用户名: 密码: 验证码:
传染性法氏囊病病毒感染细胞的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染性法氏囊病病毒(Infectious Bursal Disease Virus, IBDV)属双RNA病毒家族成员,它主要侵害雏鸡体液免疫中枢器官法氏囊中的B淋巴细胞前体,导致严重的免疫抑制。由于其基因组较小,编码蛋白少,常被作为dsRNA的模式病毒进行研究。目前,对IBDV各病毒蛋白的生物学功能已有一定的了解,但是从细胞分子水平分析病毒蛋白间的相互作用、病毒与宿主相互关系的研究相对较少,而这些对于IBDV复制机制和致病机理的阐明具有重要意义。本研究以IBDV感染的宿主细胞为主要研究对象,采用荧光双标法分析感染细胞内各病毒蛋白的亚细胞定位关系,采用差异蛋白质组学方法对IBDV感染细胞的蛋白代谢变化进行了探索,并选择重要的差异表达蛋白开展深入的功能研究。
     VP1是IBDV基因组B节段编码的一种RNA依赖的RNA聚合酶,在基因组RNA的复制和病毒粒子的组装过程中发挥重要的作用。本研究采用长距离RT-PCR方法扩增了IBDV细胞适应毒NB株基因组B节段全长cDNA,将其编码框VP1基因亚克隆到原核表达载体pET-28a(+)上,经IPTG诱导,表达了分子量约为97kDa的VP1融合蛋白,该蛋白主要以包涵体形式存在,在体外容易发生降解。以镍柱亲和纯化的重组VPl蛋白为免疫原,制备获得4株抗IBDV-VP1的特异性鼠单克隆抗体和兔多抗血清,为深入开展IBDV复制机理研究提供了有用的抗体工具。以VP1的特异性抗体为工具,分析了pEGFP-VP1和pCI-neo-VP1真核表达质粒转染细胞以及IBDV感染细胞中VP1的表达分布情况。转染细胞内单独表达VP1及EGFP-VP1融合蛋白均以弥散状分布于胞浆内;IBDV感染细胞内,感染早期VP1主要以弥散状分布于胞浆内,感染晚期VP1聚集成大小不等的颗粒状散在分布于胞浆内。这表明VP1是一种胞浆内分布蛋白,弥散和颗粒状分布的VP1发挥不同的生物学功能,其颗粒结构与病毒复制过程有关。
     以VPl抗体为工具,采用荧光双标法分析VP1与衣壳蛋白VP2和VP3、丝氨酸蛋白酶VP4以及非结构蛋白VP5在鸡胚成纤维细胞(chicken embryo fibroblasts, CEF)和Vero细胞两种宿主细胞中的亚细胞定位关系。结果显示,VP1、VP2、VP3和VP5在两种细胞中的表达模式基本相同,而VP4在两种细胞中有不同的表达分布特征。其中,VP2以弥散和颗粒状分布于胞浆内,VP2颗粒比VP1大,数量比VP1少,与VP1的部分颗粒有信号重叠的现象,提示该区域可能是病毒组装的场所。与VP1相似,VP3也在胞浆内形成颗粒状结构,与VP1表现为共定位的现象,这与现有文献报道的VP1和VP3形成稳定复合物参与IBDV组装过程的结论相佐证。弥散状聚集在胞膜上的VP5与胞浆分布的VP1不存在共定位关系,表明VP5和VP1在IBDV感染过程中发挥不同的生物学功能。不同于VP1、VP2、VP3和VP5,VP4在感染细胞的胞浆和核内均有分布。在不同宿主细胞核内,VP4均形成长短不等的针状结构,在胞浆内则不同,VP4以针状结构交织成网状分布在CEF的胞浆内,以团块状结构分布于Vero细胞的胞浆核周区,胞浆内VP4信号较弱的部位则是VP1颗粒聚集的区域。
     进一步采用荧光双标法分析VP2、VP3和VP4在IBDV感染的鸡胚成纤维细胞系DF-1中的表达定位关系。观察发现,随着病毒感染周期的不同,VP2、VP3和VP4的表达分布模式在逐渐转变。其中,胞浆分布的VP2由弥散状逐渐聚集为颗粒状和针状结构,胞浆内的VP3也由弥散状聚集为颗粒状或中空的团块状结构;胞浆和核内分布的VP4的变化趋势相同,均呈现有弥散状→点针状→短针状→长针状和颗粒状的变化动态,其中颗粒状结构只出现在胞浆内。从定位关系看,胞浆内颗粒状和针状的VP2与VP4表现为共定位,提示在感染晚期VP2和VP4存在相互作用关系,这可能与VP4对pVP2的二次剪切即VP2的加工成熟过程有关;颗粒状的VP2和VP4大多分布在中空的团块状VP3中央,提示,这些颗粒状或团块状结构所在的区域是病毒复制组装的关键部位,病毒的复制组装主要发生在“病毒工厂”的周围区域,而病毒粒子的加工成熟则发生在“病毒工厂”中央。VP4的核内分布提示,VP4除了加工剪切多聚蛋白和VP2前体蛋白外,可能还与宿主细胞发生相互作用,在IBDV的致病中起作用。
     为了从细胞分子水平大规模地分析病毒与宿主细胞的相互作用关系,.本研究采用二维凝胶电泳结合质谱鉴定的差异蛋白质组学研究方法,以IBDV的易感细胞CEF为感染模型,分析IBDV感染CEF后12h、48h和96h三个不同时间细胞蛋白的表达变化动态。二维凝胶的差异表达分析显示,CEF在感染IBDV后,共有102个蛋白点出现了显著的差异表达,蛋白表达变化主要发生在感染后48h和96h。采用MALDI-TOF/TOF质谱法对102个差异表达蛋白点进行质谱鉴定,结果成功鉴定81个蛋白点(对应51种细胞蛋白),包括13种上调蛋白和38种下调蛋白。这些差异蛋白分别代表IBDV感染诱导过量表达的多聚泛素、载脂蛋白A-1、27kDa热激蛋白1、肌动蛋白、微管蛋白、真核翻译起始因子4A异构体2 (EIF4A2)、酸性核糖体磷蛋白和核糖体相关蛋白,以及IBDV感染抑制表达的参与泛素介导的蛋白降解、糖代谢、中间丝、mRNA翻译和信号转导的细胞蛋白。实时RT-PCR在转录水平上验证了质谱鉴定的38个差异表达蛋白对应基因的变化情况,确证了质谱鉴定的准确性。借助Western blot分析,应用单克隆抗体在蛋白水平上进一步确认了IBDV感染细胞中Rho蛋白解离抑制因子的表达抑制和多聚泛素的诱导表达。以上结果表明,IBDV感染主要引起了细胞内细胞骨架网络、应激反应、泛素-蛋白酶体通路、大分子合成、细胞代谢和信号转导通路的变化,这些数据为进一步研究IBDV感染的机制和致病机理提供了有用的蛋白质相关基础信息。
     基于IBDV感染细胞的蛋白质组学分析发现,IBDV感染诱导了宿主细胞内多种细胞骨架相关蛋白的表达变化,为了进一步分析IBDV感染对宿主细胞骨架的影响,以VPl抗体为工具,采用间接免疫荧光技术定位IBDV感染细胞,同时以F-actin特异性探针FITC-phalloidin标记微丝、抗β-tubulin和vimentin抗体标记微管和中间丝,采用荧光双标技术分析IBDV感染细胞中微丝、微管和中间丝三种骨架的亚细胞结构变化。结果显示,三种细胞骨架结构在IBDV感染细胞中均发生了特征性的变化,其中,以中心体为中心呈放射状分布的微管结构在IBDV感染后期部分或完全被破坏,胞浆内致密的vimentin中间丝骨架结构在感染后也被破坏;而微丝F-actin在感染细胞中则异常聚合,表现为在核内形成针状结构,在Vero细胞胞浆内以块状结构分布在胞浆核周区,在CEF胞浆内以针状结构交织分布。IBDV感染细胞中F-actin的表达分布变化与VP4非常相似,提示两者可能存在相互关系,因此进一步采用荧光双标技术对F-actin和VP4进行亚细胞定位关系分析。结果显示,在IBDV感染的不同宿主细胞(CEF、Vero细胞和法氏囊组织细胞)的胞浆核周区和胞核内均出现了F-actin与VP4共定位现象;而在VP4真核表达载体转染细胞中,VP4仅分布在胞浆内,且在VP4分布的区域F-actin的荧光信号更强,表现为部分共定位现象。以上结果提示,IBDV感染细胞中VP4可能与F-actin发生相互作用,核内出现的针状F-actin及针状VP4与IBDV感染有关。为了进一步分析IBDV感染细胞内VP4与F-actin的相互关系,将IBDV感染细胞用Triton X-100进行处理,分别以VP4和β-actin单抗对Triton X-100可溶成分进行免疫共沉淀分析,结果发现在可溶上清中只含少量VP4,且与β-actin单体没有相互结合关系;但在TritonX-100不溶性细胞骨架成分中检测到大量VP4,提示VP4可能与不溶性的F-actin骨架结合在一起,从而以Triton X-100不溶形式存在。为了初步探讨F-actin在IBDV感染细胞中的生物学功能,用F-actin的聚合抑制药物细胞松弛素D (cytoD)作用IBDV感染的细胞,借助TCID50测定对比药物处理前后病毒的产量和细胞上清中的病毒滴度,结果显示,中低浓度的cytoD处理显著降低病毒产量,细胞上清中的病毒滴度也明显下降,表明F-actin的解聚影响了IBDV感染性病毒粒子的产生以及病毒粒子的释放过程。作为一种胞浆复制病毒,核内出现VP4和F-actin提示VP4除了加工剪切多聚蛋白和VP2前体蛋白外,还可能与宿主细胞发生相互作用发挥功能。因此,进一步对VP4和F-actin的入核机制、互作机制以及在IBDV感染过程中的生物学功能等问题进行深入探讨,将为IBDV的复制机制和致病机理研究提供重要的线索。
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a pathogenic agent that damages the precursors of antibody-producing B lymphocytes in the bursa of Fabricius (central humoral immune organ) in young chickens, and causes severe immunosuppression. IBDV has been intensively studied as the model for dsRNA virus, since its small genomes only encode several viral proteins. To date, the biological function of viral proteins had been well characterized, but the interactions between IBDV-encoded viral proteins, and the interactions between virus and host cells are still unclear, and all these questions are essential for the potential molecular mechanism of IBDV replication and pathogenesis. In this study, we analyzed the subcellular location relationship between viral proteins, and explored the protein expression profiles of IBDV-infected cells using comparative proteomic analysis, and then analyzed the function of the differentially expressed proteins during IBDV infection.
     VP1, the putative viral RNA-dependent RNA polymerase encoded by segment B of IBDV, has been suggested to play essential roles in the replication of viral genomic RNAs and the assembly of viral particles. In this study, the full-length cDNA of segment B of cell-adapted IBDV-NB isolate was amplified by long RT-PCR, and then VP1 gene was subcloned into the prokaryotic expression vector pET-28a(+). After induced with IPTG, the His-tagged recombinant VP1 protein (rVP1), with an approximately molecular weight of 97 kDa, was expressed mainly as inclusion body, and the protein tends to degrade in vitro. Using the purified rVP1 by nickel-column chromatography as immunogen, polyclonal antibodies and four monoclonal antibodies (mAbs) specifically recognizing IBDV-VP1 were successfully produced, these antibodies provide useful tools for further study of the molecular mechanism of IBDV replication. Using the special antibodies against VP1, we studied the subcellular location of VP1 protein in cells infected with IBDV or transfected with eukaryotic expression plamid of VP1 (pEGFP-VP1 or pCI-neo-VPl). The results showed that VP1 diffused within the cytoplasm of transfected cells, but distributed by diffusing and forming irregularly shaped particles within the cytoplasm of IBDV-infected cells. These data implied that the formation of granule-like VP1 in infected cells may be involved in IBDV infection.
     Dual fluorescent staining were carried out to examine the location relationship between VP1 and capsid proteins VP2/VP3, serine protease VP4 and nonstructural protein VP5 within IBDV-infected chicken embryo fibroblasts (CEFs) and Vero cells. The results showed that the expression patterns of VP1, VP2, VP3 and VP5 in IBDV-infected CEFs and Vero cells were fairly similar, but distinct signals of VP4 were observed in two kinds of cells. VP2 located in the cytoplasm by diffusing pattern and granule-like particles, the size of VP2 particles are greater than VP1, but the numbers of VP2 particels are smaller than VP1, the VP2 particles partically colocalize with VP1, suggesting that the region of partical colocalization may be the place for viral assembly. The expression and distribution of VP3 is very similar to VP1, and VP3 co-localizes precisely with VP1, these results were consistent with the previous reports that VP3 and VP1 form a stable complex to be involved in IBDV assembly. VP5 distributes throughout the plasma membrane of IBDV-infected cells, have no colocalization with cytoplasmic VP1, suggesting that VP5 and VP1 plays distinct roles during IBDV infection. Compared with VP1, VP2, VP3 and VP5, protease VP4 distributes both in the nucleus and cytoplasm of IBDV-infected cells. In IBDV-infected CEFs, VP4 forms needle-like signal both in the nucleus and cytoplasm, while forms needle-like signal in the nucleus and agglomerate-like signal within the cytoplasm of IBDV-infected Vero cells. VP1 locates in the interspace of cytoplasmic VP4.
     Further, the subcellular location relationships of VP2, VP3 and VP4 in IBDV-infected DF-1 chicken fibroblast cell line were determined by dual fluorescent staining. The results showed that the expression pattern of VP2, VP3 and VP4 had gradually changed. Cytoplasmic VP2 changed from diffuse to granule-like or needle-like, cytoplasmic VP3 changed from diffuse to granule-like or hollow agglomerate. Cytoplasmic and intranuclear VP4 gradually changed from diffuse, to dot-like needle, to short needle, to long needle and granule-like particles, and the granule-like particles were only found within the cytoplasm. Granule-like and needle-like VP4 was co-localized with VP2 in the cytoplasm, indicating that VP4 may interact with VP2 during late phase, and be involved in the cleaving and maturation of precursor VP2. The particles of VP2 and VP4 mainly distribute in the center of VP3, suggesting that IBDV replication occurs in the outer region of "viral factories", and assembly and maturation of IBDV particles occurs in the inter region of "viral factories". The nuclear localization of VP4 indicated that serine protease VP4 may play important roles in IBDV pathogenesis by interacting with host cells, in addition to cleave the polyprotein and VP2 precursor.
     The comparative proteomes of IBDV-infected and mock-infected CEFs at different time points were analyzed using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF/TOF protein identification. The analyses of multiple 2-DE gels revealed that a total of 102 protein spots differentially expressed during IBDV infection and the majority of protein expression changes appeared at 48 h and 96 h post infection. MALDI-TOF/TOF mass spectrometry successfully identified 81 protein spots (corresponding to 51 altered cellular proteins) of the 102 differentially expressed protein spots, including 13 up-regulated proteins and 38 down-regulated proteins. These data revealed that IBDV infection induced the overexpression of polyubiquitin, apolipoprotein A-1, heat shock 27 kDa protein 1, actins, tubulins, eukaryotic translation initiation factor 4A isoform 2, acidic ribosomal phosphoprotein, and p40 ribosomal associated protein, while considerably suppressed those cellular proteins involved in ubiquitin-mediated protein degradation, energy metabolism, intermediate filaments, host translational apparatus, and signal transduction. Moreover,38 corresponding genes of the differentially expressed proteins were quantitated by real-time RT-PCR to examine the transcriptional changes between infected and uninfected CEFs. Western blot further confirmed the inhibition of Rho protein GDP dissociation inhibitor and the induction of polyubiquitin during IBDV infection. These data showed that IBDV infection changed the cellular cytoskeleton, stress response, ubiquitin-proteosome pathway, macromolecular biosynthesis, energy metabolism and signal transduction. This work effectively provides useful dynamic protein-related information to facilitate further investigation of the underlying mechanism of IBDV infection and pathogenesis.
     Comparative proteomic analysis of IBDV-infected CEFs showed that multiple cytoskeleton-associated proteins were up-or down-regulated during viral infection. To further investigate the effects of IBDV infection on host cytoskeletal network, the microfilament, microtubule and intermediate filament in IBDV-infected cells (which were probed with antibodies against VP1) were detected respectively using FITC-phalloidin, antibodies againstβ-tubulin and vimentin. The results showed that IBDV infection induced the structural and distribution changes of microfilaments, microtubules and imtermediate filaments in IBDV-infected cells. Among then, the radial microtubule array anchored at the centrosome was partially or totally disrupted during late phase of infection, and the vimentin network within the cytoplasm also collapsed during IBDV infection. However, the signals of F-actin were greatly enhanced in IBDV-infected cells, with needle-like F-actin in the nucleus, with needle-like structure in the perinuclear region of cytoplasm of IBDV-infected CEFs, and with agglomerate in the cytoplasm of IBDV-infected Vero cells. The similar signal patterns were observed with anti-VP4 antibody and FITC-phalloidin in IBDV-infected cells, suggesting potential interactions between VP4 and F-actin. To further assess this possibility, their subcellular location relationship was characterized using the dual fluorescent staining. The results showed that F-actin and VP4 colocalize in both the nucleus and cytoplasm of IBDV-infected CEFs, Vero and bursal cells, but VP4 distributes within the cytoplasm of VP4-transfected cells, partically colocalize with higher signal F-actin, indicating that VP4 may interact with F-actin, and that the appearance of needle-like VP4 and F-actin in the nucleus were associated with IBDV infection. To further investigate the interaction between F-actin and VP4, IBDV-infected cells were treated with Triton X-100, and the binding activity of VP4 to monomer actin was detected using antibodies against VP4 or beta-actin by immunoprecipitation assay. The results showed that a small quantity of VP4 exists as soluble forms, and has no binding reactivity to monomer actin, while large quantity of VP4 exists as insoluble forms. These results indicated that VP4 may bind to the insoluble F-actin, and exist as insoluble forms. To assess whether F-actin is involved in IBDV infection, infected cells were treated with F-actin depolymerizing drug cytochalasin D, and the effects of drug on viral production were examined by determining the TCID50 on CEFs, the results showed that the production of infective virions were greatly decreased by treating with cytochalasin D, revealing that depolymerized F-actin potentially affects IBDV replication and release. Since IBDV replication occurs in the cytoplasm, the appearance of VP4 and F-actin in the nucleus suggested that the biological function of VP4 may largely unknown. Further investigation, including the molecular mechanism of VP4 import into the nucleus, the interaction between VP4 and F-actin, and the biological function of F-actin during IBDV infection, will greatly contribute to the elucidation of IBDV replication and pathogenesis.
引文
[1]Fauquet, C.M.; Mayo, M.A.; Maniloff, J.; Desselberger, U.; Ball, L.A. The double stranded RNA viruses. Virus taxonomy, VⅢth Report of the ICTV. London: Elsevier/Academic Press,2005:441.
    [2]Kaufer, I.; Weiss, E. Electron-microscope studies on the pathogenesis of infectious bursal disease after intrabursal application of the causal virus. Avian Dis.1976,20(3), 483-495.
    [3]Nick, H.; Cursiefen, D.; Becht, H. Structural and growth characteristics of infectious bursal disease virus. J Virol.1976,18(1),227-234.
    [4]Calvert, J.G.; Nagy, E.; Soler, M.; Dobos, P. Characterization of the VPg-dsRNA linkage of infectious pancreatic necrosis virus. J Gen Virol.1991,72 (Pt 10), 2563-2567.
    [5]Morgan, M.M.; Macreadie, I.G.; Harley, V.R.; Hudson, P.J.; Azad, A.A. Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology.1988,163(1),240-242.
    [6]Spies, U.; Muller, H.; Becht, H. Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res. 1987,8(2),127-140.
    [7]von Einem, U.I.; Gorbalenya, A.E.; Schirrmeier, H.; Behrens, S.E.; Letzel, T.; Mundt, E. VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J Gen Virol.2004,85(Pt 8),2221-2229.
    [8]Gorbalenya, A.E.; Pringle, F.M.; Zeddam, J.L.; Luke, B.T.; Cameron, C.E.; Kalmakoff, J.; Hanzlik, T.N.; Gordon, K.H.; Ward, V.K. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol.2002,324(1),47-62.
    [9]Pan, J.; Vakharia, V.N.; Tao, Y.J. The structure of a birnavirus polymerase reveals a distinct active site topology. Proc Natl Acad Sci U S A.2007,104(18),7385-7390.
    [10]Letzel, T.; Mundt, E.; Gorbalenya, A.E. Evidence for functional significance of the permuted C motif in Co2+-stimulated RNA-dependent RNA polymerase of infectious bursal disease virus. J Gen Virol.2007,88(Pt 10),2824-2833.
    [11]Muller, H.; Nitschke, R. The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein. Virology.1987,159(1),174-177.
    [12]Lombardo, E.; Maraver, A.; Cast n, J.R.; Rivera, J.; Fernandez-Arias, A.; Serrano, A. Carrascosa, J.L.; Rodriguez, J.F. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol.1999,73(8), 6973-6983.
    [13]Tacken, M.G.; Thomas, A.A.; Peeters, B.P.; Rottier, P.J.; Boot, H.J. VP1, the RNA-dependent RNA polymerase and genome-linked protein of infectious bursal disease virus, interacts with the carboxy-terminal domain of translational eukaryotic initiation factor 4AⅡ. Arch Virol.2004,149(11),2245-2260.
    [14]Saugar, I.; Luque, D.; Ona, A.; Rodriguez, J.F.; Carrascosa, J.L.; Trus, B.L.; Caston, J.R. Structural polymorphism of the major capsid protein of a double-stranded RNA virus:an amphipathic alpha helix as a molecular switch. Structure.2005,13(7), 1007-1017.
    [15]Ona, A.; Luque, D.; Abaitua, F.; Maraver, A.; Caston, J.R.; Rodriguez, J.F. The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology.2004, 322(1),135-142.
    [16]Dobos, P.; Hill, B.J.; Hallett, R.; Kells, D.T.; Becht, H.; Teninges, D. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol.1979,32(2),593-605.
    [17]Schnitzler, D.; Bernstein, F.; Muller, H.; Becht, H. The genetic basis for the antigenicity of the VP2 protein of the infectious bursal disease virus. J Gen Virol.1993, 74 (Pt 8),1563-1571.
    [18]Vakharia, V.N.; He, J.; Ahamed, B.; Snyder, D.B. Molecular basis of antigenic variation in infectious bursal disease virus. Virus Res.1994,31(2),265-273.
    [19]Bayliss, C.D.; Spies, U.; Shaw, K.; Peters, R.W.; Papageorgiou, A,; Muller, H.; Boursnell, M.E. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol.1990, 71 (Pt 6),1303-1312.
    [20]Vakharia, V.N.; Ahamed, B.; He, J. Use of polymerase chain reaction for efficient cloning of dsRNA segments of infectious bursal disease virus. Avian Dis.1992,36(3), 736-742.
    [21]Azad, A.A.; Jagadish, M.N.; Brown, M.A.; Hudson, P.J. Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology. 1987,161(1),145-152.
    [22]Heine, H.G.; Haritou, M.; Failla, P.; Fahey, K.; Azad, A. Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J Gen Virol.1991,72 (Pt 8),1835-1843.
    [23]Yamaguchi, T.; Iwata, K.; Kobayashi, M.; Ogawa, M.; Fukushi, H.; Hirai, K. Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus. Arch Virol. 1996,141(8),1493-1507.
    [24]Eterradossi, N.; Toquin, D.; Rivallan, G.; Guittet, M. Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol.1997,142(2),255-270.
    [25]Brandt, M.; Yao, K.; Liu, M.; Heckert, R.A.; Vakharia, V.N. Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol.2001,75(24),11974-11982.
    [26]Fernandez-Arias, A.; Martinez, S.; Rodriguez, J.F. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol.1997,71(10), 8014-8018.
    [27]Rodriguez-Lecompte, J.C.; Nino-Fong, R.; Lopez, A.; Frederick Markham, R.J. Kibenge, F.S. Infectious bursal disease virus (IBDV) induces apoptosis in chicken B cells. Comp Immunol Microbiol Infect Dis.2005,28(4),321-337.
    [28]Galloux, M.; Chevalier, C.; Henry, C.; Huet, J.C.; Costa, B.D.; Delmas, B. Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J Gen Virol.2004,85(Pt 8),2231-2236.
    [29]Da Costa, B.; Chevalier, C.; Henry, C.; Huet, J.C.; Petit, S.; Lepault, J.; Boot, H.; Delmas, B. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol.2002,76(5),2393-2402.
    [30]Chevalier, C.; Galloux, M.; Pous, J.; Henry, C.; Denis, J.; Da Costa, B.; Navaza, J.; Lepault, J.; Delmas, B. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation. J Virol.2005,79(19),12253-12263.
    [31]Da Costa, B.; Soignier, S.; Chevalier, C.; Henry, C.; Thory, C.; Huet, J.C.; Delmas, B. Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J Virol.2003,77(1),719-725.
    [32]Schroff, R.W.; Gale, R.P.; Fahey, J.L. Regeneration of T cell subpopulations after bone marrow transplantation:cytomegalovirus infection and lymphoid subset imbalance. J Immunol.1982,129(5),1926-1930.
    [33]Maraver, A.; Clemente, R.; Rodriguez, J.F.; Lombardo, E. Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol.2003,77(4),2459-2468.
    [34]Tacken, M.G.; Peeters, B.P.; Thomas, A.A.; Rottier, P.J.; Boot, H.J. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. J Virol.2002,76(22),11301-11311.
    [35]Tacken, M.G.; Rottier, P.J.; Gielkens, A.L.; Peeters, B.P. Interactions in vivo between the proteins of infectious bursal disease virus:capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1. J Gen Virol.2000,81(Pt 1),209-218.
    [36]Kochan, G.; Gonzalez, D.; Rodriguez, J.F. Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol. 2003,148(4),723-744.
    [37]Tacken, M.G.; Van Den Beuken, P.A.; Peeters, B.P.; Thomas, A.A.; Rottier, P.J.; Boot, H.J. Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5:mapping of the interacting domains. Virology.2003,312(2),306-319.
    [38]Maraver, A.; Ona, A.; Abaitua, F.; Gonzalez, D.; Clemente, R.; Ruiz-Diaz, J.A.; Caston, J.R.; Pazos, F.; Rodriguez, J.F. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol.2003,77(11),6438-6449.
    [39]Chevalier, C.; Lepault, J.; Da Costa, B.; Delmas, B. The last C-terminal residue of VP3, glutamic acid 257, controls capsid assembly of infectious bursal disease virus. J Virol. 2004,78(7),3296-3303.
    [40]Barrett, A.J.; Rawlings, N.D. Families and clans of serine peptidases. Arch Biochem Biophys.1995,318(2),247-250.
    [41]Lejal, N.; Da Costa, B.; Huet, J.C.; Delmas, B. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol.2000,81(Pt 4),983-992.
    [42]Birghan, C.; Mundt, E.; Gorbalenya, A.E. A non-canonical Ion proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. Embo J.2000,19(1),114-123.
    [43]Kibenge, F.S.; Dhillon, A.S.; Russell, R.G. Biochemistry and immunology of infectious bursal disease virus. J Gen Virol.1988,69 (Pt 8),1757-1775.
    [44]Magyar, G.; Dobos, P. Expression of infectious pancreatic necrosis virus polyprotein and VP1 in insect cells and the detection of the polyprotein in purified virus. Virology. 1994,198(2),437-445.
    [45]Granzow, H.; Birghan, C.; Mettenleiter, T.C.; Beyer, J.; Kollner, B.; Mundt, E. A second form of infectious bursal disease virus-associated tubule contains VP4. J Virol. 1997,71(11),8879-8885.
    [46]Mundt, E.; Kollner, B.; Kretzschmar, D. VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol.1997,71(7),5647-5651.
    [47]Liu, M.; Vakharia, V.N. Nonstructural protein of infectious bursal disease virus inhibits apoptosis at the early stage of virus infection. J Virol.2006,80(7),3369-3377.
    [48]Lombardo, E.; Maraver, A.; Espinosa, I.; Fernandez-Arias, A.; Rodriguez, J.F. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology.2000,277(2),345-357.
    [49]Yao, K.; Vakharia, V.N. Generation of infectious pancreatic necrosis virus from cloned cDNA. J Virol.1998,72(11),8913-8920.
    [50]Yao, K.; Vakharia, V.N. Induction of. apoptosis in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus:possible role in viral pathogenesis. Virology. 2001,285(1),50-58.
    [51]Shai, Y. Moleculer recognition between membrane-spanning polypeptides. Trends Biol Sci.1995,20,460-464.
    [52]Nagarajan, M.M.; Kibenge, F.S. The 5'-terminal 32 basepairs conserved between genome segments A and B contain a major promoter element of infectious bursal disease virus. Arch Virol.1997,142(12),2499-2514.
    [53]Dobos, P. In vitro guanylylation of infectious pancreatic necrosis virus polypeptide VP1. Virology.1993,193(1),403-413.
    [54]Boot, H.J.; ter Huurne, A.A.; Peeters, B.P.; Gielkens, A.L. Efficient rescue of infectious bursal disease virus from cloned cDNA:evidence for involvement of the 3'-terminal sequence in genome replication. Virology.1999,265(2),330-341.
    [55]Boot, H.J.; Pritz-Verschuren, S.B. Modifications of the 3'-UTR stem-loop of infectious bursal disease virus are allowed without influencing replication or virulence. Nucleic Acids Res.2004,32(1),211-222.
    [56]Tsukamoto, K.; Matsumura, T.; Mase, M.; Imai, K. A highly sensitive, broad-spectrum infectivity assay for infectious bursal disease virus. Avian Dis.1995,39(3),575-586.
    [57]Smith, A.E.; Helenius, A. How viruses enter animal cells. Science.2004,304(5668), 237-242.
    [58]Reddy, S.K.; Silim, A.; Ratcliffe, M.J. Biological roles of the major capsid proteins and relationships between the two existing serotypes of infectious bursal disease virus. Arch Virol.1992,127(1-4),209-222.
    [59]Nieper, H.; Muller, H. Susceptibility of chicken lymphoid cells to infectious bursal disease virus does not correlate with the presence of specific binding sites. J Gen Virol. 1996,77 (Pt 6),1229-1237.
    [60]Komine, K.; Ohta, H.; Kamata, S.; Uchida, K.; Hirai, K. Infectivity of infectious bursal disease virus neutralized by maternal antibody in various chicken cells. Nippon Juigaku Zasshi.1989,51(3),634-635.
    [61]Komine, K.I.; Ohta, H.; Fujii, H.; Watanabe, Y.; Kamata, S.; Sugiyama, M. Efficacy of subcutaneous application of live infectious bursal disease vaccine in young chickens with maternally derived antibody. J Vet Med Sci.1995,57(4),647-653.
    [62]Elankumaran, S.; Kumanan, K.; Joy Chandran, N.D.; Palaniswami, K.S.; Venugopolan, A.T. Agglutination of chicken lymphocytes by infectious bursal disease virus. Vet Microbiol.1995,44(1),93-99.
    [63]Lin, T.W.; Lo, C.W.; Lai, S.Y.; Fan, R.J.; Lo, C.J.; Chou, Y.M.; Thiruvengadam, R.; Wang, A.H.; Wang, M.Y. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. J Virol.2007,81(16), 8730-8741.
    [64]Grimes, J.M.; Burroughs, J.N.; Gouet, P.; Diprose, J.M.; Malby, R.; Zientara, S.; Mertens, P.P.; Stuart, D.I. The atomic structure of the bluetongue virus core. Nature. 1998,395(6701),470-478.
    [65]Nakagawa, A.; Miyazaki, N.; Taka, J.; Naitow, H.; Ogawa, A.; Fujimoto, Z.; Mizuno, H.; Higashi, T.; Watanabe, Y.; Omura, T.; Cheng, R.H.; Tsukihara, T. The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure.2003,11(10),1227-1238.
    [66]Reinisch, K.M.; Nibert, M.L.; Harrison, S.C. Structure of the reovirus core at 3.6 A resolution. Nature.2000,404(6781),960-967.
    [67]Chandran, K.; Nibert, M.L. Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol.2003,11(8),374-382.
    [68]Gillies, S.; Bullivant, S.; Bellamy, A.R. Viral RNA polymerases:electron microscopy of reovirus reaction cores. Science.1971,174(10),694-696.
    [69]Prasad, B.V.; Rothnagel, R.; Zeng, C.Q.; Jakana, J.; Lawton, J.A.; Chiu, W.; Estes, M.K. Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature.1996,382(6590),471-473.
    [70]Cohen, J. Ribonucletic acid polymerase activity in purified infectious pancreatic necrosis virus of trout. Biochem Biophys Res Commun.1975,62(3),689-695.
    [71]Ludert, J.E.; Michelangeli, F.; Gil, F.; Liprandi, F.; Esparza, J. Penetration and uncoating of rotaviruses in cultured cells. Intervirology.1987,27(2),95-101.
    [72]Huismans, H.; van Dijk, A.A.; Els, H.J. Uncoating of parental bluetongue virus to core and subcore particles in infected L cells. Virology.1987,157(1),180-188.
    [73]HA, A.L.-K.; Bhella, D.; Kenney, J.M.; Roth, J.F.; Kingsman, A.J.; Martin-Rendon, E.; Saibil, H.R. Yeast Ty retrotransposons assemble into virus-like particles whose T-numbers depend on the C-terminal length of the capsid protein. J Mol Biol.1999, 292(1),65-73.
    [74]Hu, Y.C.; Bentley, W.E. Effect of MOI ratio on the composition and yield of chimeric infectious bursal disease virus-like particles by baculovirus co-infection:deterministic predictions and experimental results. Biotechnol Bioeng.2001,75(1),104-119.
    [75]Chevalier, C.; Lepault, J.; Erk, I.; Da Costa, B.; Delmas, B. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J Virol.2002,76(5), 2384-2392.
    [76]Caston, J.R.; Martinez-Torrecuadrada, J.L.; Maraver, A.; Lombardo, E.; Rodriguez, J.F.; Casal, J.I.; Carrascosa, J.L. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol. 2001,75(22),10815-10828.
    [77]Bottcher, B.; Kiselev, N.A.; Stel'Mashchuk, V.Y.; Perevozchikova, N.A.; Borisov, A.V.; Crowther, R.A. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol.1997,71(1),325-330.
    [78]Muller, H.; Becht, H. Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol.1982,44(1),384-392.
    [79]Vasconcelos, A.C.; Lam, K.M. Apoptosis in chicken embryos induced by the infectious bursal disease virus. J Comp Pathol.1995,112(4),327-338.
    [80]Tanimura, N.; Sharma, J.M. In-situ apoptosis in chickens infected with infectious bursal disease virus. J Comp Pathol.1998,118(1),15-27.
    [81]Lam, K.M. Morphological evidence of apoptosis in chickens infected with infectious bursal disease virus. J Comp Pathol.1997,116(4),367-377.
    [82]Ojeda, F.; Skardova, I.; Guarda, M.I.; Ulloa, J.; Folch, H. Proliferation and apoptosis in infection with infectious bursal disease virus:a flow cytometric study. Avian Dis.1997, 41(2),312-316.
    [83]Kong, L.L.; Omar, A.R.; Hair-Bejo, M.; Aini, I.; Seow, H.F. Comparative analysis of viral RNA and apoptotic cells in bursae following infection with infectious bursal disease virus. Comp Immunol Microbiol Infect Dis.2004,27(6),433-443.
    [84]Vasconcelos, A.C.; Lam, K.M. Apoptosis induced by infectious bursal disease virus. J Gen Virol.1994,75 (Pt 7),1803-1806.
    [85]Khatri, M.; Sharma, J.M. Modulation of macrophages by infectious bursal disease virus. Cytogenet Genome Res.2007,117(1-4),388-393.
    [86]Jungmann, A.; Nieper, H.; Muller, H. Apoptosis is induced by infectious bursal disease virus replication in productively infected cells as well as in antigen-negative cells in their vicinity. J Gen Virol.2001,82(Pt 5),1107-1115.
    [87]Tham, K.M.; Moon, C.D. Apoptosis in cell cultures induced by infectious bursal disease virus following in vitro infection. Avian Dis.1996,40(1),109-113.
    [88]Yeh, H.Y.; Rautenschlein, S.; Sharma, J.M. Protective immunity against infectious bursal disease virus in chickens in the absence of virus-specific antibodies. Vet Immunol Immunopathol.2002,89(3-4),149-158.
    [89]Rauw, F.; Lambrecht, B.; Berg, T. Pivotal role of ChIFNgamma in the pathogenesis and immunosuppression of infectious bursal disease. Avian Pathol.2007,36(5),367-374.
    [90]Wong, R.T.; Hon, C.C.; Zeng, F.; Leung, F.C. Screening of differentially expressed transcripts in infectious bursal disease virus-induced apoptotic chicken embryonic fibroblasts by using cDNA microarrays. J Gen Virol.2007,88(Pt 6),1785-1796.
    [91]Rabilloud, T. Two-dimensional gel electrophoresis in proteomics:old, old fashioned, but it still climbs up the mountains. Proteomics.2002,2(1),3-10.
    [92]Gygi, S.P.; Corthals, G.L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A.2000,97(17),9390-9395.
    [93]Corbett, J.M.; Dunn, M.J.; Posch, A.; Gorg, A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension:an interlaboratory comparison. Electrophoresis.1994,15(8-9),1205-1211.
    [94]Blomberg, A.; Blomberg, L.; Norbeck, J.; Fey, S.J.; Larsen, P.M.; Larsen, M.; Roepstorff, P.; Degand, H.; Boutry, M.; Posch, A.; et al. Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis.1995,16(10),1935-1945.
    [95]Bjellqvist, B.; Sanchez, J.C.; Pasquali, C.; Ravier, F.; Paquet, N.; Frutiger, S.; Hughes, G.J.; Hochstrasser, D. Micropreparative two-dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins. Electrophoresis.1993, 14(12),1375-1378.
    [96]Wildgruber, R.; Reil, G.; Drews, O.; Parlar, H.; Gorg, A. Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics.2002,2(6),727-732.
    [97]Drews, O.; Reil, G.; Parlar, H.; Gorg, A. Setting up standards and a reference map for the alkaline proteome of the Gram-positive bacterium Lactococcus lactis. Proteomics. 2004,4(5),1293-1304.
    [98]Friedman, D.B. Quantitative proteomics for two-dimensional gels using difference gel electrophoresis. Methods Mol Biol.2007,367,219-239.
    [99]Wu, T.L. Two-dimensional difference gel electrophoresis. Methods Mol Biol.2006, 328,71-95.
    [100]Patton, W.F. Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci.2002,771(1-2),3-31.
    [101]Lilley, K.S.; Razzaq, A.; Dupree, P. Two-dimensional gel electrophoresis:recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol. 2002,6(1),46-50.
    [102]Sanchez, J.C.; Rouge, V.; Pisteur, M.; Ravier, F.; Tonella, L.; Moosmayer, M.; Wilkins, M.R.; Hochstrasser, D.F. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis.1997,18(3-4),324-327.
    [103]Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature.2003, 422(6928),198-207.
    [104]Gooley, A.A.; Ou, K.; Russell, J.; Wilkins, M.R.; Sanchez, J.C.; Hochstrasser, D.F.; Williams, K.L. A role for Edman degradation in proteome studies. Electrophoresis. 1997,18(7),1068-1072.
    [105]Maxwell, K.L.; Frappier, L. Viral proteomics. Microbiol Mol Biol Rev.2007,71(2), 398-411.
    [106]Baldick, C.J., Jr.; Shenk, T. Proteins associated with purified human cytomegalovirus particles. J Virol.1996,70(9),6097-6105.
    [107]Varnum, S.M.; Streblow, D.N.; Monroe, M.E.; Smith, P.; Auberry, K.J.; Pasa-Tolic, L.; Wang, D.; Camp, D.G.,2nd; Rodland, K.; Wiley, S.; Britt, W.; Shenk, T.; Smith, R.D.; Nelson, J.A. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol.2004,78(20),10960-10966.
    [108]Kattenhorn, L.M.; Mills, R.; Wagner, M.; Lomsadze, A.; Makeev, V.; Borodovsky, M.; Ploegh, H.L.; Kessler, B.M. Identification of proteins associated with murine cytomegalovirus virions. J Virol.2004,78(20),11187-11197.
    [109]Johannsen, E.; Luftig, M.; Chase, M.R.; Weicksel, S.; Cahir-McFarland, E.; Illanes, D.; Sarracino, D.; Kieff, E. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A.2004,101(46),16286-16291.
    [110]Zhu, F.X.; Chong, J.M.; Wu, L.; Yuan, Y. Virion proteins of Kaposi's sarcoma-associated herpesvirus. J Virol.2005,79(2),800-811.
    [111]Bechtel, J.T.; Winant, R.C.; Ganem, D. Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol.2005,79(8),4952-4964.
    [112]O'Connor, C.M.; Kedes, D.H. Mass spectrometric analyses of purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J Virol.2006,80(3),1574-1583.
    [113]Chelius, D.; Huhmer, A.F.; Shieh, C.H.; Lehmberg, E.; Traina, J.A.; Slattery, T.K. Pungor, E., Jr. Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. J Proteome Res.2002,1(6),501-513.
    [114]Zeng, R.; Ruan, H.Q.; Jiang, X.S.; Zhou, H.; Shi, L.; Zhang, L.; Sheng, Q.H.; Tu, Q.; Xia, Q.C.; Wu, J.R. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res.2004,3(3),549-555.
    [115]Saphire, A.C.; Gallay, P.A.; Bark, S.J. Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res.2006,5(3),530-538.
    [116]Chertova, E.; Chertov, O.; Coren, L.V.; Roser, J.D.; Trubey, C.M.; Bess, J.W., Jr.; Sowder, R.C.,2nd; Barsov, E.; Hood, B.L.; Fisher, R.J.; Nagashima, K.; Conrads, T.P.; Veenstra, T.D.; Lifson, J.D.; Ott, D.E. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol.2006,80(18),9039-9052.
    [117]Condit, R.C.; Moussatche, N.; Traktman, P. In a nutshell:structure and assembly of the vaccinia virion. Adv Virus Res.2006,66,31-124.
    [118]Takahashi, T.; Oie, M.; Ichihashi, Y. N-terminal amino acid sequences of vaccinia virus structural proteins. Virology.1994,202(2),844-852.
    [119]Jensen, O.N.; Houthaeve, T.; Shevchenko, A.; Cudmore, S.; Ashford, T.; Mann, M.; Griffiths, G.; Krijnse Locker, J. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J Virol.1996,70(11),7485-7497.
    [120]Yoder, J.D.; Chen, T.S.; Gagnier, C.R.; Vemulapalli, S.; Maier, C.S.; Hruby, D.E. Pox proteomics:mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J,2006,3,10.
    [121]Chung, C.S.; Chen, C.H.; Ho, M.Y.; Huang, C.Y.; Liao, C.L.; Chang, W. Vaccinia virus proteome:identification of proteins in vaccinia virus intracellular mature virion particles. J Virol.2006,80(5),2127-2140.
    [122]Zachertowska, A.; Brewer, D.; Evans, D.H. Characterization of the major capsid proteins of myxoma virus particles using MALDI-TOF mass spectrometry. J Virol Methods.2006,132(1-2),1-12.
    [123]Song, W.J.; Qin, Q.W.; Qiu, J.; Huang, C.H.; Wang, F.; Hew, C.L. Functional genomics analysis of Singapore grouper iridovirus:complete sequence determination and proteomic analysis. J Virol.2004,78(22),12576-12590.
    [124]Song, W.; Lin, Q.; Joshi, S.B.; Lim, T.K.; Hew, C.L. Proteomic studies of the Singapore grouper iridovirus. Mol Cell Proteomics.2006,5(2),256-264.
    [125]Huang, C.; Zhang, X.; Lin, Q.; Xu, X.; Hu, Z.; Hew, C.L. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics.2002,1(3),223-231.
    [126]Tsai, J.M.; Wang, H.C.; Leu, J.H.; Hsiao, H.H.; Wang, A.H.; Kou, G.H.; Lo, C.F. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol.2004,78(20),11360-11370.
    [127]Xie, X.; Xu, L.; Yang, F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol.2006,80(21),10615-10623.
    [128]Tsai, J.M.; Wang, H.C.; Leu, J.H.; Wang, A.H.; Zhuang, Y.; Walker, P.J.; Kou, G.H.; Lo, C.F. Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol.2006,80(6),3021-3029.
    [129]Renesto, P.; Abergel, C.; Decloquement, P.; Moinier, D.; Azza, S.; Ogata, H.; Fourquet, P.; Gorvel, J.P.; Claverie, J.M. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol.2006,80(23),11678-11685.
    [130]Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.; Neuman, B.W.; Brooun, A.; Griffith, M.; Moy, K.; Yadav, M.K.; Velasquez, J.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol.2006, 80(16),7894-7901.
    [131]Peti, W.; Johnson, M.A.; Herrmann, T.; Neuman, B.W.; Buchmeier, M.J.; Nelson, M.; Joseph, J.; Page, R.; Stevens, R.C.; Kuhn, P.; Wuthrich, K. Structural genomics of the severe acute respiratory syndrome coronavirus:nuclear magnetic resonance structure of the protein nsP7. J Virol.2005,79(20),12905-12913.
    [132]Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A.2006,103(15), 5717-5722.
    [133]Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.; Clayton, T.; Griffith, M.; Moy, K. Velasquez, J.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1 "-phosphate dephosphorylation by a conserved domain of nsP3. Structure.2005,13(11),1665-1675.
    [134]Mohd Jaafar, F.; Attoui, H.; Bahar, M.W.; Siebold, C.; Sutton, G.; Mertens, P.P.; De Micco, P.; Stuart, D.I.; Grimes, J.M.; De Lamballerie, X. The structure and function of the outer coat protein VP9 of Banna virus. Structure.2005,13(1),17-28.
    [135]Meier, C.; Aricescu, A.R.; Assenberg, R.; Aplin, R.T.; Gilbert, R.J.; Grimes, J.M.; Stuart, D.I. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure.2006,14(7),1157-1165.
    [136]Fogg, M.J.; Alzari, P.; Bahar, M.; Bertini, I.; Betton, J.M.; Burmeister, W.P.; Cambillau, C.; Canard, B.; Corrondo, M.A.; Coll, M.; Daenke, S.; Dym, O.; Egloff, M.P.; Enguita, F.J.; Geerlof, A.; Haouz, A.; Jones, T.A.; Ma, Q.; Manicka, S.N.; Migliardi, M.; Nordlund, P.; Owens, R.J.; Peleg, Y.; Schneider, G.; Schnell, R.; Stuart, D.I.; Tarbouriech, N.; Unge, T.; Wilkinson, A.J.; Wilmanns, M.; Wilson, K.S.; Zimhony, O.; Grimes, J.M. Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens. Acta Crystallogr D Biol Crystallogr.2006,62(Pt 10),1196-1207.
    [137]Johansson, K.; Bourhis, J.M.; Campanacci, V.; Cambillau, C.; Canard, B.; Longhi, S. Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem.2003, 278(45),44567-44573.
    [138]Egloff, M.P.; Ferron, F.; Campanacci, V.; Longhi, S.; Rancurel, C.; Dutartre, H.; Snijder, E.J.; Gorbalenya, A.E.; Cambillau, C.; Canard, B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci U S A.2004,101(11), 3792-3796.
    [139]Sutton, G.; Fry, E.; Carter, L.; Sainsbury, S.; Walter, T.; Nettleship, J.; Berrow, N.; Owens, R.; Gilbert, R.; Davidson, A.; Siddell, S.; Poon, L.L.; Diprose, J.; Alderton, D.; Walsh, M.; Grimes, J.M.; Stuart, D.I. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure.2004,12(2),341-353.
    [140]Tarbouriech, N.; Buisson, M.; Geoui, T.; Daenke, S.; Cusack, S.; Burmeister, W.P. Structural genomics of the Epstein-Barr virus. Acta Crystallogr D Biol Crystallogr. 2006,62(Pt 10),1276-1285.
    [141]Tarbouriech, N.; Buisson, M.; Seigneurin, J.M.; Cusack, S.; Burmeister, W.P. The monomeric dUTPase from Epstein-Barr virus mimics trimeric dUTPases. Structure. 2005,13(9),1299-1310.
    [142]Tarbouriech, N.; Ruggiero, F.; de Turenne-Tessier, M.; Ooka, T.; Burmeister, W.P. Structure of the Epstein-Barr virus oncogene BARF1. J Mol Biol.2006,359(3), 667-678.
    [143]Buisson, M.; Hernandez, J.F.; Lascoux, D.; Schoehn, G.; Forest, E.; Arlaud, G.; Seigneurin, J.M.; Ruigrok, R.W.; Burmeister, W.P. The crystal structure of the Epstein-Barr virus protease shows rearrangement of the processed C terminus. J Mol Biol.2002,324(1),89-103.
    [144]Edmonds, L.; Liu, A.; Kwan, J.J.; Avanessy, A.; Caracoglia, M.; Yang, I.; Maxwell, K.L.; Rubenstein, J.; Davidson, A.R.; Donaldson, L.W. The NMR structure of the gpU tail-terminator protein from bacteriophage lambda:identification of sites contributing to Mg(II)-mediated oligomerization and biological function. J Mol Biol.2007,365(1), 175-186.
    [145]Jain, D.; Kim, Y.; Maxwell, K.L.; Beasley, S.; Zhang, R.; Gussin, G.N.; Edwards, A.M.; Darst, S.A. Crystal structure of bacteriophage lambda cⅡ and its DNA complex. Mol Cell.2005,19(2),259-269.
    [146]Maxwell, K.L.; Reed, P.; Zhang, R.G.; Beasley, S.; Walmsley, A.R.; Curtis, F.A.; Joachimiak, A.; Edwards, A.M.; Sharples, GJ. Functional similarities between phage lambda Orf and Escherichia coli RecFOR in initiation of genetic exchange. Proc Natl Acad Sci U S A.2005,102(32),11260-11265.
    [147]Maxwell, K.L.; Yee, A.A.; Arrowsmith, C.H.; Gold, M.; Davidson, A.R. The solution structure of the bacteriophage lambda head-tail joining protein, gpFII. J Mol Biol.2002, 318(5),1395-1404.
    [148]Maxwell, K.L.; Yee, A.A.; Booth, V.; Arrowsmith, C.H.; Gold, M.; Davidson, A.R. The solution structure of bacteriophage lambda protein W, a small morphogenetic protein possessing a novel fold. J Mol Biol.2001,308(1),9-14.
    [149]Bernhard, O.K.; Diefenbach, R.J.; Cunningham, A.L. New insights into viral structure and virus-cell interactions through proteomics. Expert Rev Proteomics.2005,2(4), 577-588.
    [150]Taylor, T.J.; Knipe, D.M. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol.2004,78(11),5856-5866.
    [151]Fontaine-Rodriguez, E.C.; Taylor, T.J.; Olesky, M.; Knipe, D.M. Proteomics of herpes simplex virus infected cell protein 27:association with translation initiation factors. Virology.2004,330(2),487-492.
    [152]Cohen, G.B.; Rangan, V.S.; Chen, B.K.; Smith, S.; Baltimore, D. The human thioesterase II protein binds to a site on HIV-1 Nef critical for CD4 down-regulation. J Biol Chem.2000,275(30),23097-23105.
    [153]Kang, S.M.; Shin, M.J.; Kim, J.H.; Oh, J.W. Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein. Proteomics.2005,5(8),2227-2237.
    [154]Holowaty, M.N.; Zeghouf, M.; Wu, H.; Tellam, J.; Athanasopoulos, V.; Greenblatt, J.; Frappier, L. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem. 2003,278(32),29987-29994.
    [155]Mayer, D.; Baginsky, S.; Schwemmle, M. Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification. Proteomics.2005,5(17), 4483-4487.
    [156]Szajner, P.; Jaffe, H.; Weisberg, A.S.; Moss, B. A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions. Virology.2004,330(2),447-459.
    [157]Senkevich, T.G.; Ojeda, S.; Townsley, A.; Nelson, G.E.; Moss, B. Poxvirus multiprotein entry-fusion complex. Proc Natl Acad Sci U S A.2005,102(51),18572-18577.
    [158]Vittone, V.; Diefenbach, E.; Triffett, D.; Douglas, M.W.; Cunningham, A.L Diefenbach, R.J. Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol.2005,79(15),9566-9571.
    [159]Schierling, K.; Stamminger, T.; Mertens, T.; Winkler, M. Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol.2004,78(17),9512-9523.
    [160]Lake, C.M.; Hutt-Fletcher, L.M. The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology.2004,320(1), 99-106.
    [161]Flajolet, M.; Rotondo, G.; Daviet, L.; Bergametti, F.; Inchauspe, G.; Tiollais, P.; Transy, C.; Legrain, P. A genomic approach of the hepatitis C virus generates a protein interaction map. Gene.2000,242(1-2),369-379.
    [162]Choi, I.R.; Stenger, D.C.; French, R. Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology.2000,267(2), 185-198.
    [163]McCraith, S.; Holtzman, T.; Moss, B.; Fields, S. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci U S A.2000,97(9),4879-4884.
    [164]Uetz, P.; Dong, Y.A.; Zeretzke, C.; Atzler, C.; Baiker, A.; Berger, B.; Rajagopala, S.V.; Roupelieva, M.; Rose, D.; Fossum, E.; Haas, J. Herpesviral protein networks and their interaction with the human proteome. Science.2006,311(5758),239-242.
    [165]Edwards, A.M.; Kus, B.; Jansen, R.; Greenbaum, D.; Greenblatt, J.; Gerstein, M. Bridging structural biology and genomics:assessing protein interaction data with known complexes. Trends Genet.2002,18(10),529-536.
    [166]DeFilippis, V.; Raggo, C.; Moses, A.; Fruh, K. Functional genomics in virology and antiviral drug discovery. Trends Biotechnol.2003,21(10),452-457.
    [167]Kellam, P. Post-genomic virology:the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol.2001, 11(5),313-329.
    [168]Piersanti, S.; Martina, Y.; Cherubini, G.; Avitabile, D.; Saggio, I. Use of DNA microarrays to monitor host response to virus and virus-derived gene therapy vectors. Am J Pharmacogenomics.2004,4(6),345-356.
    [169]Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol.1999,19(3),1720-1730.
    [170]Tian, Q.; Stepaniants, S.B.; Mao, M.; Weng, L.; Feetham, M.C.; Doyle, M.J.; Yi, E.C.; Dai, H.; Thorsson, V.; Eng, J.; Goodlett, D.; Berger, J.P.; Gunter, B.; Linseley, P.S.; Stoughton, R.B.; Aebersold, R.; Collins, S.J.; Hanlon, W.A.; Hood, L.E. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics.2004,3(10),960-969.
    [171]Sulea, T.; Lindner, H.A.; Menard, R. Structural aspects of recently discovered viral deubiquitinating activities. Biol Chem.2006,387(7),853-862.
    [172]Shackelford, J.; Pagano, J.S. Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem.2005,41,139-156.
    [173]Lindner, H.A. Deubiquitination in virus infection. Virology.2007,362(2),245-256.
    [174]Barry, M.; Fruh, K. Viral modulators of cullin RING ubiquitin ligases:culling the host defense. Sci STKE.2006,2006(335), pe21.
    [175]Alfonso, P.; Rivera, J.; Hernaez, B.; Alonso, C.; Escribano, J.M. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics.2004,4(7),2037-2046.
    [176]Schlee, M.; Krug, T.; Gires, O.; Zeidler, R.; Hammerschmidt, W.; Mailhammer, R.; Laux, G.; Sauer, G.; Lovric, J.; Bornkamm, G.W. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis:activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol.2004,78(8),3941-3952.
    [177]Brasier, A.R.; Spratt, H.; Wu, Z.; Boldogh, I.; Zhang, Y.; Garofalo, R.P.; Casola, A.; Pashmi, J.; Haag, A.; Luxon, B.; Kurosky, A. Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected a549 cells identified by high-resolution two-dimensional gel electrophoresis. J Virol.2004,78(21), 11461-11476.
    [178]Jiang, X.S.; Tang, L.Y.; Dai, J.; Zhou, H.; Li, S.J.; Xia, Q.C.; Wu, J.R.; Zeng, R. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches:implications for cellular responses to virus infection. Mol Cell Proteomics.2005,4(7),902-913.
    [179]Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999,17(10),994-999.
    [180]Go, E.P.; Wikoff, W.R.; Shen, Z.; O'Maille, G.; Morita, H.; Conrads, T.P.; Nordstrom, A.; Trauger, S.A.; Uritboonthai, W.; Lucas, D.A.; Chan, K.C.; Veenstra, T.D.; Lewicki, H.; Oldstone, M.B.; Schneemann, A.; Siuzdak, G. Mass spectrometry reveals specific and global molecular transformations during viral infection. J Proteome Res.2006,5(9), 2405-2416.
    [181]Baas, T.; Baskin, C.R.; Diamond, D.L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T.M.; Thomas, M.J.; Carter, V.S.; Teal, T.H.; Van Hoeven, N.; Proll, S.; Jacobs, J.M.; Caldwell, Z.R.; Gritsenko, M.A.; Hukkanen, R.R.; Camp, D.G,2nd; Smith, R.D.; Katze, M.G. Integrated molecular signature of disease:analysis of influenza virus-infected macaques through functional genomics and proteomics. J Virol.2006, 80(21),10813-10828.
    [182]Jacobs, J.M.; Diamond, D.L.; Chan, E.Y.; Gritsenko, M.A.; Qian, W.; Stastna, M.; Baas, T.; Camp, D.G.,2nd; Carithers, R.L., Jr.; Smith, R.D.; Katze, M.G. Proteome analysis of liver cells expressing a full-length hepatitis C virus (HCV) replicon and biopsy specimens of posttransplantation liver from HCV-infected patients. J Virol.2005, 79(12),7558-7569.
    [183]Ventelon-Debout, M.; Delalande, F.; Brizard, J.P.; Diemer, H.; Van Dorsselaer, A.; Brugidou, C. Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics.2004,4(1),216-225.
    [184]Casado-Vela, J.; Selles, S.; Martinez, R.B. Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics.2006,6 Suppl 1, S196-206.
    [185]Cooper, B.; Eckert, D.; Andon, N.L.; Yates, J.R.; Haynes, P.A. Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry. J Am Soc Mass Spectrom.2003,14(7),736-741.
    [186]殷震;刘景华.动物病毒学.北京:科学出版社,1985.
    [187]Zhou, J.Y.; Ye, J.X.; Ye, W.C.; Chen, Q.X.; Zheng, X.J.; Guo, J.Q. Antigenic and molecular characterization of infectious bursal disease virus in China. Prog Biochem Biophys.2005,32(1),37-45.
    [188]Wilkinson, D.L.; Harrison, R.G. Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology (N Y).1991,9(5),443-448.
    [189]Bertrand Friguet, L.D.-O., Jacqueline Pages, Alain Bussard and Michel Goldberg. A Convenient Enzyme-Linked Immunosorbent Assay for Testing whether Monoclonal Antibodies Recognize the Same Antigenic Site. Application to Hybridomas Specific for the 2-Subunit of Escherichia coli Tryptophan Synthase:J Immunol Methods.1983,60, 351-358.
    [190]Fahey, K.J.; McWaters, P.; Brown, M.A.; Erny, K.; Murphy, V.J.; Hewish, D.R. Virus-neutralizing and passively protective monoclonal antibodies to infectious bursal disease virus of chickens. Avian Dis.1991,35(2),365-373.
    [191]Low-usage codons in Escherichia coli, yeast, fruit fly and primates.1991,105(1), 61-72.
    [192]Juul-Madsen, H.R.; Su, G.; Sorensen, P. Influence of early or late start of first feeding on growth and immune phenotype of broilers. Br Poult Sci.2004,45(2),210-222.
    [193]Cheng, A.; Zhang, W.; Xie, Y.; Jiang, W.; Arnold, E.; Sarafianos, S.G.; Ding, J. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology.2005,335(2),165-176.
    [194]Jackwood, D.J.; Saif, Y.M.; Hughes, J.H. Nucleic acid and structural proteins of infectious bursal disease virus isolates belonging to serotypes I and Ⅱ. Avian Dis.1984, 28(4),990-1006.
    [195]Saif, Y.M. Immunosuppression induced by infectious bursal disease virus. Vet Immunol Immunopathol.1991,30(1),45-50.
    [196]Patricia, W.-D.; Julius, S.Y. Virus-Host Cell Interactions. Academic Press.1999, 1957-1961.
    [197]Tang, H.; Peng, T.; Wong-Staal, F. Novel technologies for studying virus-host interaction and discovering new drug targets for HCV and HIV. Curr Opin Pharmacol. 2002,2(5),541-547.
    [198]Leong, W.F.; Chow, V.T. Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol.2006,8(4),565-580.
    [199]Fey, S.J.; Larsen, P.M.2D or not 2D. Two-dimensional gel electrophoresis. Curr Opin Chem Biol.2001,5(1),26-33.
    [200]Gorg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.2000,21(6),1037-1053.
    [201]Harry, J.L.; Wilkins, M.R.; Herbert, B.R.; Packer, N.H.; Gooley, A.A.; Williams, K.L. Proteomics:capacity versus utility. Electrophoresis.2000,21(6),1071-1081.
    [202]Tomonaga, T.; Matsushita, K.; Yamaguchi, S.; Oh-Ishi, M.; Kodera, Y.; Maeda, T. Shimada, H.; Ochiai, T.; Nomura, F. Identification of altered protein expression and post-translational modifications in primary colorectal'cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res.2004,10(6),2007-2014.
    [203]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976, 72,248-254.
    [204]Yan, J.X.; Wait, R.; Berkelman, T.; Harry, R.A.; Westbrook, J.A.; Wheeler, C.H.; Dunn, M.J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis.2000,21(17),3666-3672.
    [205]Bouley, J.; Chambon, C.; Picard, B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics.2004,4(6), 1811-1824.
    [206]Higgs, H.N.; William, J.L.; Lane, M.D. Actin Assembly/Disassembly. Encyclopedia of Biological Chemistry. New York:Elsevier,2004:12-18.
    [207]Bergsma, D.J.; Chang, K.S.; Schwartz, R.J. Novel chicken actin gene:third cytoplasmic isoform. Mol Cell Biol.1985,5(5),1151-1162.
    [208]Kimball, S.R. Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol.1999,31(1), 25-29.
    [209]Lee, S.W.; Cho, B.H.; Park, S.G.; Kim, S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci.2004,117(Pt 17),3725-3734.
    [210]Li, Q.; Imataka, H.; Morino, S.; Rogers, G.W., Jr.; Richter-Cook, N.J.; Merrick, W.C.; Sonenberg, N. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Cell Biol.1999,19(11),7336-7346.
    [211]Pause, A.; Methot, N.; Svitkin, Y.; Merrick, W.C.; Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. Embo J.1994, 13(5),1205-1215.
    [212]Pestova, T.V.; Hellen, C.U.; Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol.1996, 16(12),6859-6869.
    [213]Belsham, G.J.; Sonenberg, N. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev.1996,60(3),499-511.
    [214]Jackson, R.J.; Howell, M.T.; Kaminski, A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci.1990,15(12),477-483.
    [215]Yuan, X.; Kuramitsu, Y.; Furumoto, H.; Zhang, X.; Hayashi, E.; Fujimoto, M.; Nakamura, K. Nuclear protein profiling of Jurkat cells during heat stress-induced apoptosis by 2-DE and MS/MS. Electrophoresis.2007,28(12),2018-2026.
    [216]Bushell, M.; Sarnow, P. Hijacking the translation apparatus by RNA viruses. J Cell Biol. 2002,158(3),395-399.
    [217]Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell.1994,79(1), 13-21.
    [218]Gao, G.; Luo, H. The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol.2006,84(1),5-14.
    [219]Bond, U.; Agell, N.; Haas, A.L.; Redman, K.; Schlesinger, M.J. Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem.1988,263(5),2384-2388.
    [220]Bond, U.; Schlesinger, M.J. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol.1985,5(5),949-956.
    [221]Aranda, M.A.; Escaler, M.; Wang, D.; Maule, A.J. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A.1996,93(26),15289-15293.
    [222]Guay, J.; Lambert, H.; Gingras-Breton, G.; Lavoie, J.N.; Huot, J.; Landry, J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci.1997,110 (Pt 3),357-368.
    [223]Mosser, D.D.; Morimoto, R.I. Molecular chaperones and the stress of oncogenesis. Oncogene.2004,23(16),2907-2918.
    [224]Panaretou, B.; Siligardi, G.; Meyer, P.; Maloney, A.; Sullivan, J.K.; Singh, S.; Millson, S.H.; Clarke, P.A.; Naaby-Hansen, S.; Stein, R.; Cramer, R.; Mollapour, M.; Workman, P.; Piper, P.W.; Pearl, L.H.; Prodromou, C. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone ahal. Mol Cell.2002,10(6),1307-1318.
    [225]Dreyfuss, G.; Matunis, M.J.; Pinol-Roma, S.; Burd, C.G. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem.1993,62,289-321.
    [226]Leppard, K.N. Regulated RNA Processing and RNA Transport during Adenovirus Infection. Seminars in Virology.1998,8,301-307.
    [227]Ellson, C.D.; Andrews, S.; Stephens, L.R.; Hawkins, P.T. The PX domain:a new phosphoinositide-binding module. J Cell Sci.2002,115(Pt 6),1099-1105.
    [228]Frank, P.G.; Marcel, Y.L. Apolipoprotein A-Ⅰ:structure-function relationships. J Lipid Res.2000,41(6),853-872.
    [229]Wang, N.; Silver, D.L.; Costet, P.; Tall, A.R. Specific binding of ApoA-Ⅰ, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem.2000,275(42),33053-33058.
    [230]Nofer, J.R.; Remaley, A.T.; Feuerborn, R.; Wolinnska, I.; Engel, T.; von Eckardstein, A.; Assmann, G. Apolipoprotein A-I activates Cdc42 signaling through the ABCA1 transporter. J Lipid Res.2006,47(4),794-803.
    [231]Nofer, J.R.; Feuerborn, R.; Levkau, B.; Sokoll, A.; Seedorf, U.; Assmann, G. Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux. J Biol Chem. 2003,278(52),53055-53062.
    [232]Mujawar, Z.; Rose, H.; Morrow, M.P.; Pushkarsky, T.; Dubrovsky, L.; Mukhamedova, N.; Fu, Y.; Dart, A.; Orenstein, J.M.; Bobryshev, Y.V.; Bukrinsky, M.; Sviridov, D. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol.2006,4(11), e365.
    [233]Van Aelst, L.; D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 1997,11(18),2295-2322.
    [234]Essmann, F.; Wieder, T.; Otto, A.; Muller, E.C.; Dorken, B.; Daniel, P.T. GDP dissociation inhibitor D4-GDI (Rho-GDI 2), but not the homologous rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis. Biochem J.2000,346 Pt 3, 777-783.
    [235]Zhang, Y.; Zhang, B. D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness. Cancer Res.2006,66(11),5592-5598.
    [236]Hall, A. Rho GTPases and the actin cytoskeleton. Science.1998,279(5350),509-514.
    [237]Meriane, M.; Mary, S.; Comunale, F.; Vignal, E.; Fort, P.; Gauthier-Rouviere, C. Cdc42Hs and Racl GTPases induce the collapse of the vimentin intermediate filament network. J Biol Chem.2000,275(42),33046-33052.
    [238]Dohner, K.; Sodeik, B. The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol.2005,285,67-108.
    [239]Cudmore, S.; Reckmann, I.; Way, M. Viral manipulations of the actin cytoskeleton. Trends Microbiol.1997,5(4),142-148.
    [240]Lamb, R.A.; Mahy, B.W.; Choppin, P.W. The synthesis of sendai virus polypeptides in infected cells. Virology.1976,69(1),116-131.
    [241]Lanier, L.M.; Slack, J.M.; Volkman, L.E. Actin binding and proteolysis by the baculovirus AcMNPV:the role of virion-associated V-CATH. Virology.1996,216(2), 380-388.
    [242]Charlton, C.A.; Volkman, L.E. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J Virol.1991,65(3), 1219-1227.
    [243]Lu, S.; Ge, G.; Qi, Y. Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions. Arch Virol.2004,149(11),2187-2198.
    [244]Ohkawa, T.; Volkman, L.E. Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis. Virology.1999,264(1),1-4.
    [245]Liu, B.; Dai, R.; Tian, C.J.; Dawson, L.; Gorelick, R.; Yu, X.F. Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J Virol.1999,73(4), 2901-2908.
    [246]Sasaki, H.; Ozaki, H.; Karaki, H.; Nonomura, Y. Actin filaments play an essential role for transport of nascent HIV-1 proteins in host cells. Biochem Biophys Res Commun. 2004,316(2),588-593.
    [247]Rey, O.; Canon, J.; Krogstad, P. HIV-1 Gag protein associates with F-actin present in microfilaments. Virology.1996,220(2),530-534.
    [248]Chen, C.; Jin, J.; Rubin, M.; Huang, L.; Sturgeon, T.; Weixel, K.M.; Stolz, D.B.; Watkins, S.C.; Bamburg, J.R.; Weisz, O.A.; Montelaro, R.C. Association of gag multimers with filamentous actin during equine infectious anemia virus assembly. Curr HIV Res.2007,5(3),315-323.
    [249]Chen, C.; Weisz, O.A.; Stolz, D.B.; Watkins, S.C.; Montelaro, R.C. Differential effects of actin cytoskeleton dynamics on equine infectious anemia virus particle production. J Virol.2004,78(2),882-891.
    [250]Cudmore, S.; Cossart, P.; Griffiths, G.; Way, M. Actin-based motility of vaccinia virus. Nature.1995,378(6557),636-638.
    [251]Giuffre, R.M.; Tovell, D.R.; Kay, C.M.; Tyrrell, D.L. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol.1982,42(3), 963-968.
    [252]Bucher, D.; Popple, S.; Baer, M.; Mikhail, A.; Gong, Y.F.; Whitaker, C.; Paoletti, E.; Judd, A. M protein (M1) of influenza virus:antigenic analysis and intracellular localization with monoclonal antibodies. J Virol.1989,63(9),3622-3633.
    [253]Naito, S.; Matsumoto, S. Identification of cellular actin within the rabies virus. Virology.1978,91(1),151-163.
    [254]Feierbach, B.; Piccinotti, S.; Bisher, M.; Denk, W.; Enquist, L.W. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog.2006,2(8), e85.
    [255]Brown, M.T.; McBride, K.M.; Baniecki, M.L.; Reich, N.C.; Marriott, G.; Mangel, W.F. Actin can act as a cofactor for a viral proteinase in the cleavage of the cytoskeleton. J Biol Chem.2002,277(48),46298-46303.
    [256]De, B.P.; Lesoon, A.; Banerjee, A.K. Human parainfluenza virus type 3 transcription in vitro:role of cellular actin in mRNA synthesis. J Virol.1991,65(6),3268-3275.
    [257]Boschek, C.B.; Jockusch, B.M.; Friis, R.R.; Back, R.; Grundmann, E.; Bauer, H. Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell.1981,24(1),175-184.
    [258]Downing, K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol.2000,16,89-111.
    [259]Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol.1997,13,83-117.
    [260]Kotsakis, A.; Pomeranz, L.E.; Blouin, A.; Blaho, J.A. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein. J Virol.2001,75(18),8697-8711.
    [261]Kaelin, K.; Dezelee, S.; Masse, M.J.; Bras, F.; Flamand, A. The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules. J Virol.2000,74(1),474-482.
    [262]Elliott, G.; O'Hare, P. Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division. J Virol.2000,74(5),2131-2141.
    [263]Elliott, G.; O'Hare, P. Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol.1998,72(8),6448-6455.
    [264]Elliott, G.; O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell.1997,88(2),223-233.
    [265]Avitabile, E.; Di Gaeta, S.; Torrisi, M.R.; Ward, P.L.; Roizman, B.; Campadelli-Fiume, G Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol.1995,69(12),7472-7482.
    [266]Petit, C.; Giron, M.L.; Tobaly-Tapiero, J.; Bittoun, P.; Real, E.; Jacob, Y.; Tordo, N.; De The, H.; Saib, A. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci.2003,116(Pt 16), 3433-3442.
    [267]Sen, A.; Todaro, G.J. A murine sarcoma virus-associated protein kinase:interaction with actin and microtubular protein. Cell.1979,17(2),347-356.
    [268]Kelkar, S.; De, B.P.; Gao, G.; Wilson, J.M.; Crystal, R.G.; Leopold, P.L. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes. J Virol.2006,80(15),7781-7785.
    [269]Araujo, F.D.; Stracker, T.H.; Carson, C.T.; Lee, D.V.; Weitzman, M.D. Adenovirus type 5 E4orf3 protein targets the Mrell complex to cytoplasmic aggresomes. J Virol.2005, 79(17),11382-11391.
    [270]Kelkar, S.A.; Pfister, K.K.; Crystal, R.G.; Leopold, P.L. Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol.2004,78(18),10122-10132.
    [271]Suomalainen, M.; Nakano, M.Y.; Boucke, K.; Keller, S.; Greber, U.F. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. Embo J.2001,20(6),1310-1319.
    [272]Glotzer, J.B.; Michou, A.I.; Baker, A.; Saltik, M.; Cotten, M. Microtubule-independent motility and nuclear targeting of adenoviruses with fluorescently labeled genomes. J Virol.2001,75(5),2421-2434.
    [273]Nuesch, J.P.; Lachmann, S.; Rommelaere, J. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology.2005, 331(1),159-174.
    [274]Brunet, J.P.; Jourdan, N.; Cotte-Laffitte, J.; Linxe, C.; Geniteau-Legendre, M.; Servin, A.; Quero, A.M. Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells:implication of an increase in intracellular calcium concentration. J Virol.2000,74(22),10801-10806.
    [275]Chen, P.H.; Ornelles, D.A.; Shenk, T. The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol.1993,67(6),3507-3514.
    [276]Ferreira, L.R.; Moussatche, N.; Moura Neto, V. Rearrangement of intermediate filament network of BHK-21 cells infected with vaccinia virus. Arch Virol.1994, 138(3-4),273-285.
    [277]Luftig, R.B.; Lupo, L.D. Viral interactions with the host-cell cytoskeleton:the role of retroviral proteases. Trends Microbiol.1994,2(5),178-182.
    [278]Heath, C.M.; Windsor, M.; Wileman, T. Aggresomes resemble sites specialized for virus assembly. J Cell Biol.2001,153(3),449-455.
    [279]Zheng, X.; Hong, L.; Shi, L.; Guo, J.; Sun, Z.; Zhou, J. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics.2008,7(3), 612-625.
    [280]Zhou, J.Y.; Ye, J.X.; Ye, W.C.; Chen, Q.X.; Zheng, X.J.; Guo, J.Q. Antigenic and molecular characterization of infectious bursal disease virus in China from layer chicken flocks. Prog Biochem Biophys.2005,32(1),37-45.
    [281]Zheng, X.; Hong, L.; Li, Y.; Guo, J.; Zhang, G.; Zhou, J. In vitro expression and monoclonal antibody of RNA-dependent RNA polymerase for infectious bursal disease virus. DNA Cell Biol.2006,25(11),646-653.
    [282]Cooper, J.A. Effects of cytochalasin and phalloidin on actin. J Cell Biol.1987,105(4), 1473-1478.
    [283]Seipelt, J.; Liebig, H.D.; Sommergruber, W.; Gerner, C.; Kuechler, E.2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J Biol Chem.2000, 275(26),20084-20089.
    [284]Shoeman, R.L.; Honer, B.; Stoller, T.J.; Kesselmeier, C.; Miedel, M.C.; Traub, P.; Graves, M.C. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A.1990,87(16),6336-6340.
    [285]Honer, B.; Shoeman, R.L.; Traub, P. Human immunodeficiency virus type 1 protease microinjected into cultured human skin fibroblasts cleaves vimentin and affects cytoskeletal and nuclear architecture. J Cell Sci.1991,100 (Pt 4),799-807.
    [286]Harkness, J.W.; Alexander, D.J.; Pattison, M.; Scott, A.C. Infectious bursal disease agent:morphology by negative stain electron microscopy. Arch Virol.1975,48(1), 63-73.
    [287]Hirai, K.; Shimakura, S. Structure of infectious bursal disease virus. J Virol.1974, 14(4),957-964.
    [288]Ozel, M.; Gelderblom, H. Capsid symmetry of viruses of the proposed Birnavirus group. Arch Virol.1985,84(3-4),149-161.
    [289]Schwanz-Pfitzner, I.; Ozel, M.; Darai, G.; Gelderblom, H. Morphogenesis and fine structure of eel virus (Berlin), a member of the proposed Birnavirus group. Arch Virol. 1984,81(1-2),151-162.
    [290]Teninges, D.; Ohanessian, A.; Richard-Molard, C.; Contamine, D. Isolation and Biological Properties of Drosophila X Virus.1979:241-254.
    [291]Radtke, K.; Dohner, K.; Sodeik, B. Viral interactions with the cytoskeleton:a hitchhiker's guide to the cell. Cell Microbiol.2006,8(3),387-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700