用户名: 密码: 验证码:
耐沸水大豆基胶黏剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用大豆脱脂豆粉(DSF)制备环保型木材胶黏剂,对其中的大豆蛋白进行各种改性以提高豆胶的耐水性已有许多研究,但豆粉中还含有约40%的碳水化合物,影响豆胶的耐水性和使用性能,该组分的改性和利用尚未见报道。本论文先分析了大豆基胶黏剂中大豆蛋白、碳水化合物、蔗糖和葡萄糖含量与其耐水性的关系;再通过半纤维素酶酶解DSF中碳水化合物,并联合酸、盐、碱对DSF中大豆蛋白进行结构修饰,暴露其内部活性基团;接着进行环氧化接枝改性与苯乙烯接枝共聚改性,制备耐沸水大豆基胶黏剂。结果表明:
     (1)大豆基胶黏剂固化后的羟基含量随碳水化合物减少或蔗糖和葡萄糖成分增加而下降;葡萄糖和蔗糖均通过与蛋白质发生美拉德反应提高大豆基胶黏剂固化后的交联度和疏水性,但葡萄糖效果更好。大豆分离蛋白制备的大豆基胶黏剂吸水率最低,为6.26%;大豆基胶黏剂中碳水化合物的葡萄糖含量为71%和100%时,对应杨木和马尾松胶合板胶合强度最高,分别为0.73MPa和0.76MPa; DSF制备的大豆基胶黏剂固化后吸水率最高,胶合强度最低。降低碳水化合物含量或增加其蔗糖和葡萄糖组分的比例,均可降低大豆基胶黏剂固化后的亲水性,提高胶合强度。
     (2)较好的半纤维素酶酶解DSF中碳水化合物制备大豆基胶黏剂条件为pH值5.2、酶解温度50℃、时间20min,酶用量可根据实际需要做调整。酶解制备的大豆基胶黏剂p-木糖(64.65ppm)、p-D-葡萄糖(64.70ppm)和α-来苏糖(65.08ppm)的1HNMR谱氢化学位移信号增强,65.29ppm处阿拉伯半乳聚糖的氢化学位移信号减弱;还原糖、葡萄糖含量上升,蔗糖、粗纤维含量下降。导致胶黏剂不溶物含量均低于空白组,固化后的耐水性均高于空白组。
     (3)大豆基胶黏剂还原糖含量与胶合强度呈显著的正相关关系;半纤维素酶酶解温度和pH值对胶合强度有显著影响,对还原糖含量的影响不显著,酶解时间的影响最小;优化得到的最佳工艺为:酶解温度54℃、酶解时间20min、pH值5.1,获得的大豆基胶黏剂还原糖、葡萄糖、蔗糖、粗纤维含量和胶合强度分别为2.93%、1.020%、0.42%、1.15%和0.62MPa。XRD和1H NMR分析表明,DSF在半纤维素酶与酸盐碱联合处理后,碳水化合物与大豆蛋白均有水解,大豆蛋白有序度下降,但有序结构未改变;制备的大豆基胶黏剂有较多活性官能,固化后耐水性提高,但胶合强度未达到GB/T9846-2004中I类胶合板的要求。
     (4)较合适的ECH接枝工艺为胶液pH值6.2、接枝温度70℃、接枝时间30min。ECH对改性豆胶粘度影响较大,其添加量为DSF用量25%,粘度提高2889.5%;环氧树脂对改性大豆基胶黏剂的粘度影响较小,添加量为DSF用量50%,粘度提高12.6%。ECH和环氧树脂用量增加,改性豆胶固含量和胶合强度提高,其用量分别为10%和30%时,制作的胶合板可达到GB/T9846-2004中I类胶合板的要求。FTIR、1HMNR、TG和DSC分析表明,ECH接枝大豆基胶黏剂被接枝上环氧基,胶黏剂固化后羧酸酯和醚结构的FTIR吸收峰强度上升,羟基吸收峰强度下降;环氧树脂与大豆基胶黏剂混合后就有环氧基开环反应发生,固化过程中环氧基主要与羟基发生反应;固化后的改性大豆基胶黏剂耐热性能提局。
     (5)N-羟甲基丙烯酰胺(NMAM)较合适的接枝工艺和用量是:接枝pH值5.2、温度70℃和时间30min,NMAM添加量为DSF用量的15%。苯乙烯用量增加,大豆基胶黏剂粘度、固含量和单体转化率提高;苯乙烯用量为DSF的30%时,胶黏剂粘度为4.939Pa·s,固含量为22.6%,单体转化率为72.3%,pH值为7.53,甲醛含量为零,残留单体为0.28%,适用期4.6h,贮存期47天,制作的马尾松和巨尾桉胶合板胶合强度均达到国家标准GB/T98462004中对耐气候型胶合板的要求。FTIR、1HMNR、TG和DSC分析表明,NMAM在大豆基胶黏剂组分中形成有效接枝,苯乙烯单体与NMAM形成有效共聚;苯乙烯改性大豆基胶黏剂与PMDI混合后进一步消除了亲水性基团,固化后羟基含量下降、乙烯基消失、苯环结构比例增加,进一步提高耐水性。
     (6)将苯乙烯共聚改性大豆基胶黏剂制作成马尾松和巨尾桉胶合板,并进行加速、自然暴露和土埋老化试验。加速老化2160h,马尾松与巨尾桉胶合板的干状和湿状胶合强度下降范围分别为51.2%-69.0%、67.0%-70.9%与26.9%-55.0%、37.6%-39.1%,木破率趋近于零;自然暴露老化225天,马尾松与巨尾桉胶合板的干状和湿状胶合强度下降范围分别为3.5%-19.9%、10.0%-16.1%与3.8%-24.6%、9.8%-12.9%,相应的干状木破率变化较小,湿状木破率略有下降;土埋老化225天,马尾松与巨尾桉胶合板的干状和湿状胶合强度下降范围分别为37.4%..41.8%、48.2%-53.6%与57.7%-61.1%、59.1%-69.6%;相应的马尾松胶合板干状木破率为95%-100%,湿状木破率为零;巨尾桉胶合板木破率接近100%。马尾松胶合板加速老化比自然暴露或土埋老化的性能损失大,自然暴露老化比土埋老化的性能损失小;巨尾桉胶合板自然暴露老化比加速或土埋老化的性能损失小,土埋和加速老化时间45天的性能相近;加速老化和土埋老化对大豆基胶黏剂粘接性能的影响均剧烈于自然暴露老化;试验范围内3种老化方式对大豆基胶黏剂粘接性能的影响无明确相关性。SEM观测表明,未老化胶合板的单板结合较紧密,且见不到明显的胶接层;加速老化后,胶合板胶接层几乎被破坏,单板间出现分离;自然暴露老化后,胶合板无明显单板分离现象,但可观测到单板间的胶接层;土埋老化后,胶合板也看不到明显的单板分离,但单板腐朽较严重。
Preparing environmentally friendly soy-based adhesives using defatted soy flour and improving its water resistance via different types of modification techniques of soy protein were extensively investigated. However, in addition to protein, defatted soy flour also consists of40%(w/w) carbohydrate, which negatively affects the properties of soy-based adhesives. Modification and utilization of these components were rarely reported previously. In this Dessertation, the relationship between contents of soy protein, carbohydrate, sucrose and glucose in soy-based adhesives and its water resistance were determined. Viscozyme L enzymolysis conditions of carbohydrate in defatted soy flour (DSF) were investigated, and combination of acid, salt and alkali was then apply to modify the structure of soy protein in the DSF to expose its active functional groups. Then the epoxides or styrene were grafted into components of DSF to obtain boiling-water-resistant soy-based adhesives. The results showed that:
     (1) The amount of hydrophilic groups (e.g., hydroxyl groups) in the soy-based adhesives decreased as the carbohydrate content decreased or sucrose and glucose content increased. The cross-linking and hydrophobicities of cured soy-based adhesives were enhanced by Maillard reactions between soy protein and sucrose and glucose. Soy-based adhesives prepared with soy protein isolated and DSF had the lowest and highest water absorptions, respectively. The highest bonding strength of poplar and masson pine plywood were0.73MPa and0.76MPa, for a glucose content of carbohydrate in the soy-based adhesive of71wt%and100wt%, respectively. The lowest bonding strength was observed in a cured soy-based adhesive prepared from DSF. A reduced carbohydrate content, or increased sucrose and glucose fractions in the carbohydrate, decreased the hydrophilicity and increased the bonding strength of the cured SBA.
     (2) The suitable Viscozyme L enzymolysis conditions of carbohydrate in DSF are as follows:pH5.2, temperature50℃, and time20min, the additive amount of Viscozyme L depended on the acturelly needed. Under this conditions, the soy-based adhesives with higher1H NMR chemical shift of β-xylose(δ4.65ppm), β-D-glucose(δ4.70ppm), a-lyxose(δ5.08ppm) and lower1H NMR chemical shift of arabinogalactan (δ5.29ppm). Reducing sugar and glucose content was increase, whereas sucrose and coarse fibre content was decrease. The contents of insoluble substances in soy-based adhesives were lower than control, and its water resistance after curing higher than control.
     (3) Positive correlationship between reducing sugar content and bonding strength of soy-based adhesives was significance. The effects of treatment temperature and pH on bonding strength were significance, but insignificance on reducing sugar content; the effects of Viscozyme L treatment time were the smallest. The optimized preparation conditions of Viscozyme L treatment soy-based adhsive was treatment temperature54℃, treatment time20min, pH=5.1. Under this condition, the contents of reducing sugar, glucose, sucrose, coarse fibre and bonding strength of soy-based adhesives were2.93%,1.020%,0.42%,1.15%and0.62MPa, respectively. XRD and1NMR indicated that during DSF was treated by Viscozyme L with combination of acid, salt, and alkali, the carbohydrate and soy protein of DSF were hydrolysis; and the order degree of soy protein decrease, but the order structure had no variation. The soy-based adhesives contain more active functional groups and with better water resistance after curing, but bonding strength haven't met the requirement of GB/T9846-2004for plywood type I.
     (4) The suitable grafting conditions of Epichlorohydrin (ECH) on the components in DSF were as follows:pH6.2, temperature70℃, and time30min. The effects of additive amounts of ECH on viscosity of soy-based adhesives is significance than epoxy resin, the additive amounts of ECH and epoxy resin were25%and50%, viscosity of soy-based adhesives enhancement were2889.5%and12.6%, respectively. Solid content and bonding strength of soy-based adhesives increase with the additive amounts of ECH and epoxy resin. All bonding strength met the requirement of GB/T9846-2004for plywood type I when the additive amounts of ECH and epoxy resin were10%and30%, respectively. FTIR,1HMNR, TG, and DSC indicated that ECH modified soy-based adhesives were grafted epoxy groups, and FTIR absorption peaks of carboxylic ester and ether structure in ECH modified soy-based adhesives enhancement, meanwhile, the absorption peaks of hydroxyl decrease. During epoxy resin blend with soy-based adhesives, partly epoxy groups react with amino groups immediately; and majority epoxy groups react with hydroxyl in the process of curing. The heat resistance of curing soy-based adhesives was increased.
     (5) The suitable grafting conditions of N-methylol acrylamide (NMAM) on components in DSF were as follows:pH5.2, temperature70℃, and time30min; And the additive amounts of NMAM was15wt%of DSF."Viscosity, solid content, and monomer percent conversion increase with the additive amounts of styrene. The viscosity, solid content, monomer percent conversion, pH value, formaldehyde content, residual monomer, working life, and shelf life of styrene modified soy-based adhesive were4.939Pa.s,22.6%,72.3%,7.53,0,0.28%,4.6h, and47days, respectively, when the additive amounts of styrene was30wt%of DSF. Its bonding strength could meet the requirement of GB/T9846-2004for weathering plywood. FTIR,1HMNR, TG, and DSC indicated that NMAM was grafted into the component of soy-based adhesive, and styrene monomer copolymerization with NMAM. Hydrophilic groups of styrene grafted soy-based adhesives were further removed during blend with PMDI. The curing adhesives with hydroxyl group content decrease, vinyl disappearance, benzene ring percentage increase; finally, its water resistance was improved further.
     (6) Ageing ability of masson pine and eucalyptus grandis plywood were employed to evaluate the properties of styrene grafted soy-based adhesive. The decreased dry and wet strength of masson pine or eucalyptus grandis plywood were range from51.2%to69%,67%to70.9%,26.9%to55.0%, and37.6%to39.1%, respectively; and wood fail percentage was almost zero when accelerated ageing time was2160h. The decreased dry and wet strength of masson pine or eucalyptus grandis plywood were range from3.5%to19.9%,10.0%to16.1%,3.8%to24.6%, and9.8%to12.9%, respectively; and wood fail percentage of dry samples were no veriation, but wood fail percentage of wet samples were decrease when natural ageing time was 225days. The decreased dry and wet strength of masson pine or eucalyptus grandis plywood were range from37.4%to41.8%,48.2%to53.6%,57.7%to61.1%, and59.1%to69.6%, respectively; and wood fail percentage of dry masson pine samples were range from95%to100%, but wood fail percentage of wet masson pine samples were zero; all the wood fail percentage of eucalyptus grandis samples were almost100%when soil burial time was225days. The properties reduction of masson pine plywood during accelerated ageing test was higher than natural ageing or soil burial test, and soil burial test was higher than natural ageing test. The properties reduction of eucalyptus grandis plywood during natural ageing test was lower than accelerated ageing or soil burial test, and during45days of soil burial and accelerated ageing test, the properties reduction was similarly. The effects of accelerated ageing test or soil burial test on gluability of styrene grafted soy-based adhesive was severer than natural ageing test. Under the experimental scope, there are no significant correlations of the three kinds of ageing methods on gluability of soy-based adhesive. SEM indicated that combination of veneers in control samples were tight and bonding layers not clearly. All bonding layers of samples were almost damaged and veneers were delaminated during accelerated ageing test. There are no veneers of samples were delaminated during natural ageing test, but bonding layers were clearly. Also no veneers of samples were delaminated during soil burial test, but veneers were severe rotten.
引文
[1]顾继友.胶粘剂与涂料[M].中国林业出版社,1999.
    [2]李和平.胶黏剂生产原理与技术[M].化学工业出版社,2009.
    [3]龚辈凡.我国胶粘剂市场及“十二五”发展规划[J].粘接,2011,32(1):24-29.
    [4]Wang Z., Li Z., Gu Z., et al. Preparation, characterization and properties of starch-based wood adhesive [J]. Carbohydrate Polymers,2012,88(2):699-706.
    [5]Karabulut E., Pettersson T., Ankerfors M., et al. Adhesive Layer-by-Layer Films of Carboxymethylated Cellulose Nanoflbril—Dopamine Covalent Bioconjugates Inspired by Marine Mussel Threads [J]. ACS nano,2012,6(6):4731-4739.
    [6]Lambuth A. L. Protein adhesives for wood [M]. Handbook of Adhesive Technology, Revised and Expanded. Taylor & Francis Group, LLC.2003:457-478.
    [7]Ratna D., Banthia A. K. Epoxidized soybean oil toughened epoxy adhesive [J]. Journal of Adhesion Science and Technology,2000,14(1):15-25.
    [8]Wattanakorn N., Asavapichayont P., Nunthanid J., et al. Pectin-based bioadhesive delivery of carbenoxolone sodium for aphthous ulcers in oral cavity [J]. AAPS PharmSciTech,2010,11(2):743-751.
    [9]Navarrete P., Pizzi A., Tapin-Lingua S., et al. Low Formaldehyde Emitting Biobased Wood Adhesives Manufactured from Mixtures of Tannin and Glyoxylated Lignin [J]. Journal of Adhesion Science and Technology,2012,26(10-11):1667-1684.
    [10]Ping L., Pizzi A., Guo Z. D., et al. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive [J]. Industrial Crops and Products,2012,40:13-20.
    [11]Yuan Y. J., Velev O. D., Chen K., et al. Effect of pH and Ca2+ -induced associations of soybean proteins [J]. Journal of agricultural and food chemistry,2002, 50(17):4953-4958.
    [12]石彦国,任莉.大豆制品工艺学[M].中国轻工业出版社,1993.
    [13]刘大川,田少君.中国大豆工业当前形势及展望[J].中国油脂,2002,27(5):5-9.
    [14]Hymowitz T. On the domestication of the soybean [J]. Economic Botany,1970, 24(4):408-421.
    [15]Lee A. L., Wand A. J. Microscopic origins of entropy, heat capacity and the glass transition in proteins [J]. Nature,2001,411(6836):501-504.
    [16]Reat V., Dunn R., Ferrand M., et al. Solvent dependence of dynamic transitions in protein solutions [J]. Proceedings of the National Academy of Sciences,2000, 97(18):9961-9966.
    [17]Moure A., Sineiro J., Dominguez H., et al. Functionality of oilseed protein products:A review [J]. Food Research International,2006,39(9):945-963.
    [18]Morrisey P., Olbrantz K., Greaser M. A simple, sensitive enzymatic method for quantitation of soya proteins in soya-meat blends [J]. Meat Science,1982,7(2): 109-116.
    [19]王尔惠,食品工业.大豆蛋白质生产新技术[M].中国轻工业出版社,1999.
    [20]Keshun L. Soybeans:chemistry, technology, and utilization [M]. Chapman & Hall,1997.
    [21]Kumar R., Choudhary V., Mishra S., et al. Adhesives and plastics based on soy protein products [J]. Industrial crops and products,2002,16(3):155-172.
    [22]崔洪斌.大豆生物活性物质的开发与应用[M].中国轻工业出版社,2001.
    [23]Riblett A. L., Thomas J., Schmidt K. A., et al. Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes [J]. Journal of agricultural and food chemistry,2001,49(10):4983-4989.
    [24]Utsumi S., Matsumura Y., Mori T. Structure function relationships of soy proteins [M]. Food proteins and their application. New York; Marcel Dekker.1997:257-292.
    [25]Utsumi S., Kinsella J. E. Structure-function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins [J]. Journal of agricultural and food chemistry,1985,33(2):297-303.
    [26]Prinyawiwatkul W., Beuchat L. R., Mcwatters K. H., et al. Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling, and fungal fermentation [J]. Journal of agricultural and food chemistry,1997,45(2):480-486.
    [27]Sun X., Bian K. Shear strength and water resistance of modified soy protein adhesives [J]. Journal of the American Oil Chemists'Society,1999,76(8):977-980.
    [28]Molina E., Defaye A. B., Ledward D. A. Soy protein pressure-induced gels [J]. Food Hydrocolloids,2002,16(6):625-632.
    [29]Van Vliet T., Martin A. H., Bos M. A. Gelation and interfacial behaviour of vegetable proteins [J]. Current Opinion in Colloid & Interface Science,2002,7(5-6): 462-468.
    [30]Apichartsrangkoon A. Effects of high pressure on rheological properties of soy protein gels [J]. Food Chemistry,2003,80(1):55-60.
    [31]Wang X. S., Tang C. H., Li B. S., et al. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids,2008,22(4):560-567.
    [32]Tang C. H., Ma C. Y. Effect of high pressure treatment on aggregation and structural properties of soy protein isolate [J]. LWT-Food Science and Technology, 2009,42(2):606-611.
    [33]Zhang C., Ma Y., Guo K., et al. High-Pressure Homogenization Lowers Water Vapor Permeability of Soybean Protein Isolate—Beeswax Films [J]. Journal of agricultural and food chemistry,2012,60(9):2219-2223.
    [34]Song X., Zhou C., Fu F., et al. Effect of high-pressure homogenization on particle size and film properties of soy protein isolate [J]. Industrial crops and products,2013, 43:538-544.
    [35]Li Y, Chen Z., Mo H. Effects of pulsed electric fields on physicochemical properties of soybean protein isolates [J]. LWT-Food Science and Technology,2007, 40(7):1167-1175.
    [36]沈兰,王昌盛,唐传核.高压微射流处理对大豆分离蛋白构象及功能特性的影响[J].食品科学,2012,33(03):72-76.
    [37]任红,杨洋,韦小英.超声波强化大豆分离蛋白膜性能的研究[J].现代食品科技,2006,22(2):101-103.
    [38]Sun Y, Sun C. Y., Chen G. Effect of Ultrasound Treatment on Properties of Soy Proteins Film [J]. Applied Mechanics and Materials,2012,117:513-516.
    [39]Chen L., Chen J. S., Yu L., et al. Modifications of Soy Protein Isolates Using Ultrasound Treatment for Improved Emulsifying Properties [J]. Advanced Materials Research,2012,554:944-948.
    [40]Hu H., Wu J., Li-Chan E. C. Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions [J]. Food Hydrocolloids, 2013,30(2):647-655.
    [41]林巧佳,童玲,林金春.大豆基木材胶粘剂改性研究的进展[J].亚热带农业研究,2007,3(4):284-289.
    [42]Frihart C. R. Soy protein adhesives [M]. The United States of America:The Mc Graw-Hill Companies, Inc.,2010.
    [43]Frihart C. Biobased Adhesives And Non-Convential Bonding [M]. Sustainable development in the forest products industry. Fernando Caldeira; Roger M. Rowell. 2010:98-114.
    [44]Hettiarachchy N., Kalapathy U., Myers D. Alkali-modified soy protein with improved adhesive and hydrophobic properties [J]. Journal of the American Oil Chemists' Society,1995,72(12):1461-1464.
    [45]Kalapathy U., Hettiarachchy N., Myers D., et al. Alkali-modified soy proteins: effect of salts and disulfide bond cleavage on adhesion and viscosity [J]. Journal of the American Oil Chemists' Society,1996,73(8):1063-1066.
    [46]陈奶荣,林巧佳,卞丽萍.酸碱对改性豆胶耐水胶合强度的影响[J].福建林学院学报,2010,30(4):349-352.
    [47]林巧佳,陈奶荣.一种用酸盐碱联合改性的大豆胶粘剂及其制备方法[P].2009.
    [48]Lin Q., Chen N., Bian L., et al. Development and mechanism characterization of high performance soy-based bio-adhesives [J]. International Journal of Adhesion and Adhesives,2012,34:11-16.
    [49]Huang W., Sun X. Adhesive properties of soy proteins modified by urea and guanidine hydrochloride [J]. Journal of the American Oil Chemists' Society,2000, 77(1):101-104.
    [50]Zhang Z., Hua Y. Urea-modified soy globulin proteins (7S and 11S):Effect of wettability and secondary structure on adhesion [J]. Journal of the American Oil Chemists' Society,2007,84(9):853-857.
    [51]Xu H. N., Shen Q. Y., Ouyang X. K., et al. Wetting of soy protein adhesives modified by urea on wood surfaces [J]. European Journal of Wood and Wood Products,2012,70(1-3):1-6.
    [52]Huang W., Sun X. Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate [J]. Journal of the American Oil Chemists'Society,2000,77(7):705-708.
    [53]魏起华,童玲,陈奶荣,et al.十二烷基硫酸钠对大豆基木材胶黏剂的改性作用[J].浙江林学院学报,2008,25(6):772-776.
    [54]李永辉,方坤,盛奎川.SDS改性大豆分离蛋白胶粘剂的性能研究[J].粮油加工,2007,(8):90-93.
    [55]李娜,谢建军,曾念,et al.胶合板用SDS改性大豆分离蛋白胶粘剂的制备及性能[J].中南林业科技大学学报,2012,32(1):88-93.
    [56]Gruener L., Ismond M. Effects of acetylation and succinylation on the functional properties of the canola 12S globulin [J]. Food Chemistry,1997,60(4):513-520.
    [57]Achouri A., Zhang W. Effect of succinylation on the physicochemical properties of soy protein hydrolysate [J]. Food Research International,2001,34(6):507-514.
    [58]Liu Y., Li K. Development and characterization of adhesives from soy protein for bonding wood [J]. International Journal of Adhesion and Adhesives,2007,27(1): 59-67.
    [59]童玲,林金春,魏起华,et al.乙酸酐对大豆基木材胶粘剂的改性研究[J].福建林业科技,2009,35(4):37-40.
    [60]Matheis G. Phosphorylation of food proteins with phosphorus oxychloride—Improvement of functional and nutritional properties:A review [J]. Food Chemistry,1991,39(1):13-26.
    [61]Li C. P., Enomoto H., Hayashi Y., et al. Recent advances in phosphorylation of food proteins:A review [J]. LWT-Food Science and Technology,2010,43(9): 1295-1300.
    [62]刘天一,迟玉杰.大豆分离蛋白的磷酸化改性及功能性质的研究[J].食品 与发酵工业,2004,30(6):118-121.
    [63]Zhang K., Li Y, Ren Y. Research on the phosphorylation of soy protein isolate with sodium tripoly phosphate [J]. Journal of Food Engineering,2007,79(4): 1233-1237.
    [64]Wang X. B., Chi Y J. Microwave-Assisted Phosphorylation of Soybean Protein Isolates and their Physicochemical Properties [J]. Czech Journal of Food Science, 2012,30(2):99-107.
    [65]Wang X. B., Chi Y. J. Preparation of microwave-phosphorylated soy protein isolates through a Box-Behnken model optimization [J]. CyTA-Journal of Food,2012, 10(3):210-215.
    [66]申世强,傅亮,徐康,et al.大豆分离蛋白磷酸化改性研究[J].食品工业科技,2010,(6):141-144.
    [67]Park S., Bae D., Rhee K. Soy protein biopolymers cross-linked with glutaraldehyde [J]. Journal of the American Oil Chemists' Society,2000,77(8): 879-884.
    [68]Wang Y, Mo X., Sun X. S., et al. Soy protein adhesion enhanced by glutaraldehyde crosslink [J]. Journal of applied polymer science,2007,104(1): 130-136.
    [69]李飞,李晓平,翁向丽,et al.戊二醛改性提高大豆胶粘剂耐水性能[J].大豆科学,2009,28(6):1062-1066.
    [70]雷洪,杜官本,周晓剑.乙二醛对蛋白基胶黏剂结构及性能的影响[J].西南林学院学报,2011,31(2):70-73.
    [71]张军涛,杨晓泉,黄立新.接枝共聚改性脱脂豆粉胶粘剂的研究[J].中国胶粘剂,2005,14(6):18-21.
    [72]贺宏彬,王晓光,宋阳,et al.醋酸乙烯酯-大豆蛋白接枝共聚乳液胶黏剂的研制[J].化学与粘合,2007,29(2):146-147.
    [73]贺宏彬,柴庆平,王晓光.大豆蛋白乳液胶粘剂改性的研究[J].大豆科学,2008,27(5):891-894.
    [74]贺宏彬,柴庆平,王晓光.大豆蛋白乳液胶粘剂的研制[J].中国胶粘剂,2008,17(5):15-19.
    [75]周华,姜鹏,杨成,et al.原子转移自由基聚合法合成大豆分离蛋白-g-聚甲基丙烯酸2-羟乙酯[J].高分子学报,2008,5:424-429.
    [76]唐蔚波,周华,周翠,et al.接枝改性大豆蛋白胶粘剂的合成及性能研究[J].大豆科学,2009,27(6):1032-1036.
    [77]Hojilla-Evangelista M., Dunn L., Jr. Foaming properties of soybean protein-based plywood adhesives [J]. Journal of the American Oil Chemists'Society, 2001,78(6):567-572.
    [78]Ji N., Long J., Zheng H. Y., et al. Phenolic resin modified soybean protein adhesive [J]. Advanced Materials Research,2011,236:3-7.
    [79]Qi G., Sun X. Soy Protein Adhesive Blends with Synthetic Latex on Wood Veneer [J]. Journal of the American Oil Chemists'Society,2011,88(2):271-281.
    [80]Gao Q., Shi S. Q., Zhang S., et al. Soybean meal-based adhesive enhanced by MUF resin [J]. Journal of applied polymer science,2012,5:3676-3681.
    [81]Allen A. J., Wescott J. M., Varnell D.F., et al. Protein Adhesive Formulations with Amine-Epichlorohydrin and Isocyanate Additives [P].2011.
    [82]Hong S. I., Choi W. Y., Cho S. Y, et al. Mechanical properties and biodegradability of poly-ε-caprolactone/soy protein isolate blends compatibilized by coconut oil [J]. Polymer Degradation and Stability,2009,94(10):1876-1881.
    [83]Qiu Y. Y, Li C., Zhang J. Z., et al. Study of Amino Polymer Modified Soy Protein Adhesive [J]. Applied Mechanics and Materials,2011,71:3165-3169.
    [84]Zeng N., Xie J. J., Ding C. Properties of the Soy Protein Isolate/PVAc Latex Blend Adhesives [J]. Advanced Materials Research,2012,550:1103-1107.
    [85]Pang J. Y, Dong L. N., Zhang S. C. Soybean Protein Acrylates Adhesive Research Progress [J]. Advanced Materials Research,2012,490:3620-3623.
    [86]刘燕,裘爱泳.大豆蛋白与多糖的接枝改性[J].中国油脂,2006,31(1):39-41.
    [87]管军军,裘爱泳,刘晓亚,et al.微波辐射大豆分离蛋白-糖接枝反应条件的研究[J].食品与生物技术学报,2005,24(5):16-20.
    [88]Schmitz Jr J. F. Enzyme modified soy flour adhesives [D]; Iowa State University, 2009.
    [89]Frihart C. R. Wood Adhesion and Adhesives [M]. Handbook of wood chemistry and wood composites. CRC press.2005:217-278.
    [90]桂成胜,刘小青,王古月,et al.钠基蒙脱土增强豆胶的耐水性研究[J].林产工业,2012,39(6):23-25.
    [91]Pizzi A. Advanced wood adhesives technology [M]. CRC,1994.
    [92]Wm Bain A., Olson R. VI. Soya protein adhesives for coated papers [J]. Protein and synthetic adhesives for paper coating,1952, (9):89.
    [93]Myers D. Industrial applications for soy protein and potential for increased utilization [J]. Cereal foods world,1993,38(5):355-358.
    [94]Jong L. Characterization of soy protein/styrene-butadiene rubber composites [J]. Composites Part A:Applied Science and Manufacturing,2005,36(5):675-682.
    [95]Wescott J. M., Frihart C. R. Competitive soybean flour/phenol-formaldehyde adhesives for oriented strandboard [C]; proceedings of the Proceedings,38th International Wood Composites Symposium, April, F,2004.
    [96]Chen N., Lin Q., Rao J., et al. Water resistances and bonding strengths of soy-based adhesives containing different carbohydrates [J]. Industrial crops and products,2013,50:44-49.
    [97]全国人造板标准化技术委员会.GB/T 17657—1999,人造板及饰面人造板理化性能试验方法[M].北京:;中国标准出版社.1999.
    [98]Zhong Z., Susan Sun X., Fang X., et al. Adhesion properties of soy protein with fiber cardboard [J]. Journal of the American Oil Chemists'Society,2001,78(1): 37-41.
    [99]Mo X., Sun X., Wang D. Thermal properties and adhesion strength of modified soybean storage proteins [J]. Journal of the American Oil Chemists' Society,2004, 81(4):395-400.
    [100]Wang Y., Wang D., Sun X. Thermal properties and adhesiveness of soy protein modified with cationic detergent [J]. Journal of the American Oil Chemists' Society, 2005,82(5):357-363.
    [101]兰辉,卞科.化学改性对脱脂大豆粉性质的影响(Ⅱ)[J].郑州工程学院学 报,2004,25(3):1-5.
    [102]朱伍权,陆莹,张跃宏,et al. MUF改性大豆蛋白胶黏剂的制备与性能研究[C];2013北京国际粘接技术研讨会暨第五届亚洲粘接技术研讨会,北京,2013.
    [103]刘玉环,蒋启海,罗爱香,et al.大豆球蛋白变性剂等对豆胶黏度的影响[J].林业科技,2006,31(4):48-51.
    [104]童玲,林巧佳,翁显英,et al.用大豆制备环保型木材胶粘剂的研究[J].中国生态农业学报,2008,16(4):957-962.
    [105]邱盈盈,张越,李城,et al.改性豆基蛋白胶粘剂的制备及应用[J].中国胶粘剂,2012,21(6):27-30.
    [106]Chen N., Lin Q., Bian L. Curing mechanism of modified soy-based adhesive and optimized plywood hot-pressing technology [J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(11):248-253.
    [107]吴螟,于志方,刘小青.无醛大豆胶制备胶合板工艺及性能探究[J].林产工业,2012,39(1):15-18.
    [108]雷洪,吴志刚,杜官本.交联改性大豆蛋白胶胶合板的工艺及湿剪切强度研究[J].木材工业,2013,(2):8-11.
    [109]张跃宏,陆莹,朱伍权,et al.纳米改性剂对大豆蛋白基胶勃剂性能的研究[C];2013北京国际粘接技术研讨会暨第五届亚洲粘接技术研讨会,北京,2013.
    [110]Gao Q., Li J., Shi S. Q., et al. Soybean meal-based adhesive reinforced with cellulose nano-whiskers [J]. BioResources,2012,7(4):5622-5633.
    [111]高振华,颐睥.利用强碱性降解大豆蛋白制备木材胶粘剂及其表征[J].高分子材料科学与工程,2010,26(11):126-129.
    [112]Gui C., Liu X., Wu D., et al. Preparation of a New Type of Polyamidoamine and Its Application for Soy Flour-Based Adhesives [J]. Journal of the American Oil Chemists' Society,2013,90(2):265-272.
    [113]Gui C., Wang G., Wu D., et al. Synthesis of a bio-based polyamidoamine-epichlorohydrin resin and its application for soy-based adhesives [J]. International Journal of Adhesion and Adhesives,2013,44:237-242.
    [114]Lei H., Du G., Wu Z., et al. Cross-linked soy-based wood adhesives for plywood [J]. International Journal of Adhesion and Adhesives,2014,50:199-203.
    [115]Li K., Peshkova S., Geng X. Investigation of soy protein-Kymene(?) adhesive systems for wood composites [J]. Journal of the American Oil Chemists' Society, 2004,81(5):487-491.
    [116]Frihart C. R., Wescott J. M. Improved water resistance of bio-based adhesives for wood bonding [C]; proceedings of the Proceedings,1st International Conference on Environmentally Compatible Forest Products, September, F,2004.
    [117]王伟宏,徐国良.蛋白胶/PF混合应用对胶合板强度影响的研究[J].林产工业,2006,33(5):30-32.
    [118]王伟宏,徐国良.豆胶/PF的混合应用[J].东北林业大学学报,2007,35(2):57-58.
    [119]Yang I., Kuo M., Myers D. J. Bond quality of soy-based phenolic adhesives in southern pine plywood [J]. Journal of the American Oil Chemists' Society,2006, 83(3):231-237.
    [120]Huang J., Li K. A new soy flour-based adhesive for making interior type II plywood [J]. Journal of the American Oil Chemists' Society,2008,85(1):63-70.
    [121]张亚慧,于文吉,祝荣先.苯酚改性豆基蛋白胶黏剂的制备及胶接强度的研究[J].化学与黏合,2008,30(1):13-16.
    [122]Chen N., Lin Q., Zeng Q., et al. Optimization of preparation conditions of soy flour adhesive for plywood by response surface methodology [J]. Industrial crops and products,2013,51:267-273.
    [123]Chen N., Lin Q., Rao J., et al. Environmentally friendly soy-based bio-adhesive: preparation, characterization, and its application to plywood [J]. BioResources,2012, 7(3):4273-4283.
    [124]Qi G., Li N., Wang D., et al. Physicochemical properties of soy protein adhesives modified by 2-octen-1-ylsuccinic anhydride [J]. Industrial Crops and Products,2013,46:165-172.
    [125]Qi G., Li N., Wang D., et al. Physicochemical properties of soy protein adhesives obtained by in situ sodium bisulfite modification during acid precipitation [J]. Journal of the American Oil Chemists'Society,2012,89(2):301-312.
    [126]Li T., Wang N., Fang Q. Incorporation of modified soy protein isolate as filier in BR/SBR blends [J]. Journal of materials science,2010,45(7):1904-1911.
    [127]Nordqvist P., Khabbaz F., Malmstrom E. Comparing bond strength and water resistance of alkali-modified soy protein isolate and wheat gluten adhesives [J]. International Journal of Adhesion and Adhesives,2010,30(2):72-79.
    [128]Liu D., Chen H., Chang P. R., et al. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive [J]. Bioresource Technology,2010,101(15):6235-6241.
    [129]Frihart C. R., Birkeland M. J., Allen A. J., et al. Soy adhesives that can form durable bonds for plywood, laminated wood flooring, and particleboard [C]; proceedings of the Proceedings of the International Convention of the Society of Wood Science and Technology and United Nations Economic Commission for Europe-Timber Committee, October, F,2010.
    [130]Schwarzkopf M., Huang J., Li K. Effects of adhesive application methods on performance of a soy-based adhesive in oriented strandboard [J]. Journal of the American Oil Chemists'Society,2009,86(10):1001-1007.
    [131]Gu K., Li K. Preparation and evaluation of particleboard with a soy flour-polyethylenimine-maleic anhydride adhesive [J]. Journal of the American Oil Chemists'Society,2011,88(5):673-679.
    [132]Bainy E., Tosh S., Corredig M., et al. Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate by-products [J]. Carbohydrate Polymers, 2008,72(4):664-672.
    [133]Karr-Lilienthal L., Kadzere C., Grieshop C., et al. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants:A review [J]. Livestock Production Science,2005,97(1):1-12.
    [134]Obendorf R. L., Kosina S. M. Soluble carbohydrates in soybean [M]. Soybean-biochemistry, chemistry and physiology.2011:201-228.
    [135]Kobayashi K., Kato A., Matsudomi N. Developments in novel functional food materials hybridization of soy protein to polysaccharides [J]. Nutrition Science of Soy Protein, Japan,1990,11:23-28.
    [136]Jin C., Wu X., Zhang Y. Relationship between antioxidants and acrylamide formation:A review [J]. Food Research International,2013,51(2):611-620.
    [137]Lorenz L., Frihart C. R., Wescott J. M. Chromatographic analysis of the reaction of soy flour with formaldehyde and phenol for wood adhesives [J]. Journal of the American Oil Chemists' Society,2007,84(8):769-776.
    [138]Mottram D. S., Wedzicha B. L., Dodson A. T. Food chemistry:Acrylamide is formed in the Maillard reaction [J]. Nature,2002,419:448-449.
    [139]Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review [J]. Journal of Agricultural and Food Chemistry,2003,51(16):4504-4526.
    [140]Jang Y., Huang J., Li K. A new formaldehyde-free wood adhesive from renewable materials [J]. International Journal of Adhesion and Adhesives,2011,31(7): 754-759.
    [141]Tang L., Zhang Z., Qi J., et al. The preparation and application of a new formaldehyde-free adhesive for plywood [J]. International Journal of Adhesion and Adhesives,2011,31(6):507-512.
    [142]Martins S. I., Jongen W. M., Van Boekel M. A. A review of Maillard reaction in food and implications to kinetic modelling [J]. Trends in Food Science & Technology, 2000,11(9):364-373.
    [143]Zhang Y., Zhang Y. Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge [J]. Critical Reviews in Food Science and Nutrition,2007,47(5):521-542.
    [144]Santoni I., Pizzo B. Evaluation of alternative vegetable proteins as wood adhesives [J]. Industrial Crops and Products,2013,45:148-154.
    [145]Rosset M., Acquaro V. R., Beleia A. D. P. Protein Extraction from Defatted Soybean Flour with Viscozyme L Pretreatment [J]. Journal of Food Processing and Preservation,2012:1-7.
    [146]Rosset M., Prudencio S. H., Beleia A. D. P. Viscozyme L action on soy slurry affects carbohydrates and antioxidant properties of silken tofu [J]. Food Science and Technology International,2012,18(6):531-538.
    [147]Slominski B. A., Campbell L. D. Non-starch polysaccharides of canola meal: Quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation [J]. Journal of the Science of Food and Agriculture,1990,53(2): 175-184.
    [148]朱建飞.菜籽多糖的制备、表征及体外活性[D].武汉;华中农业大学,2008.
    [149]Huisman M., Schols H., Voragen A. Cell wall polysaccharides from soybean (< i> Glycine max.) meal. Isolation and characterisation [J]. Carbohydrate Polymers, 1998,37(1):87-95.
    [150]Stombaugh S., Jung H., Orf J., et al. Genotypic and environmental variation in soybean seed cell wall polysaccharides [J]. Crop science,2000,40(2):408-412.
    [151]Huisman M., Schols H., Voragen A. Enzymatic degradation of cell wall polysaccharides from soybean meal [J]. Carbohydrate Polymers,1999,38(4): 299-307.
    [152]Hourigan J. A., Chesterman C. F. Application of carbohydrases in extracting protein from rice bran [J]. Journal of the Science of Food and Agriculture,1997,74(2): 141-146.
    [153]Hanmoungjai P., Pyle D. L., Niranjan K. Enzyme-assisted water-extraction of oil and protein from rice bran [J]. Journal of Chemical Technology and Biotechnology,2002,77(7):771-776.
    [154]曲音波.木质纤维素降解酶与生物炼制[M].北京:化学工业出版社,2011.
    [155]Henn R. L., Netto F. M. Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates [J]. Journal of agricultural and food chemistry,1998,46(8):3009-3015.
    [156]Lavarack B., Griffin G., Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products [J]. Biomass and Bioenergy,2002,23(5):367-380.
    [157]孙汉巨.菜籽多糖的分离、纯化及特性研究[D];合肥工业大学,2009.
    [158]孟旭.方便豆腐粉微结构及其蛋白质溶解,凝胶机理的研究[D];无锡:江南大学,2006.
    [159]余德泉,杨峻山.分析化学手册第七分册:核磁共振波谱分析[M].北京:化学工业出版社.1999.
    [160]刘杰.酸碱处理对大豆胶黏剂胶接性能的影响[D];东北林业大学,2009.
    [161]陈奶荣.脱脂豆粉制木材胶粘剂的改性研究[D];福建农林大学,2009.
    [162]Wu Z., Lei H., Du G. Disruption of soy-based adhesive treated by Ca(OH)2 and NaOH [J]. Journal of Adhesion Science and Technology,2013,27(20):2226-2232.
    [163]Sahu J., Acharya J., Meikap B. Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology [J]. Bioresource technology,2010,101(6):1974-1982.
    [164]Sahu J., Acharya J., Meikap B. Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process [J]. Journal of hazardous materials,2009,172(2):818-825.
    [165]Zhong K., Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology [J]. Carbohydrate Polymers,2010,80(1):19-25.
    [166]Tang L.-R., Huang B., Ou W., et al. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose [J]. Bioresource Technology, 2011,102(23):10973-10977.
    [167]Wang Y., Tian H., Zhang L. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane [J]. Carbohydrate Polymers, 2010,80(3):665-671.
    [168]Asenjo N., Botas C., Blanco C., et al. Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology [J]. Fuel Processing Technology,2011,92(10): 1987-1992.
    [169]Ahmad M. A., Alrozi R. Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology [J]. Chemical Engineering Journal,2010,165(3): 883-890.
    [170]Prakash S., Palanikumar K. Modeling for prediction of surface roughness in drilling MDF panels using response surface methodology [J]. Journal of Composite Materials,2011,45(16):1639-1646.
    [171]Li X., Li Y., Zhong Z., et al. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive [J]. Bioresource Technology,2009,100(14):3556-3562.
    [172]Islam M. A., Alam M. R., Hannan M. O. Multiresponse optimization based on statistical response surface methodology and desirability function for the production of particleboard [J]. Composites Part B:Engineering,2012,43(3):861-868.
    [173]Archdeacon T. J. Correlation and Regression Analysis:A Historian's Guide [M]. University of Wisconsin Press,1994.
    [174]Amini M., Younesi H., Bahramifar N., et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger [J]. Journal of Hazardous Materials,2008,154(1-3):694-702.
    [175]Kalavathy M H., Regupathi I., Pillai M. G., et al. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM) [J]. Colloids and Surfaces B: Biointerfaces,2009,70(1):35-45.
    [176]Contreras M. M., Hernandez-Ledesma B., Amigo L., et al. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology [J]. LWT-Food Science and Technology,2011,44(1):9-15.
    [177]施巧琴.酶工程[M].北京:科学出版社,2005.
    [178]罗贵民.酶工程[M].北京:化学工业出版社,2008.
    [179]Su J.-F., Huang Z., Zhao Y.-H., et al. Moisture sorption and water vapor permeability of soy protein isolate/poly (vinyl alcohol)/glycerol blend films [J]. Industrial crops and products,2010,31:266-276.
    [180]Su J.-F., Huang Z., Yuan X.-Y, et al. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions [J]. Carbohydrate Polymers,2010,79(1):145-153.
    [181]Garrido T., Etxabide A., Leceta I., et al. Valorization of soya by-products for sustainable packaging [J]. Journal of Cleaner Production,2014,64:228-233.
    [182]Ofomaja A., Pholosi A., Naidoo E. Kinetics and competitive modeling of cesium biosortion onto chemically modified pine cone powder [J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(6):943-951.
    [183]佑林.生物大分子多维核磁共振[M].中国科学技术大学出版社,1999.
    [184]Liu X., Wang Y., Cao Y, et al. Study of dextrin-derived curing agent for waterborne epoxy adhesive [J]. Carbohydrate Polymers,2011,83(3):1180-1184.
    [185]Nie Y, Tian X., Liu Y, et al. Research on starch-g-polyvinyl acetate and epoxy resin-modified corn starch adhesive [J]. Polymer Composites,2013,34(1): 77-87.
    [186]Razak S. I. A., Wahman W. a. W. A., Yahya M. Y Novel epoxy resin composites containing polyaniline coated short kenaf bast fibers and polyaniline nanowires: mechanical and electrical properties [J]. Journal of Polymer Engineering,2013,33(6): 565-577.
    [187]Xiong Z., Ma S., Fan L., et al. Surface Hydrophobic Modification of Starch with Bio-based Epoxy Resins to Fabricate High-performance Polylactide Composite Materials [J]. Composites Science and Technology,2014,94(9):16-22.
    [188]吴志高,李世荣,卢军彩.环氧值测定方法的改进[J].武汉化工学院学报,2006,28(1):5-7.
    [189]Eberson L. Electron-transfer reactions in organic chemistry [J]. Advances in Physical Organic Chemistry,1982,18:79-185.
    [190]Kuniak L., Marchessault R. Study of the crosslinking reaction between epichlorohydrin and starch [J]. Starch-Starke,1972,24(4):110-116.
    [191]王芹珠,杨增家.有机化学[M].清华大学出版社,1997.
    [192]Mcmurry J. Organic Chemistry [M]. Brooks/Cole,2011.
    [193]Wu S. Chain entanglement and melt viscosity of compatible polymer blends: poly (methyl methacrylate) and poly (styrene-acrylonitrile) [J]. Polymer,1987,28(7): 1144-1148.
    [194]全国人造板标准化技术委员会.GB/T 9846—2004,胶合板[S].北京:中 国标准出版社,2004.
    [195]Quere D. Surface chemistry:Fakir droplets [J]. Nature Materials,2002,1(1): 14-15.
    [196]Vazquez G., Gonzalez- lvarez J., Lopez-Suevos F., et al. Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin-phenol-formaldehyde adhesive [J]. Bioresource technology,2003,87(3): 349-353.
    [197]Zhang Y., Zhu W., Lu Y., et al. Nano-scale blocking mechanism of MMT and its effects on the properties of polyisocyanate-modified soybean protein adhesive [J]. Industrial crops and products,2014,57:35-42.
    [198]Stuart B. H. Infrared Spectroscopy:Fundamentals and Applications [M]. Wiley, 2004.
    [199]Ishida H., Agag T. Handbook of Benzoxazine Resins [M]. Elsevier,2011.
    [200]宁永成.有机波谱学谱图解析[M].北京:科学出版社,2010.
    [201]张正行.有机光谱分析[M].北京:人民卫生出版社,2009.
    [202]Fu J. F., Shi L. Y., Yuan S., et al. Morphology, toughness mechanism, and thermal properties of hyperbranched epoxy modified diglycidyl ether of bisphenol A (DGEBA) interpenetrating polymer networks [J]. Polymers for Advanced Technologies,2008,19(11):1597-1607.
    [203]Ahmad S., Gupta A., Sharmin E., et al. Synthesis, characterization and development of high performance siloxane-modified epoxy paints [J]. Progress in Organic Coatings,2005,54(3):248-255.
    [204]刘振海,陆立明,唐远旺.热分析简明教程[M].北京:科学出版社,2012.
    [205]Othmer K. Encyclopedia of Chemical Technology, Chlorocarbons and Chlorohydrocarbons-CSUB 2/SUB to Combustion Technology [M]. John Wiley & Sons,1993.
    [206]贾翀,张洋,吴逸雨,et al.多层杨木豆胶胶合板工艺及性能[J].西北林学院学报,2013,28(3):190-193.
    [207]吴英山,张洋,李文定,et al.豆胶杨木/麦秸复合刨花板制造工艺[J].林 业科技开发,2013,27(5):95-97.
    [208]张洋,周定国,杨波,et al.豆胶制造速生杨木ⅡⅡ类胶合板的工艺研究[J].中国人造板,2007,14(5):7-9.
    [209]王钊桐,赵养利.高分子材料耐候性试验测试方法概述及评价指标的选择[J].环境技术,2007,25(6):28-31.
    [210]刘俊华,钟明强.聚苯乙烯共混改性研究进展[J].功能高分子学报,1999,12(3):345-349.
    [211]燕冲,张心亚,黄洪,et al.苯丙乳液最新研究进展[J].粘接,2007,28(5):45-48.
    [212]苏茂尧,丁新颖,谭健.纤维素醚经N—羟甲基丙烯酰胺交联制备高吸水材料的研究[J].纤维素科学与技术,1993,1(1):68-72.
    [213]Hardelin L., Perzon E., Hagstrom B., et al. Influence of molecular weight and rheological behavior on electrospinning cellulose nanofibers from ionic liquids [J]. Journal of applied polymer science,2013,130(4):2303-2310.
    [214]Chanda M., Roy S. K. Plastics Technology Handbook, Fourth Edition [M]. Taylor & Francis,2012.
    [215]Nordqvist P., Lawther M., Malmstrom E., et al. Adhesive properties of wheat gluten after enzymatic hydrolysis or heat treatment-A comparative study [J]. Industrial crops and products,2012,38:139-145.
    [216]Spelter H., Laboratory F. P. Capacity, production, and manufacturing of wood-based panels in North America [M]. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory,1994.
    [217]Pochan J., Pochan D., Rommelmann H., et al. Kinetics of doping and degradation of polyacetylene by oxygen [J]. Macromolecules,1981,14(1):110-114.
    [218]Fontana G., Causa M., Gianotti V., et al. Computational studies of the reaction of the hydroxyl radical with hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs) [J]. Journal of Fluorine Chemistry,2001,109(2):113-121.
    [219]赖晓琳,谢剑妹,陈少平,et al反应条件对苯丙乳液共聚中阳离子单体转化率的影响[J].福建师范大学学报:自然科学版,2008,24(3):69-72.
    [220]武文,刘国军,张桂霞,et al.阳离子型苯丙乳液聚合转化率的影响因素[J].现代涂料与涂装,2009,12(2):11-13.
    [221]Samaryk V., Tarnavchyk I., Voronov A., et al. A New Acrylamide-Based Peroxide Monomer:Synthesis and Copolymerization with Octyl Methacrylate [J]. Macromolecules,2009,42(17):6495-6500.
    [222]Hatada K., Kitayama T., Nishiura T., et al. Relation between the reactivities of vinyl monomers in ionic polymerizations and their 1H NMR spectra [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(13):2134-2147.
    [223]Zhao K., Wu Y.-G., Li W.-L., et al. A new method for synthesizing hyperbranched polymers with reductive groups using redox/RAFT/SCVP [J]. Chinese Journal of Polymer Science,2014,32(4):385-394.
    [224]Kotsuchibashi Y., Kuboshima Y., Yamamoto K., et al. Synthesis and characterization of double thermo-responsive block copolymer consisting N-isopropylacrylamide by atom transfer radical polymerization [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(18):6142-6150.
    [225]Xu M., Choi Y. S., Kim Y. K., et al. Synthesis and characterization of exfoliated poly (styrene-co-methyl methacrylate)/clay nanocomposites via emulsion polymerization with AMPS [J]. Polymer,2003,44(20):6387-6395.
    [226]Khezri K., Haddadi-Asl V., Roghani-Mamaqani H., et al. Synthesis and characterization of exfoliated poly (styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization:an activators generated by electron transfer approach [J]. Polymer Composites,2011,32(12): 1979-1987.
    [227]Kawaguchi H., Sugi Y., Ohtsuka Y. Copolymerization of styrene with acrylamide derivatives in an emulsifier-free aqueous medium [J]. Journal of applied polymer science,1981,26(5):1649-1657.
    [228]Lemstra P. J. Crystallization phenomena of isotactic polystyrene [M].1975.
    [229]吕斌,付跃进,吴盛富,et al.室内型胶合板天然耐久性的初步研究[J].林产工业,2004,31(4):17-20.
    [230]Minematu Y., Nakajima S., Tajima T. Ultraviolet fluorescent lamp for accelerated exposure test on polymer [P].1989.
    [231]王殿武.土工合成材料老化问题的探讨[J].东北水利水电,1991,10:31-36.
    [232]Back E., Sandstrom E. Critical aspects on accelerated methods for predicting weathering resistance of wood based panels [J]. Holz als Roh-und Werkstoff,1982, 40(2):61-75.
    [233]班磊.高品质公交车底板耐老化性能研究[D].南京;南京林业大学,2006.
    [234]张晶.胶合木构件胶接性能及耐久性研究[D].南京;南京林业大学,2013.
    [235]罗文士.间苯二酚-苯酚-甲醛树脂的研制与在胶合木梁上的应用[J].木材工业,1990,4(3):14-19.
    [236]De La Caba K., Guerrero P., Del Rio M., et al. Weathering behaviour of wood-faced construction materials [J]. Construction and building materials,2007, 21(6):1288-1294.
    [237]Follrich J., Teischinger A., Muller U. Artificial ageing of softwood joints and its effect on internal bond strength with special consideration of flat-to-end grain joints [J]. European Journal of Wood and Wood Products,2011,69(4):597-604.
    [238]Kajita H., Mukudai J., Yano H. Durability evaluation of particleboards by accelerated aging tests [J]. Wood science and technology,1991,25(3):239-249.
    [239]Kojima Y., Norita H., Suzuki S. Evaluating the durability of wood-based panels using thickness swelling results from accelerated aging treatments [J]. Forest products journal,2009,59(5):7-13.
    [240]Montrey H., Utterback J. M. Current status and future of structural panels in the wood products industry [J]. Technological Forecasting and Social Change,1990, 38(1):15-35.
    [241]River B. H. Outdoor aging of wood-based panels and correlation with laboratory aging [J]. Forest products journal,1994,44(11/12):68-74.
    [242]Okkonen E. A., River B. H. Outdoor aging of wood-based panels and correlation with laboratory aging:Part 2 [J]. Forestry Products Journal,1996,46(3): 68-74.
    [243]Lee S. H., Ohkita T. Mechanical and thermal flow properties of wood flour- biodegradable polymer composites [J]. Journal of applied polymer science,2003, 90(7):1900-1905.
    [244]Srivastava K. Fungal Degradation of Cotton Materials under Outdoor Weathering and in Soil Burial Conditions [J]. Defence Science Journal,2014,30(1): 9-16.
    [245]陈奶荣,赖玉春,林巧佳.不同防腐剂对大豆胶粘剂防腐性能的影响[J].福建林学院学报,2009,29(1):53-56.
    [246]周德庆.微生物学教程[M].高等教育出版社,1993.
    [247]National Bureau of Standards D. O. C. PS 1-95 for Construction and Industrial Plywood [S]. Washington, DC:Government Printing Office,1995.
    [248]王恺,木材工业,夏志远.木材工业实用大全:胶粘剂卷[M].中国林业出版社,1996.
    [249]范毡仔,杨爱和,季伟,et al.非木质刨花板的耐候性研究[J].林产工业,1994,21(5):1-3.
    [250]范毡仔,余德新.木质人造板的耐候性研究[J].福建林学院学报,1995,15(1):53-56.
    [251]秦莉.桉树生长应变及其相关性状的遗传特性研究[D];中国林业科学研究院,2007.
    [252]郭源君,庞佑霞.耐磨胶粘涂层固化残余应力的测试分析[J].摩擦学学报,1 997,17(3):263-266.
    [253]福州年鉴编纂委员会.福州年鉴[M].中国统计出版社,2013.
    [254]戴志忠.福州地区水文特性分析[J].水利科技,2004,(3):9-11.
    [255]全国人造板标准化技术委员会.GB/T 17656-2008混凝土模板用胶合板[S].北京,2008.
    [256]殷亚方,苏洪泽.我国桉树人工林资源和木材利用现状[J].木材工业,2001,15(5):3-5.
    [257]Calonego F. W., Severo E. T. D., Furtado E. L. Decay resistance of thermally-modified Eucalyptus grandis wood at 140℃,160℃ C,180℃,200℃ and 220℃ [J]. Bioresource technology,2010,101(23):9391-9394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700