank H. Explanation of the absorption spectra of natural and synthetic Fe-andTi-containing corundum [J]. N. J. Miner. Abh.,1980,139(2):216-225.
    [182] Mattson M,Rossman G R. Identifying characteristics of charge transfer transitions inminerals [J]. Phys. Chem. Minerals.,1987,14:1107-1123.
    [183] Smith G. Evidence for absorption by exchange-coupled Fe2+-pairs in the near IR spectra ofminerals [J]. Phys. Chem. Minerals.,1978,3:782-795.
    [184]蔡元峰,李响,潘宇观,等.Mn2+和Fe3+的致色作用:来自意大利白垩纪远洋红色灰岩的启示[J].地质学报,2008,82(1):133-138.
    [185] Wilkins C J,Tennant W C,Williamson B E,et al. Spectroscopic and related evidence on thecoloring and constitution of New Zealand jade[J]. Am. Mineral.,2003,88:1336–1344.
    [186]谢先德等.中国宝玉石矿物物理学[M].广东:广东科技出版社,1999.
    [187] Bradt R C. The Toughness of Jade[J].Am. Mineral.,1973,58:727-732.
    [188] Rowcliffed D J,Frohauf V. The fracture of jade[J].Journal of Materials Science,1977,12:35-42.
    [189] Yege J C,et al.1981. Base of petrological-mechanics[M]. Beijing:Science Press
    [190] Whitney D L,Broz M,Cook R F. Hardness, toughness, and modulus of some commonmetamorphic minerals[J].Am. Mineral.,2007,92:281–288.
    [191]林广湧,雷廷权,周玉.陶瓷材料断裂韧性的评定方法[J].宇航材料工艺,1995,(4):12-19.
    [192]张浪,刘东升,宋强辉,等.基于Griffith理论岩石裂纹扩展的可靠度分析[J].工程力学,2008,25(9):156-161.
    [193]柯建仲,许世孟,陈昭旭,等.基于边界元法各向异性岩石的裂纹传播路径分析[J].岩石力学与工程学报,2010,29(1):34-42.
    [194]周显川,陈建军,谢新斌,等.和田玉分布范围地质特征及资源概况[J].西部探矿工程,2012,12:138-139.
    [195]周兵,孔德懿,李维建,等.新疆和田玉成矿地质特征及远景资源量预测[J].四川地质学报,2011,31(2):196-197.
    [196]王轶.韩国闪石玉的矿物学、宝石学特征研究[D].西安:长安大学,2009.
    [197]宝石教研室(伊尔库茨克国立工业大学地质系).西伯利亚软玉[J].宝石和宝石学杂志,2002,4(1):38-39.
    [198]裴祥喜.韩国春川软玉矿床研究-成矿作用和成因分析[D].北京:中国地质大学(北京),2012.
    [199] Jung I K. Study on genesis of the Daeil nephrite deposit(in Korean with English abstract)[D]. Chuncheon: Kang-won National University Graduate School,1992.
    [200] Kim K J,Choi S W. A Study on the Characteristics of Ok using Chuncheon Nephrite(inKorean with English abstract)[J]. The journal of the Natural Science of Korea,2000,9:65-74.
    [201] Noh J H,Cho H G. Mineralogical Characterization of the Chuncheon Nephrite: MineralFacies,Mineral Chemistry and Pyribole Structure(in Korean with English abstract)[J]. TheJournal of Mineralogy Society of Korea,1993,6(2):60-63.
    [202]白峰,赵凯.韩国软玉的宝石学特征及结构分析.岩石矿物学杂志,2011,30(增刊):83-87.
    [203]刘琰,何明跃.新疆和田阿拉玛斯软玉成因[J].岩石矿物学杂志,2011,30(增刊):40-42.
    [204]孙丽华,于方,王时麒.玛纳斯碧玉的宝石学研究[J].岩石矿物学杂志,2011,30(增刊):34-35.
    [205]张攀,刘喜锋,李竞妍,等.新疆、青海、俄罗斯糖白玉的宝石学特征对比分析[J].宝石和宝石学杂志,2011,13(4):31-38.
    [206]韩磊,洪汉烈.中国三地软玉的矿物组成和成矿地质背景研究[J].宝石和宝石学杂志,2009,11(3):6-10.
    [207]熊燕,陈美华,郭宇.韩国白色软玉的结构特征[J].宝石和宝石学杂志,2012,23(4):55-60.
    [208]张蓓莉,陈华.珠宝首饰评估[M].北京:中国地质大学出版社,2000.
    [209]李忠志,马建斌.新疆和田玉的质量分级及评估方法研究[J].新疆地质,2007,25(3):334-337.
    [210]李济,马晓东.和田玉的鉴定与评估[J].山东国土资源,2009,25(5):30-34.
    [211]谭宏姣,张娜.试论汉语玉石及玉器命名取象选择规律[J].吉林师范大学学报(人文社会科学版),2011,(5):66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700