用户名: 密码: 验证码:
四川森林生态系统碳储量及其空间分异特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以大气CO_2浓度增加和温度升高为主要特征的全球气候变化正在改变着陆地生态系统的结构、功能和过程,威胁着人类的生存和安全,同时,《京都议定书》(KyotoProtocol)又使碳减排增汇成为与国家经济、政治、外交和生态安全等密切相关的生态与环境科技问题。因此,全球气候变化适应与减缓就成为各国政府和科学家关注的热点问题。迄今,有关国家水平和区域尺度的植被和土壤碳储量的研究报道已经不计其数,但基于森林清查资料、土壤普查资料、生命带类型法和遥感方法存在的局限性,可能会限制地形地貌复杂、森林植被和土壤类型丰富的地区的森林生态系统碳密度和碳储量的估算精度,这需要结合不同植被与土壤组合条件下的森林植被和土壤实测数据进行估算。四川森林地处长江上游和“世界第三级”的青藏高原东缘,不仅是我国第二大林区(西南林区)的主体,而且是天然林资源保护工程、退耕还林(草)工程和长防林工程重点实施的地区,其多样化的植被与土壤组合类型、明显的气候垂直分异特征、复杂的地形地貌等使其成为研究区域森林生态系统碳储量空间分异特征的理想实验室。但迄今为止,有关四川森林生态系统碳储量及其空间分异特征的研究还未见报道,这不能满足四川和我国森林碳循环研究的需要。因此,本项研究采用森林清查资料与实测数据相结合的研究方法,研究了四川森林生态系统的碳储量,并运用GIS技术绘制了碳密度空间分布图,初步探讨了碳储量和碳密度的空间分异特征,探索了基于碳储量和碳密度空间分异特征的森林分区碳库管理措施。
     四川森林植被的平均碳含量为51.09%(46.75%~54.89%),其中,针叶林的林分平均碳含量为52.82%(50.50%~54.89%),大于50.00%,阔叶林林分平均碳含量为49.37%(46.75%~50.50%),小于50.00%,大于45.00%。这表明,采用50.00%或45.00%作为转换系数估算四川森林植被碳储量可能低估其碳储量和碳汇功能。
     通过对生物量-蓄积量进行多目标函数拟合,确定w=avb为四川森林乔木层蓄积量-生物量最优模型。本研究基于实测的林分碳含量与区域生物量-蓄积量模型相结合的方法估算了研究区域森林乔木层碳储量。采用本方法估算的四川森林植被碳储量(2004年)为478.25TgC,比通用转换系数45.00%和50.00%估算的结果分别高11.56%和1.73%。可见,基于实测的森林碳含量与区域生物量-蓄积量模型相结合的方法对于精确估算区域森林碳储量具有重要意义。
     四川森林的碳汇功能明显。1974年~2004年的30年期间,四川森林乔木层碳储量从305.37 TgC增加到478.25 TgC,增加了172.88 TgC,年均增长率为1.51%。可见,四川森林植被起着一个的碳“汇”的作用。
     四川森林生态系统有机碳的总储量为2926.81 TgC,不同组分的碳储量表现为土壤层(2394.26 TgC)>乔木层(478.25 TgC)>枯落物层(41.14 TgC)>灌草层(13.16TgC),分别占总碳储量的81.80%、16.34%、1.41%和0.45%。这表明,森林土壤是森林生态系统中最大的有机碳库。尽管枯落物层的碳储量不高,但其作为植被与土壤之间进行物质循环和能量转换最活跃的生态界面,以及森林土壤有机碳的直接来源,如果忽视这部分碳,不仅会低估森林生态系统的碳储量,而且会限制我们对森林土壤碳汇形成机制的理解。
     不同森林类型之间的碳储量差异较大。冷、云杉林生态系统具有最大的碳储量,为1384.09 TgC,占碳储量的47.29%,栎类及其硬阔林生态系统的碳储量为327.56TgC,占11.19‰软阔林生态系统的碳储量为309.21 TgC,占10.56%。这三类森林生态系统的碳储量达2020.86 TgC,占四川森林碳储量的69.05%,其余森林生态系统碳储量约为30.95%。这与其面积较大和碳密度相对较高有关。这表明,以天然起源为主的森林仍然是四川森林碳储量的主要贡献者,而以人工起源为主的森林生态系统碳储量相对较低。
     四川森林生态系统碳储量主要分布在坡度>25°和高海拔地区(3000-4000 m)。在坡度>25°以上的地带达到1598.22 TgC,占到了总储量的54.61%,在海拔3000-4000 m之间的地带达到1313.24 TgC,占总碳储量的44.87%。由于坡度>25°和高海拔地区是典型的生态环境脆弱带,森林植被一旦遭到破坏,其恢复难度较大,因此,保护和稳定四川森林生态系统碳储量首先应减少人类活动对森林的破坏。
     四川森林生态系统的平均碳密度为232.81 MgC·hm~(-2),其中土壤层为190.45MgC·hm~(-2),乔木层为38.04 MgC·hm~(-2),枯落物层为3.27 MgC·hm~(-2),灌草层为1.05MgC·hm~(-2),均低于我国的平均水平。不同森林类型的土壤与植被碳密度比值介于3.44~17.41,平均为4.96。这表明四川森林植被的碳密度较低,但碳吸存潜力大。
     四川森林生态系统的碳密度空间分异明显,总体上表现出明显的经向地带性、纬向地带性和垂直地带性。但受到青藏高原隆升以及人口稠密区(平原、低山、丘陵区)人类活动干扰及其叠加效应的影响,四川森林生态系统的碳密度又表现出明显的特殊性和复杂性。四川森林土壤有机碳密度总体上均随着纬度和海拔高度(0~4000m)的增加而增加,随经度的增加而降低。这与国内外绝大多数的研究结果一致,这与经度、纬度和海拔的增加引起的水热动态变化驱动的土壤有机碳收支有关。四川森林植被的碳密度总体上也随着纬度和海拔高度的增加而增加,随经度的增加而降低。这与国内外有关“森林植被的碳密度随着纬度和海拔高度的增加而降低”的结论不一致,原因是其地带性分布规律还受到垂直地带性、人类活动干扰及其叠加效应的影响。导致“四川森林植被碳密度随着海拔的升高而增加”的原因是随着海拔高度的上升,森林植被受到人类活动的干扰强度降低,森林植被的碳密度较高。这表明,人类活动干扰是影响四川森林植被碳密度和碳储量空间分异特征的特殊性和复杂性最重要的因素。同时也意味着,结合天然林资源保护工程、退耕还林(草)工程进行森林植被保护、退化森林生态系统恢复重建可能显著增加四川森林植被的碳汇功能。
     从四川森林生态系统碳密度和储量的空间分异特征来看,森林分区经营管理是增强四川森林碳汇功能的有效途径。以人工林和少量次生林为主的丘陵平原区应采取低效林改造、封山育林、速生丰产林营建等相结合的经营技术,以增强该区的森林碳吸存潜力。以天然次生林和少量人工林为主的盆周低山区应采取封山育林与高效人工林营造相结合的经营技术,以稳定和提高该区森林的固碳能力。以冷、云杉为优势树种的亚高山和高山林区应进一步加强天然林保护。
Global climate change has been concerned about worldwide because climate change characterized by global warming and atmospheric CO_2 enrichment is changing the structure and function of terrestrial ecosystem as well as threatening the survival and safety of human beings. Furthermore, estimate of carbon stock in national or regional vegetation and soil, as a crucial important scientific basis in the implementation of international environmental conventions, has been an important field in climate change science, as a consequence of which numerous reports on national and regional carbon stock in vegetation and soil have been published in the past three decades. However, the shortcomings of forest resource inventory, soil survey, Holdridge life zone, and satellite data in estimating carbon stock in vegetation and soil still limited the measurement precision of carbon density and stock in regional forest ecosystem with complex landforms and diverse forests and soils, implying that more detailed measurements on carbon density and stock in vegetation and soil of the forest ecosystem are necessary for the region with complex landforms and diverse forests in order to obtain more precise estimates of regional forest carbon stock. Sichuan province, located at the upper reaches of the Yangtze River and in the eastern Qinghai-Tibet Plateau honored by the third pole in the world, is the principal part of the second largest forest region in China as well as the key region of projects on natural forest resource protection, conversion of cropland to forest and grassland and protection forest in the upper and middle reaches of the Yangtze River. Besides the irreplaceable and important roles in conserving water and soil, nursing biodiversity and global carbon cycle, Sichuan forest is also an ideal natural lab for studying the spatial differentiation on regional forest ecosystem carbon stock due to the diverse vegetation and soil combinations, clear vertical climate differentiation and complex landforms. As yet, far less information is available on the characteristics of carbon stock in the forest ecosystem and its spatial differentitation at the regional level in Sichuan, which is difficult to make needs of forest carbon cycle in Sichuan province and China. Carbon density and stock in the forest ecosystem and its spatial differentiation in Sichuan were studied to provide an important scientific basis on carbon sequestration potential in Sichuan forest, employing the methods of measurements on carbon contents in trees and soils, and biomass with forest resource inventory and GIS technology, Consequeathy, the techniques of the regionalized forest carbon management were put forward based on the spatial differentiation of carbon density and stock in the forest ecosystem in Sichuan.
     Average carbon content in trees of Sichuan forest was 51.09%, varying from 46.75% to 54.89%. Among this, average carbon content was 52.82% (ranging from 50.50% to 54.89%) and 49.37% (ranging from 46.75% to 50.50%) in coniferious and broadleaved forests, which was higher than 50.00% and 45.00%, respectively. It is suggested that carbon stock and the potential of carbon sequestration in Sichuan forest be underestimated by the transform coefficients of 0.50 or 0.45.
     The equation w=avb, fitted by multiple objectives of biomass and tree volume, was confirmed as the optimum model to express the relationships between tree volume and biomass in Sichuan forest. Here the carbon stock in trees of Sichuan forest was estimated based on the method of carbon content in the forest stand in combination with regional biomass-volume model, and in turn carbon stock in the vegetation was 478.25 TgC in Sichuan forest in 2004, which was 11.56% and 1.73% higher than those estimated by the common transfer coefficient of 45.00% or 50.00%, indicating that the method of estimating the carbon stock in regional forest by measuring tree carbon content in combination with regional biomass-volume model is important to improvt the precision of estimating regional forest carbon stock.
     Carbon stock in trees of Sichuan forest increased 172.88 TgC from 305.37 TgC in 1974 to 478.25 TgC in 2004 by 1.51% of annual increment rate over the past 30 years, implying that Sichuan forest played the role of carbon sink in global carbon cycle.
     The total organic carbon stock in the forest ecosystem was 2926.81 TgC in Sichuan, and the carbon stock was 2394.26 TgC in soil layer, 478.25 TgC in tree layer, 41.14 TgC in litter layer and 13.16 TgC in shrub and grass layer, accounting for 81.80%, 16.34%, 1.41% and 0.45% of the total, respectively, indicating that forest soil was the greatest organic carbon stock. Although carbon stock in litter layer was lower than that in tree and soil layers, organic carbon in this layer was very important since litter layer is one of the most important ecological interfaces in terms of mass cyle and energy transfer between vegetation and soil as well as the source of soil organic carbon pool. Consequently, the formation mechanism on forest soil carbon sink is difficult to be revealed completely as well as carbon stock in the forest ecosystem would be underestimated if organic carbon in litter layer was neglected.
     Carbon stock varied greatly with the forest stands. Coniferous forest dominated by fir (Abies) and spruce (Picea) trees had the greatest carbon pool with 1384.09 TgC. which accounted for 47.29% of the total carbon stock. Carbon stock was 327.56 TgC and 309.21 TgC in the forest ecosystem dominated oak (Quercus) and other hardwood trees and in the softwood forest ecosystem, accounting for 11.19% and 10.56%of the total carbon stock in Sichuan forest, respectively. In total, carbon stock in the former three ecosystems was 2020.86 TgC, which accounted for 69.05% the total carbon stock, resulting from the relative higher forest area and carbon density. The carbon stock in the rest forest ecosystems only accounted for 30.95%. The results indicated that the forest originating from natural forest was main contributor to carbon pool in Sichuan forest, while the artificial forest had the relative lower carbon stock.
     Carbon stock in Sichuan forest ecosystem distributed mainly in the region with sharp slope (>25°) and high elevation(3000~4000m), resulting from relative low human activities in these zones. Carbon stock in the forest ecosystem at the zone with >25°slope was 1598.22 TgC, accounting for 54.61% of the total in Sichuan forest. Similarly, carbon stock in the forest ecosystem at the zone with 3000-4000 m elevation was 1313.24 TgC, which accounted for 44.87% of the total carbon in Sichuan forest ecosystem. In order to protect and increase the carbon stock in Sichuan forest, the first measure is to reduce the human disturbance to forest resulting from that the forest is easy to be damaged and the degraded forest ecosystem is difficult to be restored since the region with sharp slope and high elevation is the typical fragile ecological and environment belt.
     Average carbon density in the forest ecosystem was 232.81 MgC·hm~(-2) in Sichuan, and the corresponding carbon density was 190.45 MgC·hm~(-2) in soil layer, 38.04 MgC·hm~(-2) in tree layer, 3.27 MgC·hm~(-2) in litter layer and 1.05 MgC·hm~(-2) in shrub and grass layer, respectively, all of which were lower than those of average carbon density in China. Average ratio of soil to vegetation carbon density was 4.96, ranging from 3.44 to 17.41 in Sichuan forest ecosystem, indicating that Sichuan forest had lower vegetation carbon density and higher potential of carbon sequestration.
     Carbon density in the forest ecosystem had clear spatial differentiation with the zonalities of longitude, latitude and altitude in Sichuan, and also showed obvious speciality and complexity because of the uplift of Qinghai-Tibetan plateau and the disturbance of human beings in densely populated area (such as the plain and low-mountain and hilly area). Soil organic carbon density in Sichuan forest ecosystem increased with longitude and altitude (0-4000m a.s.l.), and decreased with the latitude, which was in agreement with the results worldwide resulting from the budget of soil organic carbon driven by hydrothermal dynamics caused by the increases of longitude, latitude and altitude. Meanwhile, carbon density in trees of Sichuan forest ecosystem also increased with longitude and altitude, and decreased with the latitude, which was not in agreement with the result of "carbon density in trees decreased with the increases of longitude and altitude" worldwide, resulting from that carbon density in tree layer increased with the longitude and the elevation resulted from the vertical zonality, the disturbance of humana activities and their interactions, while the reason that carbon density in tree layer increased with the altitude was the decline of human disturbance intensity with the elevated altitude. The results indicated that the speciality and complexity of spatial differentiation on carbon density and stock in Sichuan forest ecosystem caused mainly by the disturbances of human beings, which also meant that the measures of forest conservation and degraded forest ecosystem restoration in combination with the projects of natural forest resource protection and conversion from farmland to forest (grass) could significantly increase the potential of forest carbon sequestration in Sichuan.
     An effective approach to increase the capacity of carbon sequestration in Sichuan forest was to implement regionalized forest management concluded from spatial differentiation of carbon density and stock in the forest ecosystem in Sichuan province. The hilly and plain area dominanted by artificial forest and a few secondary forests should adopt the method of low-benefit forest improvement in combination with the forest conservation and fast-growing plantation construction in order to enhance the potential of carbon sequestration. The low mountain area dominanted by natural secondary forest and a few plantations around the basin should adopt the forest management in combination with forest conservation and high-efficiency plantation construction in order to stabilize and enhance the capacity of carbon sequestration. The subalpine and alpine region dominanted by fir and birch forests should further strengthen the natural forest consersvtion.
引文
[1]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551-560
    [2]陈波,王良衍.陆地植被与全球变化中碳之间的关系.浙江林业科技,2001,21(3):1-4
    [3]陈亮中.三峡库区主要森林植被类型土壤有机研究.北京林业大学博士论文,2007
    [4]陈泮勤,黄耀,于贵瑞.地球系统碳循环.北京:科学出版社,2004
    [5]丁贵杰.马尾松人工林生物量和生产力研究Ⅰ.不同造林密度生物量及密度效应.福建林学院学报,2003,23(1):34-38
    [6]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973
    [7]方精云,刘国华.中国陆地生态系统碳库.中国科学技术出版社,1996,251-267
    [8]方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602
    [9]方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635-638
    [10]方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513-517
    [11]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、储量和分布.林业科学,2002,38(3):14-19
    [12]方晰,田大伦,项文化.杉木人工林凋落物量及其分解过程中碳的释放率.中南林学院学报,2005,25(6):2-16
    [13]方晰,田大伦,项文化等.不同密度湿地松人工林中碳的积累与分配.浙江林学院学报,2003,20(4):374-379
    [14]方晰,田大伦,胥灿辉.马尾松人工林生产与碳素动态.中南林学院学报,2003,23(2):11-15
    [15]方运霆,莫江明,彭少麟等.森林演替在南亚热带森林生态系统碳吸存中的作用.生态学报,2003,23(9):1685-1694
    [16]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究.广西植物,2002,22(4):305-310
    [17]冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓.生态学报,2006,26(11):3870-3877
    [18]冯宗炜,张家武,邓仕坚.杉木人工林生物产量的研究.桃园综合考察报告集,河南科学技术出版社,1980,322-333
    [19]甘海华.广东土壤有机碳储量及空间分布特征.应用生态学报,2003,14(9):1499-1502
    [20]何志斌,赵文智,刘鹄等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素.生态学报,2006,26(8):2572-2577
    [21]贺庆棠.全球性环境污染和资源破坏的现状与对策.北京林业大学学报,1989,11(4):126-127
    [22]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(4):709-714
    [23]胡会峰,刘国华.中国天然林保护工程的固碳能力估算.生态学报,2006,26(1):291-296
    [24]胡建忠.黄河上游退耕地人工林的碳储量研究.北京林业大学学报,2005,27(6):1-8
    [25]胡亚林,汪思龙.杉木人工林取代天然次生阔叶林对土壤生物活性的影响.应用生态学报,2005,16(8):1411-1416
    [26]黄从德,张健,邓玉林等.退耕还林地在植被恢复初期碳储量及分配格局研究.水土保持学报,2007,21(4):130-133
    [27]黄宇,冯宗炜,汪思龙等.杉木、火力楠纯林及其混交林生态系统C、N贮量.生态学报,2005,25(12):3146-3154
    [28]蒋高明,黄银晓,万国江等.树木年轮δ~(13)C值的测定以及对大气CO_2浓度的指示意义.植物生态学报,1997,21(2):155-160
    [29]蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究.应用生态学报,2001,12(4):481-484
    [30]蒋延龄,周广胜.兴安落叶松林碳平衡及管理活动影响研究.植物生态学报,2002,26(3):317-322
    [31]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律.中南林学院学报,2005,25(1):4-8
    [32]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005,16(12):2248-2252
    [33]解宪丽,孙波.不同植被下中国土壤有机碳储量与影响因子.土壤学报,2004,41(5):687-699
    [34]金峰,杨浩,蔡祖聪等.土壤有机碳密度及储量的统计研究.土壤学报,2001,38:522-528
    [35]康冰,刘世荣,张广军等.广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征.生态学报,2006,26(5):1320-1329
    [36]康蕙宁,马钦彦,袁嘉祖.中国森林碳汇功能基本估计.应用生态学报,1996,7(3):230-234
    [37]亢新刚.森林资源经营管理.北京:中国林业出版社,2001.
    [38]雷丕锋,项文化,田大伦等.樟树人工林生态系统碳素贮量与分布研究.生态学杂志,2004,23(4):25-30
    [39]李崇贵,斯林,赵宪文.以“3S”为基础的森林蓄积动态监测系统研究.林业科学研究,2001,14(2):223-226
    [40]李崇贵,赵宪文.以遥感和地理信息系统为基础的森林蓄积LS估计自变量选择研究.遥感学报,2001,5(4):277-281
    [41]李海涛,王姗娜,高鲁鹏.赣中亚热带森林植被碳储量.生态学报,2007,27(2):692-704
    [42]李红梅,马友鑫.西双版纳森林植被的碳储量及影响因素分析.福建林学院学报,2005,25(4):368-372
    [43]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,33(1):72-80
    [44]李克让,陶波,王绍强等.土地利用变化和温室气体净排放与陆地生态系统碳循环,北京:气象出版社,2002
    [45]李铭红,于明坚,陈启瑺等.青冈常绿阔叶绿的碳素动态.生态学报,1996,16(6):645-651
    [46]李仁东,刘纪远.应用LandsatETM数据估算鄱阳湖湿生植被生物量.地理学报,2001.56(5):532-540
    [47]李文华,邓坤枚,李飞.长白山主要森林生态系统生物量生产量的研究.森林生态系统研究(试刊),1981,34-50
    [48]李文华,罗天祥.中国云冷杉林生物量生产力格局及数学模型.生态学报,1997,17(5):511-518
    [49]李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报,1998,22(2):127-134
    [50]李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18(4):371-378
    [51]李意德,曾庆波,吴仲民等.1992:尖峰岭热带山地雨林生物量的初步研究.植物生态学与地植物学学报,16(4):293-300
    [52]李意德,曾庆波,吴仲民等.我国热带天然林植被C贮存量的估算.林业科学研究,1998,11(2):156-162
    [53]李跃林,胡成志,张云等.几种人工林土壤碳储量研究.福建林业科技,2004,31(4):4-7
    [54]李新宇,唐海萍.陆地植被的固碳功能与适用于碳贸易的生物固碳方式.植物生态学报,2006,30(2):200-209
    [55]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740
    [56]刘红辉.资源遥感—从区域调查到全球变化研究.资源科学,2000,22(3):34-38
    [57]刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展.西北植物学报,2005,5(4):835-843
    [58]刘纪远,岳天祥.中国西部生态系统综合评估.北京:气象出版社,2006,1-5
    [59]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(5):692-703
    [60]吕超群.青藏高原土壤有机碳储量格局及影响因子.南京大学博士论文,2004
    [61]吕勇,唐代生.林木材积与生物量的相关性探讨.中南林业调查规划,1997,16(2):13-15
    [62]罗天祥,李文华,冷允法等.青藏高原自然植被总生物量的估算与净初级生产力的潜在分布.地理研究,1998,17(4):337-344
    [63]罗天祥,李文华,赵仕洞.中国油松林生产力分布格局与模拟,应用生态学报,1999,10(3):257-261
    [64]罗天祥,赵仕洞.中国杉木林生物生产力格局及其数学模型.植物生态学报,1997,21(5):403-415
    [65]罗天祥.中国主要森林类型生物生产力格局吸其数学模型.中国科学院自然资源综合考察委员会博士论文,1996
    [66]骆士寿,陈步峰,陈永富等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量.林业科学研究,2000,13(2):123-128
    [67]马钦彦,陈遐林,王娟等.华北主要森林类型建群种的含碳率分析.北京林业大学学报,2002,24(5):96-100
    [68]倪健,宋永昌.CO_2倍增条件下中国亚热带常绿阔叶林优势种及常见种分布区的可能变迁.植物生态学报,1997,21(5):455-467
    [69]潘根兴,周萍,李恋卿等.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-337
    [70]潘维侍,田大伦.森林生态系统第一性生产量的测定技术与方法.湖南林业科学,1981,2,1-12
    [71]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报,2002,22(9):1534-1544
    [72]朴世龙,方精云,郭庆华.1982~1999年我国植被净第一性生产力及其时空变化.北京大学学报(自然科学版),2001,37(4):563-569
    [73]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律.生态学杂志,1997,16(6):17-21
    [74]桑卫国,苏宏新,陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究.植物生态学报,2002,26(增刊):88-92
    [75]邵月红,潘剑君.浅谈土壤有机碳密度及储量的估算方法.土壤通报,2006,37(5):1007-1011
    [76]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究,2004,17(1):106-115
    [77]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997,17(4):377-385
    [78]史军,刘纪远.造林对陆地碳汇影响的研究进展.地理科学进展,2004,23(2):58-67
    [79]四川森林编委会.四川森林.北京:中国林业出版社,1992.
    [80]《四川省森林资源二类调查办法》.四川省林业厅,1994
    [81]孙长忠,沈国舫.我国人工林生产力问题的研究Ⅱ~影响我国人工林生产力的人为因素与社会因素探讨.林业科学,2001,37(4):26-34
    [82]孙长忠,沈国舫.我国人工林生产力问题的研究Ⅱ~影响我国人工林生产力的自然因素评价.林业科学,2001,37(3):72-77
    [83]孙丽英,李惠民,董文娟等.在我国开展林业碳汇项目的利弊分析.生态科学,2005,24(1):42-45
    [84]唐罗忠,生原喜久雄,黄宝龙等.江苏省里下河地区杨树人工林的碳储量及其动态.南京林业大学学报(自然科学版),2004,28(2):1-6
    [85]唐旭利,温达志,周国逸等.鼎湖山南亚热带季风常绿阔叶林植被C储量分布.生态学报,2003,23(1):90-97
    [86]陶波,葛全胜,李克让等.陆地生态系统碳循环研究进展.地理研究,2001,20(5):564-575
    [87]田大伦,方晰,项文化.湖南会同杉木人工林生态系统碳素密度.生态学报,2004,24(11):2382-2386
    [88]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量.中南林学院学报,2004,24(2):1-5
    [89]田大伦.马尾松和湿地松生态系统结构和功能.科学出版社,2005
    [90]汪业勖.中国森林生态系统区域碳循环研究.见:自然资源综合考察委员会博士论文文库.北京:中国科学院,1999,123
    [91]王长庭.三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素.植物生态学报,2006,30(3):441-449
    [92]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析.应用生态学报,2003,14(5):797-802
    [93]王绍强,周成虎,罗承文.中国陆地自然植被碳储量空间分布特征探讨.地理科学进展,1999,18(3):238-244
    [94]王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356
    [95]王绍强,朱松丽.中国土壤有机碳库及其空间分布特征.地理学报,2000,55(5):533-544
    [96]王绍武.近百年气候变化与变率的诊断研究.气象学报,1994,52(3):261-273
    [97]王效科,白艳莹,欧阳志云.全球碳循环中的失汇及其形成原因.生态学报,2002,22(1):94-103
    [98]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16
    [99]王效科,冯宗炜.中国森林生态系统植物固定大气碳的潜力.生态学杂志,2000,19(4):72-74
    [100]王玉辉,周广胜,蒋延玲等.基于森林资源清查资料的落叶松林生物量和净生长量估算模式.植物生态学报,2001,25(4):420-425
    [101]尉海东,马祥庆.中亚热带不同发育阶段杉木人工林生态系统碳贮量研究.江西农业大学学报,2006,28(2):239-243;267
    [102]尉海东,马样庆.不同发育阶段楠木人工林生态系统碳贮量研究.烟台师范学院学报,2006,22(2):130-133
    [103]项文化,田大伦,闫文德.森林生物量与生产力研究综述.中南林业调查规划,2003,22(3):57-60
    [104]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究.植物生态学报,2002,26(1):89-95
    [105]邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.应用生态学报,2007,18(1):1-8
    [106]熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植被发育及生物量研究.林业科学研究,1995,8(4):408-412
    [107]闫平,冯晓川.原始阔叶红松林碳素储量及空间分布.东北林业大学学报,2006,31(5):23-25
    [108]杨存建,刘纪远,张曾祥.热带森林植被生物量遥感估算探讨.地理与地理信息科学,2004,20(6):22-25
    [109]杨弘,李忠.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质.应用生态学报,2007,18(2):272-276
    [110]杨金艳,杨万勤,王开运等.木本植物对CO_2浓度和温度升高的相互作用的响应.植物生态学报,2003,27(3):304-310
    [111]杨昆,管东生,周春华.潭江流域森林碳储量及其动态变化.应用生态学报,2006,17(9):1579-1582
    [112]杨昆,管东生.珠江三角洲地区森林生物量及其动态.应用生态学报.2007,18(4):705-712
    [113]杨清培,李鸣光,王伯荪等.粤西南亚热带森林演替过程中的生物量与净第一性生产力动态.应用生态学报,2003,14(12):2136-2140
    [114]杨万勤,张健,胡庭兴等.森林土壤生态学.四川科学技术出版社,2006
    [115]杨玉盛,郭剑芬,陈银秀等.福建柏和柳杉人工林凋落物分解及养分动态的比较.林业科学,40(3):19-25
    [116]杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林枯枝落叶层碳库及养分库,生态学报,2004,24(2):359-367
    [117]姚茂和,盛炜彤,熊有强.林下植被对杉木林地力影响的研究.林业科学研充1991,4(3):246-252
    [118]姚茂和,盛炜彤,熊有强.杉木林下植被及其生物量的研究.林业科学,1991,27(6):644-648
    [119]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积.北京:气象出版社,2003,119-123
    [120]于占源,杨玉盛,陈光水.紫色土人工林生态系统碳库与碳吸存变化.应用生态学报,2004,15(10):1837-1841
    [121]张城,王绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析.资源科学,2006,28(2):97-103
    [122]张佳华,卞林根,延晓东等.碳循环及其对气候变化和人类生存环境的影响.气象科学,2006,26(3):350-354
    [123]张佳华,符淙斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报,1999,28(2):128-132
    [124]张小全,侯振宏.森林、造林、再造林和毁林的定义与碳计量问题.林业科学,2003,39(2):1451-1452
    [125]张小全,李怒云,武曙红.中国实施清洁发展机制造林和再造林项目的可行性和潜力.林业科学,2005,41(5):139-143
    [126]张新时,张奠安.中国全球变化样带的设置与研究.第四纪研究,1995,(1):43-52
    [127]张秀娟,吴楚,梅莉.水曲柳和落叶松人工林根系分解与养分释放.应用生态学报,2006,17(8):1370-1376
    [128]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学,2004,24(1):50-54
    [129]赵其国,杨浩,金峰.土壤有机碳储量及影响因素研究进展.土壤.2000,1,11-17
    [130]赵其国.土壤圈在全球变化中的意义与研究内容.地学前缘,1997,4(1~2):153-162
    [131]中华人民共和国国家标准.森林土壤分析方法.北京:国家标准局,1988
    [132]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布.林业科学,2004,40(6):20-24
    [133]周国模,刘恩斌,余光辉.森林土壤碳库研究方法进展.浙江林学院学报,2006,23(2):207-216
    [134]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳的影响.地理学报,2003,58(5):727-734
    [135]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522
    [136]Akihiko I.Modeling of carbon cycle and fire regime in an east Siberian Larch forest.Ecological Modelling,2005,187:121-139
    [137]Bartel P.Soil carbon sequestration and its role in economic development:a donor perspective.Journal of Arid Environments,2004,59:643-644
    [138]Batjes,N H.Total carbon and nitrogen in the soils of the world.European Journal of soil Science,1996,47:151-163
    [139]Birdsey R A.Carbon storage and ccumulation in United States forest ecosystems.United States Department of Agriculture Forest Service,General Technical Report,1992,WO~59
    [140]Bonan G B,Chapin Ⅲ F S,Thompson S L.Boreal forest and tundra ecosystems as components of the climate system.CLIM Change,1995,29:145-167.
    [141]Boyd D S,Foody G M,Curran P J.The relationship between the biomass of Cameroonian tropical forest and radiation reflected in middle infrared wavelength.International Journal of Remote Sensing,1999,20(5):1017-1023
    [142]Brown S..Tropical forests and the global carbon cycle:estimating state and change in biomass density.In Forest Ecosystem,Forest In Forest Ecosystem,Forest Management and the Global Carbon Cycle,M.J.Apps and D.T.Price(eds.)Proceedings of a NATO Advanced Research Workshop,NATO ASI Series I,1996,Vol.40,Springer~Verlag,Berlin:135-144
    [i43]Brown S J,Gillespie R,Lugo A E.Biomass estimates for tropical moist forests of Brazilian Amazon.Interciencia,1989,17:8-18
    [144]Brown S J,Lugo A E.The storage and production of organic matter in tropical forests and their role in the global carbon cycle.Biotropica,1982.14:161-187
    [145]Brown S,Lugo A E.Biomass of tropical forests:a new estimate based on forest volumes.Science,1984,223,1290-1293
    [146]Brown S,Pearson T.Methods Manual for MeasuringTerrestrial Carbon,Winrock International.2005
    [147] Burcshel P, Kursten E. Present role of German forest and forestry in the national carbon budget and options to its increase, Water, Air and Soil Pollution, 1993, 70: 325-340
    [148] Cao M K, Wooddward F I. Dynamic responses of terrestriral ecosystem carbon cycling to global climate change. Nature, 393: 249-252
    [149] Delcourt, Hazel R, Harris WF. Carbon budget of the southeastern U.S. Biota: analysis of historical change in trend from source to sink. Science, 1980, 210: 321-322
    [150] Dixon R K, Brown S, Houghton R A, et al.Carbon pools and flux of global forest ecosystems.Sciense, 1994,263: 185-190
    [151] Dixon, R, J Winjum, K Andrasko, J Lee&P Schroeder. Integrated systems: assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration. Climatic Change, 1994,30: 1~ 23
    
    [152] Dyson,F J. Can we control the carbon dioxide in the atmosphere? Energy, 2:287~291
    [153] Enquist B J, Niklas K J. Invariant scaling relations across tree domi nated communities. Nature, 2001,410: 655-660
    
    [154] Eriksson H. Sources and sinks of carbon dioxide in Sweden. Ambio, 1991,20:146-150
    [155] FAO. Food and Agriculture Organization of the United Nations. Key issues in the forest sector today// State of the World's Forests 2001. Rome, Italy: FAO:2001, 60-73
    [156] FAO. Production Yearbook. Food&Agric. Organization, Rome, Italy: 2006,1-348
    [157] Fearniside PM. Forests and global warming mitigation in Brazil: opportunities in the 20 Brazilian forest sector for responses to global warming under the "development mechanism". Biomass and Bioenergy, 1999,16: 171-189
    
    [158] Field C B, Fung I Y.The not_so_big U S. carbon sink. Science, 1999,285: 544-545
    [159] Finer L,Mannerkoski H, Piirainen S, et al. Carbon and nitrogen pools in an old~growth, Norway spruce mixed forest in eastern Finland and changes associated with clear~cutting. For. Ecol. Manage, 2003,174: 51-63
    [160] Fisher, M J, Rao M, Ayarza M A, et al. Carbon storage by introduced deeply rooted grasses in the South American savannas. Nature, Vera 1994, 371: 236-238
    [161] Food and Agriculture Organization. State of the World's forest, FAO, Rome. 2003
    [162] Friedl M A, Davis F W, Michaelsen J, et al. Scaling and Uncertainty in the Relationship between the NDVI and Land Surface Biophysical Variables: An Analysis Using a Scene Simulation Model and Data from FIFE. Remote Sensing, 1995, 54: 233-246
    [163] Galdo I D, Six J, Peressotti A, et al. Assessing the impact of land-use chang on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 2003, 9: 1204-1213
    [164] Houghton J T, Jenkins G J, EPhraums J J.Climate change:the IPCC scientific assessment. NewYork: Cambridge University Press, 1990,283-310
    [165] Houghton J T, L G Meria Filho ,B A Gallander,et al. Climate Change 1995:The Sicence of Climate Change. Cambridge, Great Britain: Cambridge University Press, 1996, 51-371
    [166] IGBP, IHDP, WCRP. The carbon challenge; An IGBP-IHDP-WCRP Joint Project. Stockholm: International Geosphere Biosphere Programme, 2001, 3-12
    [167] IGBP. Terrestial Carbon Working Group. CLIMATE: The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science, 1998, 280: 1393-1394
    [168] IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to The Third Assessment Report of the IPCC. Cambridge Univ. Press, Cambridge, 2001
    [169] IPCC. Houghton J T.Climate Change 1995: The Science of Climate Change[R]. Cambridge: Cambridge University Press, 1996
    [170] IPCC/OECD, IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, WMO,UNEP. 1996
    [171] Jobbagy, E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000,10: 423-436
    [172] Karjalainen T, Seppo K, et al. Carbon balance in the forest sector in Finland during 1990 ~2039. Climate Change, 1995, 31: 451-478
    [173] Keeling C D, T P Whorf. Atmospheric CO_2 records from sites in the SIO air sampling network. In:Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge,TN, USA, 1999
    [174] Keeling R F, Piper S C, Heimann M. Global and hemispheric CO_2 sinks deduced from changes in atmospheric CO_2 concentration. Nature, 1996,381: 218-2211
    [175] Kimble, J M, Heath, L S, Birdsey, R A, et al. 2002. The potential of U. S. Forest soils to sequester carbon and mitigate the greenhouse effect. CRC/Lewis, Boca Raton, FL. 429 pp
    [176] Kimmins J P. Forest Ecology. New York: Macmillan, 1987
    [177] Kirschbaum, Fischlin MUF, Fischlin A. Climate change impact on forest. Climate Change— The IPCC Scientific Assessment, 1996, 97-129
    [178] Kramer P J. Carbon dioxide concentration, photosyn thesis, and drymatter production. BioScience, 1981, (31): 29-33
    [179] Krankine O N, Dixon R K. Forest management option to conserve and sequester terrestrial carbon in the Russian Federation. World Resources Review, 1994,6(1): 88-101
    [180] Kurz W A, Apps M J . Contribution of northern forest to the global carbon cycle: Canada as a case study, Water. Air and Soil Pollution, 1993,70: 163-176
    
    [181] Lai R. Soil carbon sequestration to mitigate climate change. Geoderma, 2004,123: 1-22
    [182] Lai, R. Forest soils and carbon sequestration. Forest Ecology & Management, 2005, 220: 242 -258
    [183] Liu H, Lei R D. Estimating forest carbon storage and carbon density at Huoditang forestry region in the Qinling Mountains. Chinese Agricuttural Science Bulletin, 2005, 21(3): 138-142
    [184] Marland G, Garten Jr C T, Post W M, et al. Studies on enhancing carbon sequestration in soils. Energy, 2004,29: 1643-1650.
    [185] Matthews, E, R Payen, M Rohweder&S Murray. Pilot analysis of global ecosystem: forest ecosystems. Washington, DC: World Resource Institute, 2000, 55-59
    [186] McKenney, D W, Yemshanov, D, Fox, G, Ramlal, E E. Cost estimates fr carbon sequestration from fast growing poplar plantations in Canada. Forest Policy & Economics, 2004, 6: 345-358
    [187] McNeill,J R,Winiwarter, V . Soil and trouble. Science, 2004, 304: 1614-1615
    [188] Melillo J M, McGuire D A, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240
    [189] Melillo, J M, Steudler, P A, Aber, J D , et al. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298: 2173-2176
    [190] Neill, B C , Oppenheimer, M. Dangerous climate impacts and the Kyoto protocol. Science, 2002,296: 1971-1972
    [191] Nicholas C. Improvement in predicting stand growth of pinus radiata across Landscapes using NOAA AVHRR and Landsat MSS imagery combined with a forest growth process model. Photogrammetic Engineering & Remote Sensing, 1999,65(10): 1149-1156
    [192] Olson J S , Carbon in live vegetation of major World Ecosystem, Report ORNT-5862, Oak Ridge National Laboratory. 1983
    
    [193] Oreskes N. The scientific consensus on climate change. Science, 2004, 306: 1686
    [194] Ovington, J D. The form, weights and productivity of tree species growth of tree speciese grown in close stands. New Phytology, 1956, 55:289-304
    [195] Phillips, O L, Malhi, Y, Higuchi, N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998,282: 440-442
    [196] Post, W M, W R Emanuel, P J , Zinke&A G Stangenberger. Soil carbon pools and world life zones. Nature, 1982,298:156-159
    
    [197] Prentice I C, Lloyd J. C quest in the Amazon Basin. Nature, 1998,396: 61-620
    [198] Pritchard, S G, Davis, M A, Mitchell, R J, et al. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO_2 enrichment. Environ Exp Bot, 2001,46: 55 - 69
    [199] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellas, 1992,44B: 81-99
    [200] Remezon N P. Method studying the biological cycles of elements in forest. Soviet soil Sci, 1959, 1:59-67
    [201] Richards K R. A brief overview of carbon sequestration economics and policy. Environmental Management. 2004,33, 545-558
    
    [202] Rennie P J. The uptake of nutrients by mature forest growth. Plant Soil, 1955, 7:49-95
    [203] Rodin L E, Bazilevich N I. Production and Mineral Cycling in Terrestrial Vegetation. London: Oliver and Boyd Edinburgh, 1967
    [204] Satoo T. Physical basis of growth of forest trees. In: Recent Advance in Silvicultural Sciences, 1995,116-141.
    [205] Schroeder P, Ladd L. Slowing the increase of atmospheric carbon dioxide: a biological approach. Climate Change, 1991,19: 283-290
    [206] Shvidenko A Z, Nilsson S, Rojikov V A, et al. Carbon budget of the Russian boreal forests: asystem, sanalysis approach to uncertainty. In: Apps M J, Price D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle. Berlin: Springer Verlag, 1996, 145-162
    [207] Silver W L, Ostertang R, Lugo A E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restoration Ecology, 2000, 8: 394-407
    [208] Spencer R D, Green M A, Blggs P H. Integrating Eucalypt Forest Inventory and GIS In Western Australia. Photogrammetric Engineering & Remote Sensing, 1997, 63(12): 1345-1351
    [209] Stenseth N C, Mysterud A, Ottersen G, et al. Ecological effects of climate fluctuations. Science,2002, 297: 1292-1296
    [210] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO_2 budget. Science, 1990, 247: 1431-1438
    [211] Usman S, Singh S P, Rawat Y S, et al. 2000. Fine root decomposition and nitrogen mineralization patterns in Quercus leucotrichphora and Pinus roxburghii forest in central Himalaya. For. Ecol. Manage, 131: 191-199.
    [212] Vogt K A, Grier C C, Vogt D J. Production, turnover and nutrient dynamics of above and belowground detritus of word forest. Adv. Ecol. Res, 1986, 15: 303-337
    [213] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climate forest type and species. Plant Soil, 1996,187: 159-219
    [214] Walker B H, Steffen W L, Canadell J eds.The Trestrial Biosphere and Global Change, IGBP book series 4. Cambridge University Press, 1999,1—18
    [215] Wang S Q, Huang M, Shao X M, R A Mickler, et al. Vertical distribution of soil organic carbon in China. Environment Management, in press,2004
    [216] Waring R H, Running S W. Forest Ecosystem, Analysis at Multiple Scales. 2nd edition, Academic Press, San Diego, 1998
    [217] Whittaker, R H, Liken, G E. The biosphere and man. In: Lieth H, Whittaker R H Eds.Primary Productivity of the Biosphere,Springer~Verlag, New York, 1975,305-328
    [218] Woodwell, G M, Whittaker, R H, Reiners, W A, et al. The biota and the world carbon budget. Science, 1978,199,141-146
    
    [219] Zhang X, Xu D Y. Calculation forest biomass change in China. Science, 2002,199:141-146
    [220] Zhou G S,Wang Y H, Jiang Y L,et al. Estimating biomass and net primary production from forest inventory data: a case study of China's larix forest .For Ecol Man, 2002,169:149—157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700