用户名: 密码: 验证码:
锰基复合氧化物及其对零价汞的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,汞污染问题引起了国际社会的广泛关注。随着《水俣公约》的出台,给作为世界最大汞排放国的中国带来巨大的履约压力。鉴于煤在中国能源结构中的重要地位,由燃煤产生的汞排放成为我国主要的汞排放源,因此,燃煤电厂的汞排放也就成为中国汞污染控制的重中之重。政府已出台了相关政策,修订了《火电厂大气污染物排放标准》(GB13223-2011),对燃煤电厂的汞排放提出了具体要求。目前,烟气脱汞的主流技术包括以下两类:(1)氧化脱除法:先将烟气中的零价汞氧化,然后利用现有的湿法脱硫装置去除;(2)吸附法:目前比较成熟的吸附法为活性炭喷射技术,将活性炭喷入烟道吸附烟气汞,然后利用现有除尘装置去除。但氧化脱除法仅将汞从大气转移到脱硫液或脱硫石膏中,容易造成二次污染;活性炭喷射法成本较高且影响飞灰品质;两种方法都有一定的局限性,并且活性炭喷射技术对高氯煤效果更佳,而国内的煤中氯含量普遍偏低。因此,开发适合中国煤况的、具有自主知识产权的脱汞技术具有重要意义。
     本文以锰基氧化物为基础,制备了一批具有较高汞吸附容量和较好再生性能的锰基复合金属氧化物,通过吸附试验对其吸附捕集零价汞的性能进行评价,并考察了吸附剂的活性温度窗口及烟气组分对汞在吸附剂表面吸附的影响,进而阐明汞在吸附剂表面的吸附氧化机制;另外,基于吸附剂的可再生性能,本文还提出了利用多级除尘技术(如电袋复合除尘装置)吸附工艺,将吸附剂喷入电除尘及袋式除尘之间,拟通过在袋式除尘装置上的架桥作用,不仅提高除尘效率,还能满足烟气在吸附剂表面停留时间的要求,达到除汞目的,为燃煤电厂的汞污染排放控制提供了新思路。论文主要得到了以下结论:
     以不同的锰盐为锰源制备了单组分锰氧化物,初步考察了其对烟气汞的吸附性能并分析了将其用于零价汞吸附剂的可行性及局限性。通过对比其宏观吸附性能和微观表征结果,发现以不同锰源制备的锰氧化物对零价汞具有不同的吸附性能,其中以硝酸锰为锰源制备的锰氧化物具有较高的吸附性能(100oC下10h吸附容量约为2.1mg/g),并且吸附性能与吸附剂的结构及锰的价态存在相关关系,高价态的锰更有利于汞在吸附剂表面的吸附氧化;通过对穿透后吸附剂再生性能的考察,发现通过简单的热处理能够使吸附在吸附剂表面的汞以零价汞的形式重新释放出来,从而实现吸附剂的再生。
     采用过渡元素锆对单组分锰氧化物进行修饰改性,制备了锆锰复合金属氧化物,并考察了其对零价汞的吸附捕集性能。结合吸附剂的吸附试验与其微观表征结果发现,锰是吸附剂的主要活性组分,锆的掺入能够提高吸附剂的比表面积和氧化能力,进而提高吸附剂在低温条件下的汞吸附容量(100oC条件下约5mg/g);掺入锆后,锆锰复合金属氧化物可以通过热处理再生;然而,通过多轮吸附-再生-吸附实验发现,热再生后的吸附剂若直接回用吸附性能下降明显,但如果将热处理后的吸附剂加以简单的水洗处理,可以洗掉吸附剂表面形成的硫酸盐,进而恢复其大部分的捕汞能力。
     采用稀土元素铈对单组分锰氧化物进行改性修饰,制备了铈锰复合金属氧化物,并考察了其对零价汞的吸附捕集性能。结合吸附剂的吸附试验及表征结果发现,锰依然是吸附剂的主要活性组分;作为重要的辅助组分,铈的掺入不仅能够提高吸附剂的比表面积,还能够提高其氧化能力,进而提高吸附剂在低温条件下的汞吸附容量(100oC条件下可达6mg/g);铈的掺入增强了吸附剂对SO2的耐受性,提高了吸附剂的再生性能,通过简单的热处理,铈锰复合氧化物吸附剂表面吸附的汞能够以零价汞的形式释放出来,从而实现吸附剂的再生;另外,文中还通过多轮吸附-再生-吸附实验探讨了吸附剂的循环使用性能,发现经过5轮循环使用,吸附剂的汞吸附容量未见明显降低。
     研究还采用主族金属元素锡对单组分锰氧化物进行改性修饰,制备了锡锰复合金属氧化物,并考察了其对零价汞的吸附捕集性能。结合吸附剂的宏观吸附性能与其微观表征结果发现,锡的掺入能够提高吸附剂的比表面积,增强吸附剂的氧化能力和表面酸性强度,进而提高吸附剂的汞吸附容量(100oC条件下约3.0mg);另外,锡的掺入拓宽了吸附剂的活性窗口,使锡锰复合氧化物不仅可以应用于低温烟气中汞(100oC)的脱除,也可以应用于较高温度(350oC)烟气中汞的脱除,这种特性提高了吸附剂对开停车等工况的适应能力,可以作为改变工况时的备选吸附剂。
     本文通过简单的方法制备了一系列锰基复合氧化物,考察了其对零价汞的吸附捕获能力,发现制备的吸附剂具有较高的吸附容量和较好的再生性能,并基于以上性能提出了利用现有多级除尘装置除汞;本文比较系统地研究了锰基复合氧化物对零价汞的吸附性能,探讨了吸附性能与材料结构及表面元素价态之间的关系,阐明了汞在吸附剂表面的吸附-氧化机制,拟为锰基汞吸附剂的进一步修饰改性提供理论依据;另外,还基于汞的程序升温脱附数据,建立了脱附活化能计算模型,为后续研究提供热力学数据。
Due to the high toxicity, persistence, transportability and bioaccumulation,mercury has attracted increasing attentions since Minamata Disease occured. In recentyears, more national or international treaties on mercury have been issued aiming toreduce mercury pollution including “Minamata Convention”. These treaties hasbrought huge pressure to China, which is the biggest mercury emission country in theworld. Coal is the most important energy source in the current and a near-futureenergy structure of China, therefore, coal-fired related mercury emission has becomethe key point for mercury control in China. Actually, China government has alreadytaken some measures to reduce mercury emission from coal-fired power plant,including revising “Emission Standard of Air Pollutant for Thermal Power Plants”(GB13223-2011). The maximum mercury emission concentration is capped in thisstandard. So far, the main technology for mercury emission control falls into thefollowing two groups:1. Oxidation technology. Firstly oxidize the flue gas elementalmercury catalytically or by injecting oxidant, and then remove the oxidized mercurythrough existing wet flue gas desulfurization system;2. Adsorption method. Removemercury by adsorbent, currently, activated carbon injection is the most testedadsorption technology, and halide is found very important for mercury adsorption.Since halide concentration in coal of China is usually relative low, removal efficiencyof activated carbon injection technology may depreciate if it is used in China.Additionally, oxidized technology only transfers mercury from flue gas intodesulfurization solution or gypsum and may cause the secondary pollution. In otherword, each technology has its own shortcomings and merits, but none has beenproved universal in all flue gas condition. Therefore, developing novel, high efficiency technology with independent intellectual property rights is of significance.In this work, a series of manganese-based binary metal oxides with high mercurycapacity and good regenerablity were prepared and characterized, the adsorption andoxidation mechanism of mercury on the sorbents surface was investigated, moreover,an process based on electro-filter precipitator for mercury removal was proposedbased on the good regenerability of the sorbents in order to reduce the operational costof the power plant. The main contents of this dissertation are listed below:
     Three kind of manganese oxides were prepared using different manganese salt asmanganese source. Based on the adsorption experiment and characterization results,the relationship between mercury adsorption performance and physiochemicalproperty was built. It was found that low temperature facilitated the mercuryadsorption on sorbent surface and manganese prepared using different manganese saltshowed different physiochemical property and different adsorption performance; highvalence manganese would benefit the adsorption and oxidation of mercury on sorbentsurface; simple heating treatment could release the adsorbed mercury from sorbentsurface and achieve a facile regeneration of the sorbent;
     A series of Zr-Mn binary metal oxides with different mercury content wereprepared, characterized and their capabilities for elemental mercury removal wereinvestigated. Based on the adsorption experiment and characterization results, therelationship between mercury adsorption performance and physiochemical propertywas built. It was found that manganese was the main component for mercuryadsorption and oxidation in Zr-Mn system, Zr could not only increase the BETspecific surface area of the sorbent but also enhance the reducibility of the sorbentwhich may benefit the mercury adsorption and oxidation on sorbent surface atrelatively low temperature; the adsorbed mercury on the sorbent surface could bereleased by heating treatment, however, the reusability was found not good enoughafter simple heating treatment; It was also found that most of the mercury capacity ofthe sorbent could be recovered by a simple washing treatment after heating, themechanism was discussed;
     A series of manganese-based Ce-Mn binary metal oxides with differentmanganese content were prepared, characterized and their capabilities for elementalmercury removal were investigated. Based on the adsorption experiment andcharacterization results, the relationship between mercury adsorption performance andphysiochemical property was built. It was found that manganese was the maincomponent for mercury adsorption and oxidation, as an important auxiliarycomponent, the doping of Ce, a rare earth element, could not only increase the BETspecific surface area of the sorbent but also enhance the reducibility of the sorbentwhich may benefit the mercury adsorption and oxidation on sorbent surface atrelatively low temperature; moreover, Ce-Mn binary metal oxides also showed goodregenerability through simple heating treatment; additionally, the regenerated sorbentalso demonstrated good reusability in adsorption-regeneration-adsorptionexperiments.
     A series of Sn-Mn binary metal oxides with different manganese content wereprepared, characterized and their capabilities for elemental mercury removal wereinvestigated. Based on the adsorption experiment and characterization results, therelationship between mercury adsorption performance and physiochemical propertywas built. It was found that manganese was also the main component for mercuryadsorption and oxidation in Sn-Mn system, Sn could not only increase the BETspecific surface area of the sorbent but also enhance the reducibility of the sorbent andimprove the acidity on sorbent surface, as a result, mercury adsorption capacity of thesorbent was increased; interestingly, the doping of Sn could expand the activetemperature window of the sorbent for mercury adsorption.Furthermore, a model for calculation of mercury desorption activation energy wasbuilt based on Hg-TPD experiments, aiming to quatify the regenerablity of thesorbent.
引文
1.郭少青,煤转化过程中汞的迁移行为及影响因素.北京:化学工业出版社,2012,第一版.
    2. Li, P., Feng, X. B., Qiu, G. L., Shang, L. H. and Li, Z. G., Mercury Pollution in Asia: AReview of the Contaminated Sites. Journal of Hazardous Materials,2009,168(2-3):591-601.
    3. Jiang, G. B., Shi, J. B. and Feng, X. B., Mercury Pollution in China. Environmental Science&Technology,2006,40(12):3672-3678.
    4. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. and Pirrone, N., Mercury as a GlobalPollutant: Sources, Pathways, and Effects. Environmental Science&Technology,2013,47(10):4967-4983.
    5. Ishihara, N., Historical Review of the Toxicity of Organic mercury Compounds in Relation tothe Minamata Disease. Trace Elements and Electrolytes,2011,28(3):196-198.
    6. Yorifuji, T., Tsuda, T. and Harada, M., Recent Findings in Minamata Disease From aPopulation-based Study Conducted in1971. Epidemiology,2011,22(1): S99-S100.
    7. Yorifuji, T., Kashima, S., Tsuda, T. and Harada, M., What Has Methylmercury in UmbilicalCords Told Us?-Minamata Disease. Science of the Total Environment,2009,408(2):272-276.
    8.陆文芳,田宇,战景明,谢满廷,我国大气汞污染对人体健康的影响.环境与健康杂志,2012,29(8):761-763.
    9. Yorifuji, T., Tsuda, T., Inoue, S., Takao, S. and Harada, M., Long-term Exposure toMethylmercury and Psychiatric Symptoms in Residents of Minamata, Japan. EnvironmentInternational,2011,37(5):907-913.
    10. Sakamoto, M., Murata, K., Tsuruta, K., Miyamoto, K. and Akagi, H., Retrospective Study onTemporal and Regional Variations of Methylmercury Concentrations in Preserved UmbilicalCords Collected from Inhabitants of the Minamata Area, Japan. Ecotoxicology andEnvironmental Safety,2010,73(6):1144-1149.
    11. Renner, R., Mercury Woes Appear to Grow. Environmental Science&Technology,2004,38(8):144a-144a.
    12.李洁雅,苏冬梅,药源性汞中毒29例临床分析.职业与健康,2006,22(6):415-416.
    13.董玉香,张慧敏,茅建人,沈红, DMA-80仪对尿样中汞测定研究.上海预防医学杂志,2006,18(12):600-601.
    14.李艳艳,熊光仲,汞中毒的毒性机制及临床研究进展.中国急救复苏与灾害医学杂志,2008,3(1):57-59.
    15. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R.,Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K., Global Mercury Emissions tothe Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics,2010,10(13):5951-5964.
    16. Telmer, K. H. and Veiga, M. M., World Emissions of Mercury from Artisanal and Small ScaleGold Mining. Springer, New York, USA,2009:131-172.
    17. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F. and Wilson, S., Global Anthropogenic MercuryEmission Inventory for2000. Atmospheric Environment,2006,40(22):4048-4063.
    18. Slemr, F., Brunke, E. G., Ebinghaus, R. and Kuss, J., Worldwide Trend of AtmosphericMercury since1995. Atmospheric Chemistry and Physics,2011,11(10):4779-4787.
    19. Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H.,Soerensen, A. L. and Sunderland, E. M., Mercury Biogeochemical Cycling in the Ocean andPolicy Implications. Environmental Research,2012,119:101-117.
    20.朱云,王书肖, Lin, C.-J.,郝吉明, Jang, C.,王龙,大气汞污染模拟研究进展及控制策略优化方法.环境科学,2011,32:1851-1856.
    21. Streets, D. G., Devane, M. K., Lu, Z. F., Bond, T. C., Sunderland, E. M. and Jacob, D. J.,All-Time Releases of Mercury to the Atmosphere from Human Activities. EnvironmentalScience&Technology,2011,45(24):10485-10491.
    22. Obrist, D., Tas, E., Peleg, M., Matveev, V., Fain, X., Asaf, D. and Luria, M., Bromine-InducedOxidation of Mercury in the Mid-latitude Atmosphere. Nature Geoscience,2011,4(1):22-26.
    23. Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca, R. M., Skov, H.,Christensen, J. H., Strode, S. A. and Mason, R. P., An Improved Global Model for Air-SeaExchange of Mercury: High Concentrations over the North Atlantic. Environmental Science&Technology,2010,44(22):8574-8580.
    24. Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R. and Slemr, F., GlobalAtmospheric Model for Mercury Including Oxidation by Bromine atoms. AtmosphericChemistry and Physics,2010,10(24):12037-12057.
    25. Fitzgerald, W. F., Lamborg, C. H. and Hammerschmidt, C. R., Marine BiogeochemicalCycling of Mercury. Chemical Reviews,2007,107(2):641-662.
    26. Maxson, P., Mercury Flows in Europe and the World: The Impact of DecommissionedChlor-alkali Plants. European Commission, Brussels. Available at: europa. eu.int/comm/environment/chemicals/mercury/pdf/report. pdf,2004.
    27. Lamborg, C. H., Fitzgerald, W. F., O'Donnell, J. and Torgersen, T., A Non-Steady-StateCompartmental Model of Global-Scale Mercury Biogeochemistry with InterhemisphericAtmospheric Gradients. Geochimica Et Cosmochimica Acta,2002,66(7):1105-1118.
    28. Friedli, H. R., Arellano, A. F., Cinnirella, S. and Pirrone, N., Initial Estimates of MercuryEmissions to the Atmosphere from Global Biomass Burning. Environmental Science&Technology,2009,43(10):3507-3513.
    29. Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaegle, L. and Sunderland, E. M.,Global3-D Land-Ocean-Atmosphere Model for Mercury: Present-day versus PreindustrialCycles and Anthropogenic Enrichment Factors for Deposition. Global Biogeochemical Cycles,2008,22(2).
    30. Sunderland, E. M. and Mason, R. P., Human Impacts on Open Ocean Mercury Concentrations.Global Biogeochemical Cycles,2007,21(4).
    31. Rutter, A. P. and Schauer, J. J., The Effect of Temperature on the Gas-particle Partitioning ofReactive Mercury in Atmospheric Aerosols. Atmospheric Environment,2007,41(38):8647-8657.
    32. Streets, D. G., Hao, J. M., Wu, Y., Jiang, J. K., Chan, M., Tian, H. Z. and Feng, X. B.,Anthropogenic Mercury Emissions in China. Atmospheric Environment,2005,39(40):7789-7806.
    33. Pacyna, J. M., Pacyna, E. G., Steenhuisen, F. and Wilson, S., Mapping1995GlobalAnthropogenic Emissions of Mercury. Atmospheric Environment,2003,37: S109-S117.
    34. Pirrone, N., Costa, P., Pacyna, J. M. and Ferrara, R., Mercury Emissions to the Atmospherefrom Natural and Anthropogenic Sources in the Mediterranean Region. AtmosphericEnvironment,2001,35(17):2997-3006.
    35.许月阳,薛建明,王宏亮,管一明,王小明,火电厂汞污染控制对策探讨.中国电力,2013,46(3):91-93.
    36. Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H. and Dommergue, A., A Review ofWorldwide Atmospheric Mercury Measurements. Atmospheric Chemistry and Physics,2010,10(17):8245-8265.
    37. Smith-Downey, N. V., Sunderland, E. M. and Jacob, D. J., Anthropogenic Impacts on GlobalStorage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model.Journal of Geophysical Research-Biogeosciences,2010,115.
    38. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen,F. and Maxson, P., Global Emission of Mercury to the Atmosphere from AnthropogenicSources in2005and Projections to2020. Atmospheric Environment,2010,44(20):2487-2499.
    39. Streets, D. G., Zhang, Q. and Wu, Y., Projections of Global Mercury Emissions in2050.Environmental Science&Technology,2009,43(8):2983-2988.
    40. Pacyna, E. G. and Pacyna, J. M., Global Emission of Mercury from Anthropogenic Sources in1995. Water Air and Soil Pollution,2002,137(1-4):149-165.
    41. Li, G. H., Feng, X. B., Li, Z. G., Qiu, G. L., Shang, L. H., Liang, P., Wang, D. Y. and Yang, Y.K., Mercury Emission to Atmosphere from Primary Zn Production in China. Science of theTotal Environment,2010,408(20):4607-4612.
    42. Hylander, L. D. and Herbert, R. B., Global Emission and Production of Mercury During thePyrometallurgical Extraction of Nonferrous Sulfide Ores. Environmental Science&Technology,2008,42(16):5971-5977.
    43. Mlakar, T. L., Horvat, M., Kotnik, J., Jeran, Z., Vuk, T., Mrak, T. and Fajon, V., Biomonitoringwith Epiphytic Lichens as a Complementary Method for the Study of Mercury ContaminationNear a Cement Plant. Environmental Monitoring and Assessment,2011,181(1-4):225-241.
    44. Schneider, M. and Oerter, M., Limiting and Determining Mercury Emissions in the CementIndustry. Zkg International,2000,53(3):121-130.
    45. EPA, U., EPA's Mercury Information Collection Request. DC: USEPA,2009.
    46. Huang, X., Li, M. M., Friedli, H. R., Song, Y., Chang, D. and Zhu, L., Mercury Emissionsfrom Biomass Burning in China. Environmental Science&Technology,2011,45(21):9442-9448.
    47. Nriagu, J. and Becker, C., Volcanic Emissions of Mercury to the Atmosphere: Global andRegional Inventories. Science of the Total Environment,2003,304(1-3):3-12.
    48. Cooney, C. M., A Range of Possible Futures for Mercury Emissions. Environmental Science&Technology,2009,43(8):2663-2663.
    49. Wang, S. X., Zhang, L., Li, G. H., Wu, Y., Hao, J. M., Pirrone, N., Sprovieri, F. and Ancora, M.P., Mercury Emission and Speciation of Coal-fired Power Plants in China. AtmosphericChemistry and Physics,2010,10(3):1183-1192.
    50.张军营,任德贻,许德伟,煤中汞及其对环境影响.环境科学进展,1999,7(3):100-103.
    51.王起超,沈文国,麻壮伟,中国燃煤汞排放估算.中国环境科学,1999,19(4):318-321.
    52.黄文辉,杨宜春,中国煤中的汞.中国煤田地质,2002,14:37-40.
    53.蒋靖坤,郝吉明,吴烨, Streets, D. G.,段雷,田贺忠,中国燃煤汞排放清单的初步建立.环境科学,2005,26(2):34-39.
    54.冯新斌,洪业汤,洪冰,倪建宇,朱泳煊,煤中汞的赋予状态研究.矿物岩石地球化学通报,2001,20(2):71-78.
    55. Fang, F. M., Wang, Q. C. and Li, J. F., Urban Environmental Mercury in Changchun, aMetropolitan City in Northeastern China: Source, Cycle, and Fate. Science of the TotalEnvironment,2004,330(1-3):159-170.
    56. Fang, F. M., Wang, Q. C., Liu, R. H., Ma, Z. W. and Hao, Q. J., Atmospheric ParticulateMercury in Changchun City, China. Atmospheric Environment,2001,35(25):4265-4272.
    57. Fang, F. M., Wang, Q. C. and Li, J. F., Atmospheric Particulate Mercury Concentration andIts Dry Deposition Flux in Changchun City, China. Science of the Total Environment,2001,281(1-3):229-236.
    58.张建宇,潘荔,杨帆,刘嘉,中国燃煤电厂大气污染物控制现状分析.环境工程技术学报,2011,1(3):185-196.
    59. Dronen, L. C., Moore, A. E., Kozliak, E. I. and Seames, W. S., An Assessment of Acid Washand Bioleaching Pre-treating Options to Remove Mercury from Coal. Fuel,2004,83(2):181-186.
    60. Ohki, A., Iwashita, A., Tanamachi, S., Nakajima, T. and Takanashi, H., Removal of Mercuryfrom Coal by Mild Pyrolysis and Chelate Extraction. Abstracts of Papers of the AmericanChemical Society,2003,225: U869-U869.
    61. Wang, M., Keener, T. C. and Khang, S. J., The Effect of Coal Volatility on Mercury Removalfrom Bituminous Coal During Mild Pyrolysis. Fuel Processing Technology,2000,67(2):147-161.
    62. Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H. and Ohki, A., Removal of Mercuryfrom Coal by Mild Pyrolysis and Leaching Behavior of Mercury. Fuel,2004,83(6):631-638.
    63. Granite, E. J., Freeman, M. C., Hargis, R. A., O'Dowd, W. J. and Pennline, H. W., The ThiefProcess for Mercury Removal from Flue Gas. Journal of Environmental Management,2007,84(4):628-634.
    64.周劲松,午旭杰,高洪亮,骆仲泱,岑可法,循环流化床锅炉汞排放及控制实验研究.热力发电,2004,33(1):72-75.
    65. Liu, K. L., Gao, Y., Riley, J. T., Pan, W. P., Mehta, A. K., Ho, K. K. and Smith, S. R., AnInvestigation of Mercury Emission from FBC Systems Fired with High-chlorine Coals. Energy&Fuels,2001,15(5):1173-1180.
    66. Presto, A. A. and Granite, E. J., Survey of Catalysts for Oxidation of Mercury in Flue Gas.Environmental Science&Technology,2006,40(18):5601-5609.
    67.郑楚光,张军营,赵永椿,刘晶,郭欣,煤燃烧汞的排放及控制.北京:科学出版社,2010.
    68.于建国,我国汞污染防治现状和发展趋势.化学工业,2010,28(2-3):40-42.
    69.冯新斌,仇广乐,付学吾,何天容,李平,王少峰,环境汞污染.化学进展,2009,21(2/3):436-457.
    70.田利辉,李彩亭,曾光明,高招,罗瑶,燃煤烟气汞污染控制技术.环境工程,2008,26(5):48-53.
    71.孙巍,晏乃强,贾金平,载溴活性炭去除烟气中的单质汞.中国环境科学,2006,26(3):257-261.
    72. Goodsite, M. E., Plane, J. M. C. and Skov, H., A Theoretical Study of the Oxidation of Hg0toHgBr2in the Troposphere. Environmental Science&Technology,2004,38(6):1772-1776.
    73. Li, J. F., Yan, N. Q., Qu, Z., Qiao, S. H., Yang, S. J., Guo, Y. F., Liu, P. and Jia, J. P., CatalyticOxidation of Elemental Mercury over the Modified Catalyst Mn/alpha-Al2O3at LowerTemperatures. Environmental Science&Technology,2010,44(1):426-431.
    74. Ji, L., Sreekanth, P. M., Smirniotis, P. G., Thiel, S. W. and Pinto, N. G., ManganeseOxide/Titania Materials for Removal of NOxand Elemental mercury from Flue Gas. Energy&Fuels,2008,22(4):2299-2306.
    75. Li, H. L., Wu, C. Y., Li, Y. and Zhang, J. Y., Superior Activity of MnOx-CeO2/TiO2Catalyst forCatalytic Oxidation of Elemental Mercury at Low Flue Gas Temperatures. Applied CatalysisB-Environmental,2012,111:381-388.
    76. Yan, N. Q., Chen, W. M., Chen, J., Qu, Z., Guo, Y. F., Yang, S. J. and Jia, J. P., Significance ofRuO2Modified SCR Catalyst for Elemental Mercury Oxidation in Coal-fired Flue Gas.Environmental Science&Technology,2011,45(13):5725-5730.
    77. Wan, Q., Duan, L., Li, J. H., Chen, L., He, K. B. and Hao, J. M., Deactivation Performanceand Mechanism of Alkali (Earth) Metals on V2O5-WO3/TiO2Catalyst for Oxidation of GaseousElemental Mercury in Simulated Coal-fired Flue Gas. Catalysis Today,2011,175(1):189-195.
    78. Qu, Z., Yan, N. Q., Liu, P., Chi, Y. P. and Jia, J., Bromine Chloride as an Oxidant to ImproveElemental Mercury Removal from Coal-Fired Flue Gas. Environmental Science&Technology,2009,43(22):8610-8615.
    79. Qu, Z., Yan, N. Q., Liu, P., Guo, Y. F. and Jia, J. P., Oxidation and Stabilization of ElementalMercury from Coal-Fired Flue Gas by Sulfur Monobromide. Environmental Science&Technology,2010,44(10):3889-3894.
    80. Qu, Z., Yan, N. Q., Liu, P., Jia, J. P. and Yang, S. J., The Role of Iodine Monochloride for theOxidation of Elemental Mercury. Journal of Hazardous Materials,2010,183(1-3):132-137.
    81. Wu, C. L., Cao, Y., Dong, Z. B., Cheng, C. M., Li, H. X. and Pan, W. P., Evaluation ofMercury Speciation and Removal through Air Pollution Control Devices of a190MW Boiler.Journal of Environmental Sciences-China,2010,22(2):277-282.
    82. Pudasainee, D., Lee, S. J., Lee, S. H., Kim, J. H., Jang, H. N., Cho, S. J. and Seo, Y. C., Effectof Selective Catalytic Reactor on Oxidation and Enhanced Removal of Mercury in Coal-firedPower Plants. Fuel,2010,89(4):804-809.
    83.陈进生,袁东星,李全龙,郑剑铭,朱燕群,华晓宇,何胜,周劲松,燃煤烟气中净化设施对汞排放特性的影响.中国电机工程学报,2008,28(2):72-76.
    84.何胜,周劲松,朱燕群,骆仲泱,倪明江,岑可法,钒系SCR催化剂对汞形态转化的影响.浙江大学学报,2010,44(9):1773-1780.
    85. Liu, Y., Wang, Y. J., Wang, H. Q. and Wu, Z. B., Catalytic Oxidation of Gas-phase Mercuryover Co/TiO2Catalysts Prepared by Sol-gel Method. Catalysis Communications,2011,12(14):1291-1294.
    86. Kim, M. H., Ham, S. W. and Lee, J. B., Oxidation of Gaseous Elemental Mercury byHydrochloric Acid over CuCl2/TiO2-based Catalysts in SCR Process. Applied CatalysisB-Environmental,2010,99(1-2):272-278.
    87. Li, H. L., Li, Y., Wu, C. Y. and Zhang, J. Y., Oxidation and Capture of Elemental Mercuryover SiO2-TiO2-V2O5Catalysts in Simulated Low-rank Coal Combustion Flue Gas. ChemicalEngineering Journal,2011,169(1-3):186-193.
    88. Lee, W. J. and Bae, G. N., Removal of Elemental Mercury (Hg(O)) by Nanosized V2O5/TiO2Catalysts. Environmental Science&Technology,2009,43(5):1522-1527.
    89. Wu, C. L., Cao, Y., He, C. C., Dong, Z. B. and Pan, W. P., Study of Elemental MercuryRe-Emission through a Lab-Scale Simulated Scrubber. Fuel,2010,89(8):2072-2080.
    90. Omine, N., Romero, C. E., Kikkawa, H., Wu, S. and Eswaran, S., Study of Elemental MercuryRe-emission in a Simulated Wet Scrubber. Fuel,2012,91(1):93-101.
    91. Yang, Y. F., Huang, Q. F. and Wang, Q., Ignoring Emissions of Hg from Coal Ash andDesulfurized Gypsum Will Lead to Ineffective Mercury Control in Coal-Fired Power Plants inChina. Environmental Science&Technology,2012,46(6):3058-3059.
    92. Prabhu, V., Kim, T., Khakpour, Y., Serre, S. D. and Clack, H. L., Evidence of PowderedActivated Carbon Preferential Collection and Enrichment on Electrostatic PrecipitatorDischarge Electrodes During Sorbent Injection for Mercury Emissions Control. FuelProcessing Technology,2012,93(1):8-12.
    93. Wilcox, J., Rupp, E., Ying, S. C., Lim, D. H., Negreira, A. S., Kirchofer, A., Feng, F. and Lee,K., Mercury Adsorption and Oxidation in Coal Combustion and Gasification Processes.International Journal of Coal Geology,2012,90:4-20.
    94. Sjostrom, S., Durham, M., Bustard, C. J. and Martin, C., Activated Carbon Injection forMercury Control: Overview. Fuel,2010,89(6):1320-1322.
    95. Yang, H. Q., Xu, Z. H., Fan, M. H., Bland, A. E. and Judkins, R. R., Adsorbents for CapturingMercury in Coal-fired Boiler Flue Gas. Journal of Hazardous Materials,2007,146(1-2):1-11.
    96. Qu, Z., Chang, J. J., Hsiung, T. L., Yan, N. Q., Wang, H. P., Dod, R., Chang, S. G. and Miller,C., Halides on Carbonaceous Materials for Enhanced Capture of Hg0: Mechanistic Study.Energy&Fuels,2010,24:3534-3539.
    97. Sasmaz, E., Kirchofer, A., Jew, A. D., Saha, A., Abram, D., Jaramillo, T. F. and Wilcox, J.,Mercury Chemistry on Brominated Activated Carbon. Fuel,2012,99:188-196.
    98. Qiao, S. H., Chen, J., Li, J. F., Qu, Z., Liu, P., Yan, N. Q. and Jia, J. Q., Adsorption andCatalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina.Industrial&Engineering Chemistry Research,2009,48(7):3317-3322.
    99. Scala, F., Anacleria, C. and Cimino, S., Characterization of a Regenerable Sorbent for HighTemperature Elemental Mercury Capture from Flue Gas. Fuel,2013,108:13-18.
    100. Zhang, L., Zhuo, Y. Q., Du, W., Tao, Y., Chen, C. H. and Xu, X. C., Hg RemovalCharacteristics of Noncarbon Sorbents in a Fixed-Bed Reactor. Industrial&EngineeringChemistry Research,2012,51(14):5292-5298.
    101. Lee, J. Y., Ju, Y. H., Keener, T. C. and Varma, R. S., Development of Cost-effective NoncarbonSorbents for Hg0Removal from Coal-fired Power Plants. Environmental Science&Technology,2006,40(8):2714-2720.
    102. Ding, F., Zhao, Y. C., Mi, L. L., Li, H. L., Li, Y. and Zhang, J. Y., Removal of Gas-PhaseElemental Mercury in Flue Gas by Inorganic Chemically Promoted Natural Mineral Sorbents.Industrial&Engineering Chemistry Research,2012,51(7):3039-3047.
    103. Abu-Daabes, M. A. and Pinto, N. G., Synthesis and Characterization of a Nano-structuredSorbent for the Direct Removal of Mercury Vapor from Flue Gases by Chelation. ChemicalEngineering Science,2005,60(7):1901-1910.
    104. Yang, S. J., Yan, N. Q., Guo, Y. F., Wu, D. Q., He, H. P., Qu, Z., Li, J. F., Zhou, Q. and Jia, J.P., Gaseous Elemental Mercury Capture from Flue Gas Using Magnetic Nanosized(Fe3-xMnx)(1-delta)O4. Environmental Science&Technology,2011,45(4):1540-1546.
    105. Yang, S. J., Guo, Y. F., Yan, N. Q., Wu, D. Q., He, H. P., Xie, J. K., Qu, Z., Yang, C. and Jia, J.P., A Novel Multi-Functional Magnetic Fe-Ti-V Spinel Catalyst for Elemental MercuryCapture and Callback from Flue Gas. Chemical Communications,2010,46(44):8377-8379.
    106. Yang, S. J., Guo, Y. F., Yan, N. Q., Wu, D. Q., He, H. P., Qu, Z., Yang, C., Zhou, Q. and Jia, J.P., Nanosized Cation-Deficient Fe-Ti Spinel: A Novel Magnetic Sorbent for ElementalMercury Capture from Flue Gas. Acs Applied Materials&Interfaces,2011,3(2):209-217.
    107. Yang, S. J., Guo, Y. F., Yan, N. Q., Wu, D. Q., He, H. P., Qu, Z. and Jia, J. P., ElementalMercury Capture from Flue Gas by Magnetic Mn-Fe Spinel: Effect of Chemical Heterogeneity.Industrial&Engineering Chemistry Research,2011,50(16):9650-9656.
    108. Dong, J., Xu, Z. H. and Kuznicki, S. M., Mercury Removal from Flue Gases by NovelRegenerable Magnetic Nanocomposite Sorbents. Environmental Science&Technology,2009,43(9):3266-3271.
    109. Dong, J., Xu, Z. H. and Kuznicki, S. M., Magnetic Multi-Functional Nano Composites forEnvironmental Applications. Advanced Functional Materials,2009,19(8):1268-1275.
    110. Hower, J. C., Senior, C. L., Suuberg, E. M., Hurt, R. H., Wilcox, J. L. and Olson, E. S.,Mercury Capture by Native Fly Ash Carbons in Coal-fired Power Plants. Progress in Energyand Combustion Science,2010,36(4):510-529.
    111. Ahmaruzzaman, M., A Review on the Utilization of Fly Ash. Progress in Energy andCombustion Science,2010,36(3):327-363.
    112.彭苏萍,王立刚,燃煤飞灰对锅炉烟道气汞的吸附研究.煤炭科学技术,2002,30(9):33-35.
    113. Xu, W. Q., Wang, H. R., Zhu, T. Y., Kuang, J. Y. and Jing, P. F., Mercury Removal from CoalCombustion Flue Gas by Modified Fly Ash. Journal of Environmental Sciences-China,2013,25(2):393-398.
    114. Maroto-Valer, M. M., Zhang, Y. Z., Granite, E. J., Tang, Z. and Pennline, H. W., Effect ofPorous Structure and Surface Functionality on the Mercury Capacity of a Fly ash Carbon andIts Activated Sample. Fuel,2005,84(1):105-108.
    115. Clack, H. L., Estimates of Increased Black Carbon Emissions from Electrostatic Precipitatorsduring Powdered Activated Carbon Injection for Mercury Emissions Control. EnvironmentalScience&Technology,2012,46(13):7327-7333.
    116. Hutson, N. D., Ryan, S. P. and Touati, A., Assessment of PCDD/F and PBDD/F Emissionsfrom Coal-fired Power Plants During Injection of Brominated Activated Carbon for MercuryControl. Atmospheric Environment,2009,43(26):3973-3980.
    117.张林静,张琼,郑袁明,郑明兰,环境修复中锰氧化物与变价重金属交互作用的研究进展.环境科学学报,2013,33(6):1519-1526.
    118. Lafferty, B. J., Ginder-Vogel, M. and Sparks, D. L., Arsenite Oxidation by aPoorly-Crystalline Manganese Oxide.3. Arsenic and Manganese Desorption. EnvironmentalScience&Technology,2011,45(21):9218-9223.
    119. Lafferty, B. J., Ginder-Vogel, M., Zhu, M. Q., Livi, K. J. T. and Sparks, D. L., ArseniteOxidation by a Poorly Crystalline Manganese-Oxide.2. Results from X-ray AbsorptionSpectroscopy and X-ray Diffraction. Environmental Science&Technology,2010,44(22):8467-8472.
    120. Lafferty, B. J., Ginder-Vogel, M. and Sparks, D. L., Arsenite Oxidation by a PoorlyCrystalline Manganese-Oxide1. Stirred-Flow Experiments. Environmental Science&Technology,2010,44(22):8460-8466.
    121. Maliyekkal, S. M., Philip, L. and Pradeep, T., As(III) Removal from Drinking Water UsingManganese Oxide-Coated-Alumina: Performance Evaluation and Mechanistic Details ofSurface Binding. Chemical Engineering Journal,2009,153(1-3):101-107.
    122. Power, L. E., Arai, Y. and Sparks, D. L., Zinc Adsorption Effects on Arsenite OxidationKinetics at the Birnessite-Water Interface. Environmental Science&Technology,2005,39(1):181-187.
    123. Murray, K. J., Mozafarzadeh, M. L. and Tebo, B. M., Cr(III) Oxidation and Cr Toxicity inCultures of the Manganese(II)-Oxidizing Pseudomonas Putida Strain GB-1. GeomicrobiologyJournal,2005,22(3-4):151-159.
    124. Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R. andWebb, S. M., Biogenic Manganese Oxides: Properties and Mechanisms of Formation. AnnualReview of Earth and Planetary Sciences,2004,32:287-328.
    125. Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K. and Soma, M.,Interaction of Inorganic Arsenic with Biogenic Manganese Oxide Produced by aMn-Oxidizing Fungus, Strain KR21-2. Environmental Science&Technology,2004,38(24):6618-6624.
    126. Wei, W. F., Cui, X. W., Chen, W. X. and Ivey, D. G., Manganese Oxide-Based Materials asElectrochemical Supercapacitor Electrodes. Chemical Society Reviews,2011,40(3):1697-1721.
    127. Li, J. W., Song, C. and Liu, S. T., Catalytic Oxidation of Chlorobenzene over MnO2Nanorodswith Different Phase Structures. Acta Chimica Sinica,2012,70(22):2347-2352.
    128.张舒乐,刘晓肖,钟秦,姚瑶,李小海, Mn-Y/TiO2低温NH3选择性催化还原NO性能研究.中国电机工程学报,2011,31(35):1-6.
    129. Thirupathi, B. and Smirniotis, P. G., Effect of Nickel as Dopant in Mn/TiO2Catalysts for theLow-Temperature Selective Reduction of NO with NH3. Catalysis Letters,2011,141(10):1399-1404.
    130. Li, K., Tang, X. L., Yi, H. H., Ning, P., Song, J. H. and Wang, J. G., Mechanism of CatalyticOxidation of NO over Mn-Co-Ce-OxCatalysts with the Aid of Nonthermal Plasma at LowTemperature. Industrial&Engineering Chemistry Research,2011,50(19):11023-11028.
    131. Jiang, B. Q., Wu, Z. B., Liu, Y., Lee, S. C. and Ho, W. K., DRIFT Study of the SO2Effect onLow-Temperature SCR Reaction over Fe-Mn/TiO2. Journal of Physical Chemistry C,2010,114(11):4961-4965.
    132. Wu, Z. B., Jiang, B. Q., Liu, Y., Wang, H. Q. and Jin, R. B., DRIFT Study ofManganese/Titania-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOwith NH3. Environmental Science&Technology,2007,41(16):5812-5817.
    133. Carja, G., Kameshima, Y., Okada, K. and Madhusoodana, C. D., Mn-Ce/ZSM5as a NewSuperior Catalyst for NO Reduction with NH3. Applied Catalysis B-Environmental,2007,73(1-2):60-64.
    134.沈伯雄,史展亮,史建伟,杨婷婷,赵宁,基于Mn-CeOx/ACFN的低温SCR脱硝.化工进展,2008,27(1):87-91.
    135. Ramesh, K., Chen, L. W., Chen, F. X., Liu, Y., Wang, Z. and Han, Y. F., Re-Investigating theCO Oxidation Mechanism over Unsupported MnO, Mn2O3and MnO2Catalysts. CatalysisToday,2008,131(1-4):477-482.
    136. Huang, Q., Yan, X. K., Li, B., Xu, X. L., Chen, Y. W., Zhu, S. M. and Shen, S. B., Activity andStability of Pd/MMnOx (M=Co, Ni, Fe and Cu) Supported on Cordierite as CO OxidationCatalysts. Journal of Industrial and Engineering Chemistry,2013,19(2):438-443.
    137. Han, Y. F., Chen, F. X., Zhong, Z. Y., Ramesh, K., Chen, L. W. and Widjaja, E., ControlledSynthesis, Characterization, and Catalytic Properties of Mn2O3and Mn3O4NanoparticlesSupported on Mesoporous Silica SBA-15. Journal of Physical Chemistry B,2006,110(48):24450-24456.
    138. Fan, X. Y., Yang, H. S., Tian, W., Nie, A. M., Hou, T. F., Qiu, F. M. and Zhang, X. B.,Catalytic Oxidation of Chlorobenzene over MnOx/Al2O3-carbon Nanotubes Composites.Catalysis Letters,2011,141(1):158-162.
    139. Yu, D. Q., Liu, Y. and Wu, Z. B., Low-Temperature Catalytic Oxidation of Toluene overMesoporous MnOx-CeO2/TiO2Prepared by Sol-Gel Method. Catalysis Communications,2010,11(8):788-791.
    140. Tian, W., Yang, H. S., Fan, X. Y. and Zhang, X. B., Low-Temperature Catalytic Oxidation ofChlorobenzene over MnOx/TiO2-CNTs Nano-Composites Prepared by Wet Synthesis Methods.Catalysis Communications,2010,11(15):1185-1188.
    141. Tian, W., Fan, X. Y., Yang, H. S. and Zhang, X. B., Preparation of MnOx/TiO2Composites andTheir Properties for Catalytic Oxidation of Chlorobenzene. Journal of Hazardous Materials,2010,177(1-3):887-891.
    142. Liang, S. H., Bulgan, F. T. G., Zong, R. L. and Zhu, Y. F., Effect of Phase Structure of MnO2Nanorod Catalyst on the Activity for CO Oxidation. Journal of Physical Chemistry C,2008,112(14):5307-5315.
    143. Yuan, C. Z., Gao, B., Su, L. H. and Zhang, X. G., Interface Synthesis of Mesoporous MnO2and Its Electrochemical Capacitive Behaviors. Journal of Colloid and Interface Science,2008,322(2):545-550.
    144. Finocchio, E. and Busca, G., Characterization and Hydrocarbon Oxidation Activity ofCoprecipitated Mixed Oxides Mn3O4/Al2O3. Catalysis Today,2001,70(1-3):213-225.
    145. Luo, J., Zhang, Q. H., Huang, A. M. and Suib, S. L., Total Oxidation of Volatile OrganicCompounds with Hydrophobic Cryptomelane-type Octahedral Molecular Sieves. Microporousand Mesoporous Materials,2000,35-6:209-217.
    146. Wang, F., Dai, H. X., Deng, J. G., Bai, G. M., Ji, K. M. and Liu, Y. X., Manganese Oxides withRod-, Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for theRemoval of Toluene. Environmental Science&Technology,2012,46(7):4034-4041.
    147. Lamaita, L., Peluso, M. A., Sambeth, J. E. and Thomas, H. J., Synthesis and Characterizationof Manganese Oxides Employed in VOCs Abatement. Applied Catalysis B-Environmental,2005,61(1-2):114-119.
    148. Peluso, M. A., Gambaro, L. A., Pronsato, E., Gazzoli, D., Thomas, H. J. and Sambeth, J. E.,Synthesis and Catalytic Activity of Manganese Dioxide (Type OMS-2) for the Abatement ofOxygenated VOCs. Catalysis Today,2008,133:487-492.
    149. Delimaris, D. and Ioannides, T., VOC Oxidation over MnOx-CeO2Catalysts Prepared by aCombustion Method. Applied Catalysis B-Environmental,2008,84(1-2):303-312.
    150. Li, H. L., Wu, C. Y., Li, Y., Li, L. Q., Zhao, Y. C. and Zhang, J. Y., Role of Flue GasComponents in Mercury Oxidation over TiO2Supported MnOx-CeO2Mixed-Oxide at LowTemperature. Journal of Hazardous Materials,2012,243:117-123.
    151.梅志坚,控制烟气汞排放的钴锰系列吸附剂研究.上海交通大学博士学位论文,2008:31-41.
    152.焦叶凡,王学涛,庄沙丽,张兴宇, Mn系复合金属氧化物低温烟气脱硝催化剂研究进展.锅炉技术,2012,44(5):66-69.
    153.寻洲,童华,黄妍,童志权, Mn-Ce-Fe/TiO2低温催化还原NO的性能.环境科学学报,2008,28(9):1733-1738.
    154. Rallo, M., Lopez-Anton, M. A., Contreras, M. L. and Maroto-Valer, M. M., Mercury Policyand Regulations for Coal-fired Power Plants. Environmental Science and Pollution Research,2012,19(4):1084-1096.
    155.予馨,邝飚,《水俣公约》促进中国限汞进程.环境,2013,3:36-36.
    156. USEPA, National Emission Standards for Hazardous Air Pollutants from Coal-and Oil-firedElectric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-FiredElectric Utility, Idustrial-Comercial-Institutional, and SmallIndustrial-Comercial-Institutional Steam Generating Units.http://www.epa.gov/airquality/powerplanttoxics/pdfs/proposal.pdf,2011.
    157. Zhou, K. B. and Li, Y. D., Catalysis Based on Nanocrystals with Well-Defined Facets.Angewandte Chemie-International Edition,2012,51(3):602-613.
    158. Liu, X. W., Zhou, K. B., Wang, L., Wang, B. Y. and Li, Y. D., Oxygen Vacancy ClustersPromoting Reducibility and Activity of Ceria Nanorods. Journal of the American ChemicalSociety,2009,131(9):3140-3141.
    159. Tao, S. S., Li, C. T., Fan, X. P., Zeng, G. M., Lu, P., Zhang, X., Wen, Q. B., Zhao, W. W., Luo,D. Q. and Fan, C. Z., Activated Coke Impregnated with Cerium Chloride Used for ElementalMercury Removal from Simulated Flue Gas. Chemical Engineering Journal,2012,210:547-556.
    160. Hutson, N. D., Attwood, B. C. and Scheckel, K. G., XAS and XPS Characterization ofMercury Binding on Brominated Activated Carbon. Environmental Science&Technology,2007,41(5):1747-1752.
    161. Xu, R., Wang, X., Wang, D. S., Zhou, K. B. and Li, Y. D., Surface Structure Effects inNanocrystal MnO2and Ag/MnO2Catalytic Oxidation of CO. Journal of Catalysis,2006,237(2):426-430.
    162. Genuino, H. C., Dharmarathna, S., Njagi, E. C., Mei, M. C. and Suib, S. L., Gas-Phase TotalOxidation of Benzene, Toluene, Ethylbenzene, and Xylenes Using Shape-Selective ManganeseOxide and Copper Manganese Oxide Catalysts. Journal of Physical Chemistry C,2012,116(22):12066-12078.
    163.杨士建,磁性铁基尖晶石对气态零价汞的化学吸附研究.上海交通大学博士学位论文,2012,34-104.
    164. Zhang, W., Zhang, S., Liu, Y. and Chen, T. P., Evolution of Si Suboxides into Si NanocrystalsDuring Rapid Thermal Annealing as Revealed by XPS and Raman Studies. Journal of CrystalGrowth,2009,311(5):1296-1301.
    165. Kalubarme, R. S., Cho, M. S., Yun, K. S., Kim, T. S. and Park, C. J., Catalytic Characteristicsof MnO2Nanostructures for the O2Reduction Process. Nanotechnology,2011,22(39).
    166. Zhang, R., Alamdari, H. and Kaliaguine, S., SO2Poisoning of LaFe0.8Cu0.2O3PerovskitePrepared by Reactive Grinding during NO Reduction by C3H6. Applied Catalysis a-General,2008,340(1):140-151.
    167. Qi, G. S., Yang, R. T. and Chang, R., MnOx-CeO2Mixed Oxides Prepared by Co-Precipitationfor Selective Catalytic Reduction of NO with NH3at Low Temperatures. Applied CatalysisB-Environmental,2004,51(2):93-106.
    168. Machida, M., Uto, M., Kurogi, D. and Kijima, T., MnOx-CeO2Binary Oxides for CatalyticNOxSorption at Low Temperatures. Sorptive Removal of NOx. Chemistry of Materials,2000,12(10):3158-3164.
    169. Machida, M., Kurogi, D. and Kijima, T., MnOx-CeO2Binary Oxides for CatalyticNOx-Sorption at Low Temperatures. Selective Reduction of Sorbed NOx. Chemistry ofMaterials,2000,12(10):3165-3170.
    170. Chen, H., Sayari, A., Adnot, A. and Larachi, F., Composition-Activity Effects of Mn-Ce-OComposites on Phenol Catalytic Wet Oxidation. Applied Catalysis B-Environmental,2001,32(3):195-204.
    171. Zhou, K. B., Wang, X., Sun, X. M., Peng, Q. and Li, Y. D., Enhanced Catalytic Activity ofCeria Nanorods from Well-Defined Reactive Crystal Planes. Journal of Catalysis,2005,229(1):206-212.
    172. Wiatrowski, H. A., Das, S., Kukkadapu, R., Ilton, E. S., Barkay, T. and Yee, N., Reduction ofHg(II) to Hg(0) by Magnetite. Environmental Science&Technology,2009,43(14):5307-5313.
    173. Larachi, F., Pierre, J., Adnot, A. and Bernis, A., Ce3d XPS Study of Composite CexMn1-xO2-yWet Oxidation Catalysts. Applied Surface Science,2002,195(1-4):236-250.
    174. Granite, E. J., Pennline, H. W. and Hargis, R. A., Novel Sorbents for Mercury Removal fromFlue Gas. Industrial&Engineering Chemistry Research,2000,39(4):1020-1029.
    175. Liu, Y., Kelly, D. J. A., Yang, H. Q., Lin, C. C. H., Kuznicki, S. M. and Xu, Z. G., NovelRegenerable Sorbent for Mercury Capture from Flue Gases of Coal-Fired Power Plant.Environmental Science&Technology,2008,42(16):6205-6210.
    176. Yang, S. J., Guo, Y. F., Yan, N. Q., Wu, D. Q., He, H. P., Xie, J. K., Qu, Z. and Jia, J. P.,Remarkable Effect of the Incorporation of Titanium on the Catalytic Activity and SO2Poisoning Resistance of Magnetic Mn-Fe Spinel for Elemental Mercury Capture. AppliedCatalysis B-Environmental,2011,101(3-4):698-708.
    177. Tang, X. F., Li, J. H., Wei, L. S. and Hao, J. L., MnOx-SnO2Catalysts Synthesized by a RedoxCoprecipitation Method for Selective Catalytic Reduction of NO by NH3. Chinese Journal ofCatalysis,2008,29(6):531-536.
    178. Liu, C., Ma, Q. X., Liu, Y. C., Ma, J. Z. and He, H., Synergistic Reaction Between SO2andNO2on Mineral Oxides: A Potential Formation Pathway of Sulfate Aerosol. PhysicalChemistry Chemical Physics,2012,14(5):1668-1676.
    179.李晶,李忠,奚红霞,夏启斌,苯在改性活性炭上的脱附活化能.过程工程学报,2006,6(5):734-737.
    180. Xi, H. X., Li, Z., Zhang, H. B., Li, X. and Hu, X. J., Estimation of Activation Energy forDesorption of Low-Volatility Dioxins on Zeolites by TPD Technique. Separation andPurification Technology,2003,31(1):41-45.
    181. Li, Z., Wang, H. J., Xi, H. X., Xia, Q. B., Han, J. L. and Lu, L. A., Estimation of ActivationEnergy of Desorption of n-Hexanol from Activated Carbons by the TPD Technique.Adsorption Science&Technology,2003,21(2):125-133.
    182. Yang, R. T., Long, R. Q., Padin, J., Takahashi, A. and Takahashi, T., Adsorbents for Dioxins: ANew Technique for Sorbent Screening for Low-Volatile Organics. Industrial&EngineeringChemistry Research,1999,38(7):2726-2731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700