用户名: 密码: 验证码:
中国人群食管癌风险预测模型研究及全基因组关联研究数据挖掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:我国人群食管癌预测模型研究
     我们最近的全基因组关联研究(genome-wide association study, GWAS)已发现25个食管癌易感基因或位点。是否和如何能将这些遗传易感标志应用于食管癌风险预测是后GWAS的重要课题。本研究运用GWAS发现的食管癌遗传易感标志即单核苷酸多态(SNP),结合传统的食管癌风险因素即性别、年龄及吸烟和饮酒暴露资料,建立中国人群的食管癌风险预测模型。建模在9805个食管癌患者及10493个正常对照中进行。我们发现在25个食管癌易感位点中,17个具有显著的边际效应(marginal effect),8个具有显著的基因-饮酒交互作用。我们将这些SNP进行遗传风险评分(genetic risk score, wGRS)和权重遗传风险评分(weighted genetic risk score, wGRS)后,用非条件性logistic回归进行关联分析。结果表明17个呈边际效应的SNP显著增加食管癌发病风险约4倍(P=1.49×10-164),8个呈基因-饮酒交互作用的SNP则仅在饮酒者中增加食管癌发病风险约4倍(P=8.76×10-41)。通过绘制ROC曲线(receiver operating characteristic cuver)和计算赤池信息量准则(Akaike's Information Criterion, AIC)评估不同模型的拟合资料优良性,我们发现25个SNP以独立方式建立的食管癌风险预测模型AIC值最低,即具有最优拟合性。因此,我们以独立方式将这25个易感SNP及其与饮酒的交互作用,联合性别、年龄、吸烟及饮酒,建立预测模型。该模型的ROC曲线下面积(area under the curve, AUC)为70.9%,表明该模型可识别70.9%的食管癌病人。加入遗传易感标志比只用性别、年龄、吸烟及饮酒建立的模型预测能力提高了7%(P<0.0001)。这些结果表明整合遗传变异、生活方式因素及其交互作用于食管癌风险预测模型有助于鉴别食管癌患者。但是,还需要进一步研究,发现更多的遗传变异包括罕见变异,以更新该风险预测模型。
     第二部分:食管癌全基因组关联研究数据挖掘
     研究显示,有些染色体易感区段是多种不同类型肿瘤共有的易感区段。我们以往的GWAS发现13q22.1是重要的胰腺癌易感区段。通过在食管癌GWAS数据中对该区段进行基因型填补(imputation)和非条件性logistic回归分析,我们发现,在来自北京、河北和武汉的6177个食管癌患者和6179个正常对照中,位于该区段KLF5基因上游的rs1924966(OR=0.84,95%CI:0.80-0.89, P=1.37×10-10)和KLF5基因内含子区的rs115797771(OR=0.69,95%CI:0.62-0.78, P=2.32R10-10)与食管癌的易感性显著相关。我们还分析了这两个SNP与贲门癌(病例=1894,对照=1912)、胃体癌(病例=1007,对照=2243)以及结直肠癌(病例=1111,对照=1138)的关系。结果表明,它们与贲门癌的易感性相关(rs1924966, OR=0.84,95%CI:0.77-0.93, P=0.0003;rs115797771, OR=0.73,95%CI:0.60-0.89, P=0.0018),而与胃体癌(rs1924966, OR=1.04,95%CI:0.93-1.16, P=0.5001; rs115797771, OR=0.82,95%CI:0.65-1.05,P=0.1123)和结直肠癌(rsl924966, OR=0.89,95%CI:0.79-1.00, P=0.0527; rs115797771, OR=1.16,95%CI:0.91-1.48, P=0.2265)的易感性无关。rs115797771A/C变异还与IV期食管癌生存期相关;与AA基因型比较,AC和CC基因型生存时间长(MST=8vs MST=24;HR=0.41,95%CI:0.24-0.73, P=0.0021)。我们发现位于KLF5启动子区有一单碱基缺失变异(rs58090485),该变异与rs115797771高度连锁(r2=0.94)。生化实验表明该变异影响转录抑制因子结合,缺失等位基因的KLF5RNA表达水平显著高于插入等位基因。已知KLF5可通过激活NOTCH1表达而在食管癌中发挥抑癌基因的作用,因此rs58090485对KLF5转录活性的影响可能是其与食管癌易感性相关背后的机制。本研究表明13q22.1区段的遗传变异可能与多种消化道肿瘤发病风险相关,同时也提示KLF5可能在消化道肿瘤的发生发展中有重要作用。
Part Ⅰ:Study on risk prediction of esophageal cancer in Chinese population
     Genome-wide association studies (GWAS) have identified multiple genetic variants associated with risk of esophageal squamous-cell carcinoma (ESCC) in Chinese populations. In this study, we examined whether these genetic factors, along with non-genetic factors, could contribute to ESCC risk prediction. We examined25single nucleotide polymorphisms (SNPs) and4non-genetic factors (sex, age, smoking and drinking) associated with ESCC risk in9,805cases and10,493controls from Chinese populations. Weighted genetic risk score (wGRS) and unweighted genetic risk score (GRS) were calculated and logistic regression was used to analyze the association between wGRS or GRS and ESCC risk. We calculated the area under the curve (AUC) using receiver-operation-characteristic curve analysis to measure the discrimination after adding genetic variants to the model with only non-genetic factors. Net reclassification improvement (NRI) was used to quantify the degree of correct reclassification using different models. wGRS of the combined17SNPs with significant marginal effect (G SNPs) increased~4-fold ESCC risk (P=1.49×10-164) and the associations were significant in both drinkers and non-drinkers. However, wGRS of the8SNPs with significant effect in gene×drinking interaction (GE SNPs) increased~4-fold ESCC risk only in drinkers (Pinteration=8.76×10-41). The AUC for a risk model with4non-genetic factors,17G SNPs,8GE SNPs and their interactions with drinking was70.9%, with the significant improvement of7.0%compared with the model with only non-genetic factors (P<0.0001). Our results indicate that incorporating genetic variants, life-style factors and their interactions in ESCC risk models can be useful for identifying patients with ESCC. However, additional risk variants including rare risk variants are still need to be discovered by further studies to update this risk prediction model.
     Part Ⅱ:Data mining of esophageal cancer genome-wide association study
     Different types of human cancer may share the same genetic susceptibility region. To test this hypothesis, we conducted association studies between variants at chromosome13q22.1, which has previously been identified as a susceptibility locus for pancreatic cancer and various other cancers in digestive system. By using imputation analysis and logistic regression analysis, we found two variants, rs1924966and rs115797771located respectively in the upstream and intronic region of KLF5, associated with risk of ESCC in a case-control cohort comprising6,177cases and6,179controls recruited from Beijing, Hebei province and Hubei province (rs1924966, OR=0.84,95%CI:0.80-0.89, P=1.37×10∷10; rs115797771, OR=0.69,95%CI:0.62-0.78,2.32×10-10). These two SNPs were also proved to be associated with cardiac cancer risk (rs1924966, OR=0.84,95%CI:0.77-0.93, P=0.0003; rs115797771, OR=0.73,95%CI:0.60-0.89, P=0.0018) but not gastric cancer (rs1924966, OR=1.04,95%CI:0.93-1.16, P=0.5001; rs115797771, OR=0.82,95%CI:0.65-1.05, P=0.1123) and colorectal cancer (rs1924966, OR=0.89,95%CI:0.79-1.00, P=0.0527; rs115797771, OR=1.16,95%CI:0.91-1.48, P=0.2265). Additionally, we found that rs11579771is associated with length of survival of patients with stage IV ESCC. Compared with the AA genotype, the AC and CC genotypes had longer survival time (8months vs24months, P=0.0021). Fine-mapping of this genetic region revealed a single base (A/-) Indel variant (rs58090485) that was also associated with risk of ESCC. This Indel variant is located in the promoter region of KLF5and is in strong linkage disequilibrium with rs115797771(r2=0.94). Biochemical assays showed that the A deletion disturbs a transcriptional repressor binding site and results in increased expression of KLF5compared with the A insertion. These results suggest that genetic variants at13q22.1are associated with risk of multiple types of cancer in the digestive system, which might point out an important role of KLF5in the carcinogenesis.
引文
Abnet, C. C., Freedman, N. D., Hu, N., Wang, Z., Yu, K., Shu, X. O., Yuan, J. M., Zheng, W., Dawsey, S. M., Dong, L. M., et al. (2010). A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet 42,764-767.
    Aschard, H., Chen, J., Cornelis, M. C., Chibnik, L. B., Karlson, E. W., and Kraft, P. (2012). Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am J Hum Genet 90, 962-972.
    Bagnardi, V., Blangiardo, M., La Vecchia, C., and Corrao, G. (2001). A meta-analysis of alcohol drinking and cancer risk. Br J Cancer 85,1700-1705.
    Cochrane, J., Chen, H., Conigrave, K. M., and Hao, W. (2003). Alcohol use in China. Alcohol Alcohol 38,537-542.
    Cook, N. R., and Paynter, N. P. (2011). Performance of reclassification statistics in comparing risk prediction models. Biom J 53,237-258.
    Cornelis, M. C., Qi, L., Zhang, C, Kraft, P., Manson, J., Cai, T., Hunter, D. J., and Hu, F. B. (2009). Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med 150,541-550.
    Cui, R., Kamatani, Y, Takahashi, A., Usami, M., Hosono, N., Kawaguchi, T., Tsunoda, T., Kamatani, N., Kubo, M., Nakamura, Y., and Matsuda, K. (2009). Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137,1768-1775.
    Gao, Y. T., McLaughlin, J. K., Blot, W. J., et al. (1994). Risk factors for esophageal cancer in Shanghai, China. I. Role of cigarette smoking and alcohol drinking. Int J Cancer 58,192-196.
    Islami, F., Fedirko, V., Tramacere, I., Bagnardi, V., Jenab, M., Scotti, L., Rota, M., Corrao, G., Garavello, W., Schuz, J., et al. (2011). Alcohol drinking and esophageal squamous cell carcinoma with focus on light-drinkers and never-smokers:a systematic review and meta-analysis. Int J Cancer 129,2473-2484.
    Lindstrom, S., Schumacher, F. R., Cox, D., Travis, R. C, Albanes, D., Allen, N. E., Andriole, G., Berndt, S. I., Boeing, H., Bueno-de-Mesquita, H. B., et al. (2012). Common genetic variants in prostate cancer risk prediction--results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 21,437-444.
    Liu, J., Xie, X., Zhou, C., Peng, S., Rao, D., and Fu, J. (2012). Which factors are associated with actual 5-year survival of oesophageal squamous cell carcinoma? Eur J Cardiothorac Surg 41, e7-11.
    Lubin, J. H., Cook, M. B., Pandeya, N., Vaughan, T. L., Abnet, C. C., Giffen, C., Webb, P. M., Murray, L. J., Casson, A. G., Risch, H. A., et al. (2012). The importance of exposure rate on odds ratios by cigarette smoking and alcohol consumption for esophageal adenocarcinoma and squamous cell carcinoma in the Barrett's Esophagus and Esophageal Adenocarcinoma Consortium. Cancer Epidemiol 36,306-316.
    Morita, M., Kumashiro, R., Kubo, N., Nakashima, Y., Yoshida, R., Yoshinaga, K., Saeki, H., Emi, Y, Kakeji, Y, Sakaguchi, Y, et al. (2010). Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus:epidemiology, clinical findings, and prevention. Int J Clin Oncol 15,126-134.
    Pencina, M. J., D'Agostino, R. B., Sr., and Steyerberg, E. W. (2011). Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30,11-21.
    Song, C., Xing, D., Tan, W., Wei, Q., and Lin, D. (2001). Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res 61,3272-3275.
    Sun, T., Miao, X., Zhang, X., Tan, W., Xiong, P., and Lin, D. (2004). Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96,1030-1036.
    Toh, Y, Oki, E., Ohgaki, K., Sakamoto, Y, Ito, S., Egashira, A., Saeki, H., Kakeji, Y, Morita, M., Sakaguchi, Y, et al.(2010). Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus:molecular mechanisms of carcinogenesis. Int J Clin Oncol 15,135-144.
    Tramacere, I., La Vecchia, C., and Negri, E. (2011). Tobacco smoking and esophageal and gastric cardia adenocarcinoma:a meta-analysis. Epidemiology 22,344-349.
    Wacholder, S., Hartge, P., Prentice, R., Garcia-Closas, M., Feigelson, H. S., Diver, W. R., Thun, M. J., Cox, D. G., Hankinson, S. E., Kraft, P., et al. (2010). Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362,986-993.
    Wang, L. D., Zhou, F. Y., Li, X. M., Sun, L. D., Song, X., Jin, Y., Li, J. M., Kong, G. Q., Qi, H., Cui, J., et al. (2010). Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet 42,759-763.
    Wang, L. S., Chow, K. C., Chi, K. H., Liu, C. C., Li, W. Y., Chiu, J. H., and Huang, M. H. (1999). Prognosis of esophageal squamous cell carcinoma:analysis of clinicopathological and biological factors. Am J Gastroenterol 94,1933-1940.
    Wu, C., Hu, Z., He, Z., Jia, W., Wang, F., Zhou, Y, Liu, Z., Zhan, Q., Liu, Y., Yu, D., et al. (2011). Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet 43,679-684.
    Wu, C., Kraft, P., Zhai, K., Chang, J., Wang, Z., Li, Y., Hu, Z., He, Z., Jia, W., Abnet, C. C, et al. (2012). Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44,1090-1097.
    Zhang, X., Miao, X., Tan, W., Ning, B., Liu, Z., Hong, Y., Song, W., Guo, Y., Shen, Y, Qiang, B., et al. (2005). Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129,565-576.
    Zhao, P., Dai, M., Chen, W., and Li, N. (2010). Cancer trends in China. Jpn J Clin Oncol 40,281-285.
    Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang, H. M., Marth, G. T., and McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature 491,56-65.
    Abnet, C. C., Freedman, N. D., Hu, N., Wang, Z., Yu, K., Shu, X. O., Yuan, J. M., Zheng, W., Dawsey, S. M., Dong, L. M., et al. (2010). A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet 42,164-161.
    Amundadottir, L. T., Sulem, P., Gudmundsson, J., Helgason, A., Baker, A., Agnarsson, B. A., Sigurdsson, A., Benediktsdottir, K. R., Cazier, J. B., Sainz, J., et al. (2006). A common variant associated with prostate cancer in European and African populations. Nat Genet 38,652-658.
    Bateman, N. W., Tan, D., Pestell, R. G., Black, J. D., and Black, A. R. (2004). Intestinal tumor progression is associated with altered function of KLF5. J Biol Chem 279, 12093-12101.
    Bialkowska, A. B., Du, Y., Fu, H., and Yang, V. W. (2009). Identification of novel small-molecule compounds that inhibit the proproliferative Kruppel-like factor 5 in colorectal cancer cells by high-throughput screening. Mol Cancer Ther 8,563-570.
    Bieker, J. J. (2001). Kruppel-like factors:three fingers in many pies. J Biol Chem 276, 34355-34358.
    Chen, C., Benjamin, M. S., Sun, X., Otto, K. B., Guo, P., Dong, X. Y., Bao, Y., Zhou, Z., Cheng, X., Simons, J. W., and Dong, J. T. (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Prl human bladder cancer cell line. Int J Cancer 118,1346-1355.
    Concannon, P., Rich, S. S., and Nepom, G. T. (2009). Genetics of type 1A diabetes. N Engl J Med 360,1646-1654.
    Conkright, M. D., Wani, M. A., Anderson, K. P., and Lingrel, J. B. (1999). A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res 27,1263-1270.
    Cui, R., Kamatani, Y., Takahashi, A., Usami, M., Hosono, N., Kawaguchi, T., Tsunoda, T., Kamatani, N., Kubo, M., Nakamura, Y., and Matsuda, K. (2009). Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137,1768-1775.
    Diakiw, S. M., D'Andrea, R. J., and Brown, A. L. (2013). The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 65,999-1011.
    Dong, J. T., and Chen, C. (2009). Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66,2691-2706.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087-1093.
    Fujii, Y., Yoshihashi, K., Suzuki, H., Tsutsumi, S., Mutoh, H., Maeda, S., Yamagata, Y., Seto, Y., Aburatani, H., and Hatakeyama, M. (2012). CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc Natl Acad Sci U S A 109, 20584-20589.
    Gao, Y., Hu, N., Han, X. Y., Ding, T., Giffen, C, Goldstein, A. M., and Taylor, P. R. (2011). Risk factors for esophageal and gastric cancers in Shanxi Province, China:a case-control study. Cancer Epidemiol 35, e91-99.
    Goode, E. L., Chenevix-Trench, G., Song, H., Ramus, S. J., Notaridou, M., Lawrenson, K., Widschwendter, M., Vierkant, R. A., Larson, M. C., Kjaer, S. K., et al. (2010). A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet 42,874-879.
    Guo, P., Dong, X. Y., Zhang, X., Zhao, K. W., Sun, X., Li, Q., and Dong, J. T. (2009). Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. J Biol Chem 284,6071-6078.
    Hakonarson, H., Grant, S. F., Bradfield, J. P., Marchand, L., Kim, C. E., Glessner, J. T., Grabs, R., Casalunovo, T., Taback, S. P., Frackelton, E. C., et al. (2007). A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448,591-594.
    Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A., Sigurdsson, A., Baker, A., Palsson, A., Masson, G., et al. (2007). A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316,1491-1493.
    Hung, R. J., McKay, J. D., Gaborieau, V., Boffetta, P., Hashibe, M., Zaridze, D., Mukeria, A., Szeszenia-Dabrowska, N., Lissowska, J., Rudnai, P., et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452,633-637.
    Kaczynski, J., Cook, T., and Urrutia, R. (2003). Spl- and Kruppel-like transcription factors. Genome Biol 4,206.
    Kiemeney, L. A., Thorlacius, S., Sulem, P., Geller, F., Aben, K. K., Stacey, S. N., Gudmundsson, J., Jakobsdottir, M., Bergthorsson, J. T., Sigurdsson, A., et al. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40, 1307-1312.
    Kwak, M. K., Lee, H. J., Hur, K., Park do, J., Lee, H. S., Kim, W. H., Lee, K. U., Choe, K. J., Guilford, P., and Yang, H. K. (2008). Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 134,163-167.
    Lehmann, U., and Kreipe, H. (2001). Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25,409-418.
    Liu, E. Y., Li, M., Wang, W., and Li, Y. (2013). MaCH-admix:genotype imputation for admixed populations. Genet Epidemiol 37,25-37.
    Liu, R., Zhou, Z., Zhao, D., and Chen, C. (2011). The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol 25,1137-1144.
    Massague, J., Blain, S. W., and Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103,295-309.
    McConnell, B. B., Klapproth, J. M., Sasaki, M., Nandan, M. O., and Yang, V. W. (2008). Kruppel-like factor 5 mediates transmissible murine colonic hyperplasia caused by Citrobacter rodentium infection. Gastroenterology 134,1007-1016.
    McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., Hinds, D. A., Pennacchio, L. A., Tybjaerg-Hansen, A., Folsom, A. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488-1491.
    Nakamura, Y., Migita, T., Hosoda, F., Okada, N., Gotoh, M., Arai, Y., Fukushima, M., Ohki, M., Miyata, S., Takeuchi, K., et al. (2009). Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer 125, 1859-1867.
    Nandan, M. O., McConnell, B. B., Ghaleb, A. M., Bialkowska, A. B., Sheng, H., Shao, J., Babbin, B. A., Robine, S., and Yang, V. W. (2008). Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 134,120-130.
    Nandan, M. O., Yoon, H. S., Zhao, W., Ouko, L. A., Chanchevalap, S., and Yang, V. W. (2004). Kruppel-like factor 5 mediates the transforming activity of oncogenic H-Ras. Oncogene 23,3404-3413.
    Noto, J. M, Khizanishvili, T., Chaturvedi, R., Piazuelo, M. B., Romero-Gallo, J., Delgado, A. G., Khurana, S. S., Sierra, J. C., Krishna, U. S., Suarez, G., et al. (2013). Helicobacter pylori promotes the expression of Kruppel-like factor 5, a mediator of carcinogenesis, in vitro and in vivo. PLoS One 8, e54344.
    O'Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M., Carroll, L., Georgieva, L., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40,1053-1055.
    Petersen, G. M., Amundadottir, L., Fuchs, C. S., Kraft, P., Stolzenberg-Solomon, R. Z., Jacobs, K. B., Arslan, A. A., Bueno-de-Mesquita, H. B., Gallinger, S., Gross, M., et al. (2010). A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42,224-228.
    Pomerantz, M. M., Ahmadiyeh, N., Jia, L., Herman, P., Verzi, M. P., Doddapaneni, H., Beckwith, C. A., Chan, J. A., Hills, A., Davis, M., et al. (2009). The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 41,882-884.
    Roberts, A. B., and Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 100,8621-8623.
    Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., et al. (2007). Genomewide association analysis of coronary artery disease. N Engl J Med 357,443-453.
    Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., Erdos, M. R., Stringham, H. M., Chines, P. S., Jackson, A. U., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316,1341-1345.
    Shete, S., Hosking, F. J., Robertson, L. B., Dobbins, S. E., Sanson, M., Malmer, B., Simon, M., Marie, Y., Boisselier, B., Delattre, J. Y., et al. (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41,899-904.
    Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., Vincent, D., Belisle, A., Hadjadj, S., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445,881-885.
    Sogawa, K., Imataka, H., Yamasaki, Y., Kusume, H., Abe, H., and Fujii-Kuriyama, Y. (1993). cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 21,1527-1532.
    Song, C., Xing, D., Tan, W., Wei, Q., and Lin, D. (2001). Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res 61,3272-3275.
    Soon, M. S., Hsu, L. S., Chen, C. J., Chu, P. Y., Liou, J. H., Lin, S. H., Hsu, J. D., and Yeh, K. T. (2011). Expression of Kruppel-like factor 5 in gastric cancer and its clinical correlation in Taiwan. Virchows Arch 459,161-166.
    Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., Werge, T., Pietilainen, O. P., Mors, O., Mortensen, P. B., et al. (2009). Common variants conferring risk of schizophrenia. Nature 460,744-747.
    Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Jonsdottir, T. Walters, G. B., Styrkarsdottir, U., Gretarsdottir, S., Emilsson, V., Ghosh, S., et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39,770-775.
    Sun, T., Gao, Y., Tan, W., Ma, S., Shi, Y., Yao, J., Guo, Y., Yang, M., Zhang, X., Zhang, Q., et al. (2007). A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39,605-613.
    Sun, T., Miao, X., Zhang, X., Tan, W., Xiong, P., and Lin, D. (2004). Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96,1030-1036.
    Takagi, K., Miki, Y., Onodera, Y., Nakamura, Y., Ishida, T., Watanabe, M., Inoue, S., Sasano, H., and Suzuki, T. (2012). Kruppel-like factor 5 in human breast carcinoma:a potent prognostic factor induced by androgens. Endocr Relat Cancer 19,741-750.
    Takata, R., Akamatsu, S., Kubo, M., Takahashi, A., Hosono, N., Kawaguchi, T., Tsunoda, T., Inazawa, J., Kamatani, N., Ogawa, O., et al. (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42,751-754.
    Tarapore, R. S., Yang, Y., and Katz, J. P. (2013). Restoring KLF5 in esophageal squamous cell cancer cells activates the JNK pathway leading to apoptosis and reduced cell survival. Neoplasia 15,472-480.
    Tomlinson, I., Webb, E., Carvajal-Carmona, L., Broderick, P., Kemp, Z., Spain, S., Penegar, S., Chandler, I., Gorman, M., Wood, W., et al. (2007). A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39,984-988.
    Tomlinson, I. P., Webb, E., Carvajal-Carmona, L., Broderick, P., Howarth, K., Pittman, A. M., Spain, S., Lubbe, S., Walther, A., Sullivan, K., et al. (2008). A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40,623-630.
    Wang, L. D., Zhou, F. Y., Li, X. M., Sun, L. D., Song, X., Jin, Y., Li, J. M., Kong, G. Q., Qi, H., Cui, J., et al. (2010). Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet 42,759-763.
    Wu, C., Hu, Z., He, Z., Jia, W., Wang, F., Zhou, Y., Liu, Z., Zhan, Q., Liu, Y., Yu, D., et al. (2011). Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet 43,679-684.
    Wu, C., Kraft, P., Zhai, K., Chang, J., Wang, Z., Li, Y., Hu, Z., He, Z., Jia, W., Abnet, C. C., et al. (2012a). Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44,1090-1097.
    Wu, C., Miao, X., Huang, L., Che, X., Jiang, G., Yu, D., Yang, X., Cao, G., Hu, Z., Zhou, Y., et al. (2012b). Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 44,62-66.
    Yang, L. (2006). Incidence and mortality of gastric cancer in China. World J Gastroenterol 12,17-20.
    Yang, Y., Nakagawa, H., Tetreault, M. P., Billig, J., Victor, N., Goyal, A., Sepulveda, A. R., and Katz, J. P. (2011). Loss of transcription factor KLF5 in the context of p53 ablation drives invasive progression of human squamous cell cancer. Cancer Res 71, 6475-6484.
    Yang, Y., Tetreault, M. P., Yermolina, Y. A., Goldstein, B. G., and Katz, J. P. (2008). Kruppel-like factor 5 controls keratinocyte migration via the integrin-linked kinase. J Biol Chem 283,18812-18820.
    Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P., Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K., Chatterjee, N., et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39,645-649.
    Yue, W. H., Wang, H. F., Sun, L. D., Tang, F. L., Liu, Z. H., Zhang, H. X., Li, W. Q., Zhang, Y. L., Zhang, Y., Ma, C. C., et al. (2011). Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43,1228-1231.
    Zhang, B., Zhang, Z., Xia, S., Xing, C., Ci, X., Li, X., Zhao, R., Tian, S., Ma, G., Zhu, Z., et al. (2013). KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol 33,4919-4935.
    Zhang, X., Miao, X., Tan, W., Ning, B., Liu, Z., Hong, Y., Song, W., Guo, Y., Shen, Y., Qiang, B., et al. (2005). Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129,565-576.
    Zhao, D., Zhi, X., Zhou, Z., and Chen, C. (2012). TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis. Carcinogenesis 33,59-67.
    Zheng, H. Q., Zhou, Z., Huang, J., Chaudhury, L., Dong, J. T., and Chen, C. (2009). Kruppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1. Oncogene 28, 3702-3713.
    Zhu, N., Gu, L., Findley, H. W., Chen, C., Dong, J. T., Yang, L., and Zhou, M. (2006). KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem 281,14711-14718.
    Amundadottir, L. T., Sulem, P., Gudmundsson, J., Helgason, A., Baker, A., Agnarsson, B. A., Sigurdsson, A., Benediktsdottir, K. R., Cazier, J. B., Sainz, J., et al.(2006). A common variant associated with prostate cancer in European and African populations. Nat Genet 38,652-658.
    Antoniou, A. C., Cunningham, A. P., Peto, J., Evans, D. G., Lalloo, F., Narod, S. A., Risch, H. A., Eyfjord, J. E., Hopper, J. L., Southey, M. C., et al. (2008). The BOADICEA model of genetic susceptibility to breast and ovarian cancers:updates and extensions. Br J Cancer 98,1457-1466.
    Bao, W., Hu, F. B., Rong, S., Rong, Y., Bowers, K., Schisterman, E. F., Liu, L., and Zhang, C. (2013). Predicting risk of type 2 diabetes mellitus with genetic risk models on the basis of established genome-wide association markers:a systematic review. Am J Epidemiol 178,1197-1207.
    Barton, A., Thomson, W., Ke, X., Eyre, S., Hinks, A., Bowes, J., Plant, D., Gibbons, L. J., Wellcome Trust Case Control, C., Consortium, Y., et al.(2008). Rheumatoid arthritis susceptibility loci at chromosomes 10p15,12q13 and 22ql3. Nat Genet 40,1156-1159.
    Bolton, J. L., Stewart, M. C., Wilson, J. F., Anderson, N., and Price, J. F. (2013). Improvement in prediction of coronary heart disease risk over conventional risk factors using SNPs identified in genome-wide association studies. PloS one 8, e57310.
    Cantor, R. M., Lange, K., and Sinsheimer, J. S. (2010). Prioritizing GWAS results:A review of statistical methods and recommendations for their application. American journal of human genetics 86,6-22.
    Davies, R. W., Dandona, S., Stewart, A. F., Chen, L., Ellis, S. G., Tang, W. H., Hazen, S. L., Roberts, R., McPherson, R., and Wells, G. A. (2010). Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circ Cardiovasc Genet 3,468-474.
    de Bakker, P. I., Ferreira, M. A., Jia, X., Neale, B. M., Raychaudhuri, S., and Voight, B. F. (2008). Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Human molecular genetics 17, R122-128.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087-1093.
    Eeles, R. A., Olama, A. A., Benlloch, S., Saunders, E. J., Leongamornlert, D. A. Tymrakiewicz, M., Ghoussaini, M., Luccarini, C., Dennis, J., Jugurnauth-Little, S., et al. (2013). Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 45,385-391,391e381-382.
    Fellay, J., Thompson, A. J., Ge, D., Gumbs, C. E., Urban, T. J., Shianna, K. V., Little, L D., Qiu, P., Bertelsen, A. H., Watson, M., et al. (2010). ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464,405-408.
    Ford, I., Murray, H., Packard, C. J., Shepherd, J., Macfarlane, P. W., and Cobbe, S. M. (2007). Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl JMed 357,1477-1486.
    Gail, M. H. (2008). Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 100,1037-1041.
    Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B., Schairer, C, and Mulvihill, J. J. (1989). Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81, 1879-1886.
    Gudmundsson, J., Sulem, P., Manolescu, A., Amundadottir, L. T., Gudbjartsson, D., Helgason, A., Rafnar, T., Bergthorsson, J. T., Agnarsson, B. A., Baker, A., et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39,631-637.
    Herder, C., and Roden, M. (2011). Genetics of type 2 diabetes:pathophysiologic and clinical relevance. Eur J Clin Invest 41,679-692.
    Higgins, J. P., Little, J., Ioannidis, J. P., Bray, M. S., Manolio, T. A., Smeeth, L., Sterne, J. A., Anagnostelis, B., Butterworth, A. S., Danesh, J., et al. (2007). Turning the pump handle:evolving methods for integrating the evidence on gene-disease association. Am J Epidemiol 166,863-866.
    Higgins, J. P., Thompson, S. G., Deeks, J. J., and Altman, D. G. (2003). Measuring inconsistency in meta-analyses. Bmj 327,557-560.
    International HapMap, C., Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861.
    Ioannidis, J. P., Patsopoulos, N. A., and Evangelou, E. (2007). Heterogeneity in meta-analyses of genome-wide association investigations. PloS one 2, e841.
    Itsara, A., Cooper, G. M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R. M., Myers, R. M., Ridker, P. M., Chasman, D. I., et al.(2009). Population analysis of large copy number variants and hotspots of human genetic disease. American journal of human genetics 84,148-161.
    Jacobi, C. E., de Bock, G. H., Siegerink, B., and van Asperen, C. J. (2009). Differences and similarities in breast cancer risk assessment models in clinical practice:which model to choose? Breast Cancer Res Treat 115,381-390.
    Johansson, M., Holmstrom, B., Hinchliffe, S. R., Bergh, A., Stenman, U. H., Hallmans, G., Wiklund, F., and Stattin, P. (2012). Combining 33 genetic variants with prostate-specific antigen for prediction of prostate cancer:longitudinal study. Int J Cancer 130,129-137.
    Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., et al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science 308,385-389.
    Lindstrom, S., Schumacher, F. R., Cox, D., Travis, R. C., Albanes, D., Allen, N. E.. Andriole, G., Berndt, S. I., Boeing, H., Bueno-de-Mesquita, H. B., et al. (2012). Common genetic variants in prostate cancer risk prediction--results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 21,437-444.
    Liu, H., Wang, B., and Han, C. (2011). Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate 71,209-224.
    McCarroll, S. A., Huett, A., Kuballa, P., Chilewski, S. D., Landry, A., Goyette, P., Zody, M. C., Hall, J. L., Brant, S. R., Cho, J. H., et al. (2008). Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genets,1107-1112.
    McPherson, R. (2013). From genome-wide association studies to functional genomics: new insights into cardiovascular disease. Can J Cardiol 29,23-29.
    Meads, C., Ahmed, I., and Riley, R. D. (2012). A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat 132,365-377.
    Mealiffe, M. E., Stokowski, R. P., Rhees, B. K., Prentice, R. L., Pettinger, M., and Hinds, D. A. (2010). Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst 102,1618-1627.
    Nejentsev, S., Walker, N., Riches, D., Egholm, M., and Todd, J. A. (2009). Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324,387-389.
    Pharoah, P. D., Antoniou, A. C., Easton, D. F., and Ponder, B. A. (2008). Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358,2796-2803.
    Ripatti, S., Tikkanen, E., Orho-Melander, M., Havulinna, A. S., Silander, K., Sharma, A., Guiducci, C., Perola, M., Jula, A., Sinisalo, J., et al. (2010). A multilocus genetic risk score for coronary heart disease:case-control and prospective cohort analyses. Lancet 376,1393-1400.
    Ross, K. S., Carter, H. B., Pearson, J. D., and Guess, H. A. (2000). Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection. JAMA 284,1399-1405.
    Smith, R. A., Brooks, D., Cokkinides, V., Saslow, D., and Brawley, O. W. (2013). Cancer screening in the United States,2013:a review of current American Cancer Society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. CA Cancer J Clin 63,88-105.
    Song, C., Xing, D., Tan, W., Wei, Q., and Lin, D. (2001). Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res 61,3272-3275.
    Sun, T., Gao, Y., Tan, W., Ma, S., Shi, Y., Yao, J., Guo, Y, Yang, M., Zhang, X., Zhang, Q., et al. (2007). A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39,605-613.
    Sun, T., Miao, X., Zhang, X., Tan, W., Xiong, P., and Lin, D. (2004). Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96,1030-1036.
    Thomson, W., Barton, A., Ke, X., Eyre, S., Hinks, A., Bowes, J., Donn, R., Symmons, D., Hider, S., Bruce, I. N., et al. (2007). Rheumatoid arthritis association at 6q23. Nat Genet 39,1431-1433.
    Tikkanen, E., Havulinna, A. S., Palotie, A., Salomaa, V., and Ripatti, S. (2013). Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler Thromb Vasc Biol 33,2261-2266.
    Torres, J. M., Cox, N. J., and Philipson, L. H. (2013). Genome wide association studies for diabetes:perspective on results and challenges. Pediatr Diabetes 14,90-96.
    Wacholder, S., Hartge, P., Prentice, R., Garcia-Closas, M., Feigelson, H. S., Diver, W. R., Thun, M. J., Cox, D. G., Hankinson, S. E., Kraft, P., et al. (2010). Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362,986-993.
    Wu, C., Kraft, P., Zhai, K., Chang, J., Wang, Z., Li, Y, Hu, Z., He, Z., Jia, W., Abnet, C. C., et al. (2012). Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44,1090-1097.
    Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P., Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K., Chatterjee, N., et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39,645-649.
    Zeggini, E., and Ioannidis, J. P. (2009). Meta-analysis in genome-wide association studies. Pharmacogenomics 10,191-201.
    Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G., et al. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40,638-645.
    Zhang, X., Miao, X., Tan, W., Ning, B., Liu, Z., Hong, Y, Song, W, Guo, Y, Shen, Y, Qiang, B., et al. (2005). Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129,565-576.
    Zheng, S. L., Sun, J., Wiklund, F., Gao, Z., Stattin, P., Purcell, L. D., Adami, H. O., Hsu, F. C., Zhu, Y, Adolfsson, J., et al. (2009). Genetic variants and family history predict prostate cancer similar to prostate-specific antigen. Clin Cancer Res 15,1105-1111.
    Zheng, W., Wen, W., Gao, Y T., Shyr, Y, Zheng, Y, Long, J., Li, G., Li, C., Gu, K., Cai, Q., et al. (2010). Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst 102,972-981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700