用户名: 密码: 验证码:
外源NO缓解小麦幼苗盐胁迫的效应与花后盐渍对小麦产量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子萌发、幼苗生长以及灌浆期是小麦一生的重要生育阶段,对盐胁迫反应较为敏感,促进盐胁迫下小麦种子萌发和幼苗建成,提高小麦花后耐盐渍能力,对于提高盐渍逆境下小麦产量形成有重要意义。本文以小麦品种扬麦12和淮麦17为材料,用0.1 mmol L-1NO供体硝普钠(SNP)进行预浸种处理20小时,研究了NO对盐胁迫下小麦种子萌发和幼苗生长的缓解效应,并在盆栽条件下,从花后7天进行渍水、盐胁迫和盐渍双重胁迫处理,处理5天,研究盐渍逆境条件对小麦籽粒产量形成的影响。主要研究结果如下:
     1.外源NO对盐胁迫下小麦种子萌发与线粒体抗氧化代谢的影响。在300 mmolL-1 NaCl胁迫下,外源NO显著提高了小麦种子发芽率、胚根、胚芽鞘干重,减小剩余种子的干重。外源NO还提高了种子呼吸速率,促进三磷酸腺苷(ATP)合成,进而提高种子淀粉酶活性,加速淀粉降解,促进可溶性总糖合成。同时,外源NO也显著促进蛋白质降解,加速氨基酸合成;外源NO提高种子线粒体中超氧岐化酶(SOD)和过氧化氢酶(CAT)活性,抑制超氧阴离子(O2-·)产生速率,减少H2O2和丙二醛(MDA)的积累;此外,外源NO降低Na+含量,促进K+吸收,保持较高的K+/Na+比。
     2.外源NO对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响。在120 mmol L-1NaCl处理下,小麦幼苗叶片叶绿素和类胡萝卜素含量显著降低,可抑制可溶性糖、可溶性蛋白质合成降低,从而影响小麦幼苗生长,降低物质积累。NO预处理能有效地抑制盐胁迫下小麦幼苗叶片O2-·释放和H2O2积累,提高SOD和CAT活性,降低MDA含量,从而减轻膜脂过氧化反应;外源NO还提高叶绿素、类胡萝卜素含量,加快可溶性总糖合成,促进小麦幼苗叶片碳代谢;此外,NO预处理也显著提高叶片可溶性蛋白含量,以及内肽酶和羧肽酶活性,加快氨基酸合成。因此,外源NO有利于促进盐胁迫下小麦植株生长,提高小麦幼苗株高、鲜重和干重。
     3.花后盐渍对小麦旗叶光合特性及叶绿体内抗氧化系统和ATP合成的影响。花后渍水、盐胁迫、盐渍降低了小麦旗叶净光合速率,气孔导度、蒸腾速率和瞬时水分利用率,并以盐胁迫和盐渍双重胁迫的效应更为显著。研究还发现,花后10天渍水、盐胁迫以及盐渍处理对旗叶净光合速率略有降低,这主要与气孔导度的下降有关,而花后18天时,盐胁迫与盐渍双重处理下净光合速率的降低则是由非气孔限制因素引起的。花后10天时,渍水、盐胁迫以及盐渍逆境均没有显著降低实际光化学效率((ΦPSⅡ)、最大光化学效率(Fv/Fm)、光化学促灭系数(qP),而显著提高了非光化学猝灭(NPQ);而花后18天时,盐胁迫和盐渍处理显著降低了Fv/Fm、ΦPSⅡ、qP,而显著提高了NPQ,表明此时旗叶PSⅡ反应中心已受到严重破坏。单一渍水处理也明显降低了旗叶净光合速率,但主要与叶片叶绿素含量下降和吸收光能的热耗散增加(NPQ的升高)有关。盐胁迫和盐渍处理显著提高了叶绿体中H2O2、O2-·以及MDA含量,而显著降低了叶绿体中SOD、POD和抗坏血酸过氧化物酶(APX)活性。盐胁迫和盐渍处理还显著降低叶绿体上的Mg2+-ATP和Ca2+-ATP酶活性,从而抑制了ATP合成。渍水处理也有相近的效应,但其对叶片的伤害程度远低于盐胁迫和盐渍处理。
     4.花后盐渍对小麦碳氮代谢与K+/Na+平衡的影响。盐胁迫和盐渍处理显著降低了营养器官和籽粒可溶性糖、蔗糖以及茎鞘果聚糖的含量;盐胁迫和盐渍处理提高了小麦旗叶、其余叶中游离氧基酸含量,但却降低了茎鞘、颖鞘、穗轴和籽粒中游离氨基酸含量,导致了糖/氨比(C/N)下降。花后渍水轻微地降低了营养器官和籽粒中糖、氨基酸合成,从而也导致糖/氨比(C/N)下降。盐胁迫和盐渍处理还显著提高了小麦各器官中Na+含量,而K+含量下降,导致K+/Na+比降低。
     5.花后盐渍对小麦产量、品质的影响。花后渍水、盐胁迫和盐渍处理显著降低小麦花前贮藏氮素(花前贮藏干物质)运转量和花后同化氮素(花后同化物)输入籽粒量,从而导致小麦籽粒产量、蛋白质以及淀粉产量显著下降,尤以盐胁迫和盐渍处理更为严重。盐胁迫和盐渍处理能够明显降低小麦籽粒蛋白质积累量和籽粒淀粉积累量及淀粉组分含量与直/支链淀粉比。渍水处理也降低了两小麦品种籽粒蛋白质和淀粉积累量。
     综上所述,外源NO能显著增强高盐胁迫下萌发种子呼吸速率,促进淀粉和蛋白质降解,增强糖和氨基酸的合成;外源NO也提高了线粒体抗氧化能力,从而降低线粒体活性氧(O2-·、H2O2)积累;外源NO还有利于维持种子Na+和K+离子平衡。此外,NO预处理能显著提高低盐胁迫下幼苗叶片抗氧化酶SOD、CAT以及蛋白水解酶活性,抑制活性氧(O2-·、H2O2)积累,维持较高的色素含量,促进可溶性总糖和可溶性蛋白积累,从而维持盐胁迫下幼苗叶片碳氮代谢的正常运行,缓解了盐胁迫对小麦幼苗的伤害。渍水、盐胁迫和盐渍处理降低了小麦光合作用,抑制了植株碳氮代谢,增强了小麦植株Na+积累,K+/Na+平衡失调,致使植株提前衰老,灌浆期缩短,进而降低了小麦籽粒产量,改变了小麦品质。本研究中,盐害和盐渍的负效应大于渍水。
As key growth stages, wheat plants during germination, seedling formation and grain filling are very sensitive to salt stress.Then, it is of importance to improve seed germination and early seedling formation and tolerance during grain filling to increase grain yield in wheat under salt stress. In this study, seeds of winter wheat(Triticum aestivum L.)cultivars of Yangmai 12 and Huaima 17 were pre-soaked with 0.1 mmol L-1 of sodium nitroprusside (SNP, as nitric oxide donor) for 20 h just before germination. Effects of exogenous nitric oxide (NO) on the following seed germination and seedling growth under salt stress were studied. In addition, stresses of salt (ST) and waterlogging (WL), and their combination (SW) were imposed on wheat plants from 7 days after anthesis (DAA) in a pot culture experiment. The WL and SW treatments lasted for 5 days,while the ST treatment was continuously imposed during the grain filling stage.Effects of ST and WL stresses and SW on grain yield formation were then investigated. The main results included:
     1.Exogenous NO effects on seed germination and mitochondrial anti-oxidative system under by 300 mmol L-1 NaCl stress.Under this stress event, exogenous NO increased germination rate and weights of coleoptile and radicle, while reduced seed weight. Exogenous NO also enhanced seed respiration rate and ATP synthesis.Activities of amylases were then enhanced to accelerate starch degradation and total soluble sugar accumulation in germinating seeds. Meantime, exogenous NO improved degradation of protein and promoted amino acid content in seeds.Exogenous NO increased activities of superoxide dismutase (SOD) and catalase (CAT), which inhibited release of superoxide anions (O2-·) and reduced accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in seed mitochondria. Exogenous NO also reduced Na+ concentration while increased K+ concentration in the seeds, thereafter maintained a better balance between K+ and Na+ during germination under salt stress, as compared with the seeds not pretreated by SNP.
     2.Effects of exogenous nitric oxide on carbon and nitrogen metabolism and antioxidation system in wheat seedling under 120 mmol L-1 NaCl stress. Salt stress significantly reduced contents of chlorophyll, carotenoid, total soluble sugars and soluble protein in wheat seedlings, which resulted in a decrease of dry matter accumulation. Exogenous NO significantly reduced O2-·release rate and H2O2 content, while increased activities of SOD and CAT, which resulted in an obvious decrease in MDA content in leaves of seedlings growth under salt stress.Meanwhile, exogenous NO increased contents of chlorophyll, carotenoid, and total soluble sugars in wheat seedlings. Compared to the salt stress treatment, NO pre-treatment significantly increased soluble protein content and enhanced activities of endopeptidase and carboxypeptidase in leaves. Thus, NO effectively maintained a balance between carbon and nitrogen metabolisms in seedling growing under salt stress, and consequently resulted in a better seedling growth, and increase in plant height, fresh weight and dry weight of seedlings, compared with the non NO-pretreatment.
     3.Effects of salt and waterlogging and their combination on flag leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. In this study, rapid reductions in net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (Tr) and instantaneous water use efficiency (IWUE) in response to ST and SW treatments were observed in both cultivars, and ST and SW showed more severe adverse effects than WL. The slight decrease of PN in the WL, ST and SW treated plants was attributed mainly to the decreases of GS at 10 DAA, whereas at 18 DAA, non-stomatal limitation over PN could occur for the SW and ST treated plants. At 10 DAA, Fv/Fm,ΦpsⅡand qP did not decrease significantly, while NPQ dramatically increased under all stresses. Therefore, although the PSII was not essentially damaged under the stresses, great portion of the harvested energy by PSII was dispersed via the non-photochemical approach under stresses than under control at 10 DAA. However, at 18 DAA,ΦpsⅡ, Fv/Fm and qP were significantly lowered while NPQ was significantly increased in the ST and SW plants in relation to the CT and the WL plants, indicating ST and SW treatments led to clear damage to the PSII. It was notable that a single WL stress also obviously reduced leaf PN compared with the CT. However, this decrease of PN was seemingly not due to damage of the PSII function but to the lowered chlorophyll content and increased NPQ. In the present study, significant increases in H2O2 content and release rate of O2-·as well as MDA content in chloroplasts were observed under the ST and SW treatments. Reduction in ATP synthesis owed to depress activities of Mg2+-ATPase and Ca2+-ATPase in chloroplast under ST and SW. The adverse effects of WL was much less than that of ST and SW.
     4.Effects of salt and waterlogging stresses and their combination on carbon and nitrogen metabolism and balance between Na+ and K+. ST and SW treatments significantly reduced contents of soluble sugars, sucrose in the vegetative organs and grains and fructan in stem and sheath. However, ST and SW treatments increased free amino acid contents in flag leaf and others leaves, while reduced free amino acid contents in the vegetative organs and grains, which led to reduction of C/N. Contents of soluble sugar and sucrose and free amino acid in the vegetative organs and grains were slightly depressed under WL stress, which resulted in less ratio of C/N in all organs of both cultivars. ST and SW also enhanced accumulation of Na+while depressed accumulation of K+, thus resulted in a reduced K+/Na+ in wheat plants.
     5.Effects of salt and waterlogging stresses and their combination on wheat yield and quality. It was found that WL, ST and SW treatments significantly reduced redistribution of pre-anthesis stored nitrogen (remobilization of assimilates stored pre-anthesis), amounts of post-anthsis accumulated nitrogen (transportation of post-anthesis assimilates) transferred into grain, resulting in obviously decreasing grain yield, protein and starch yields, especially for the ST and SW treatments. Both ST and SW treatments significantly decreased grain protein accumulation and starch components.Accumulations of both cultivars grain protein and starch were significantly reduced under WL stress.
     In summary, exogenesis NO increased seed respiration rate and activities of amylase and consequently promoted the conversion from starch and protein into sugars and free amino acid contents. NO also increased activities of antioxidant enzymes and thus reduced oxidants (reduction in H2O2 content and O2-·release rate) in mitochondria, and facilitated a better ion balance between Na+ and K+ in seed during germination under high salinity. In addition, exogenous NO significantly reduced O2-·release rate and H2O2 content, while increased activities of SOD, CAT and endopeptidase and carboxypeptidase, which resulted in an obvious decrease of MDA content in leaves of seedlings growing under salt stress. Meanwhile, exogenous NO maintained higher contents of chlorophyll, carotenoid, and total soluble sugars in wheat seedlings. Thereby, NO effectively maintained a balance between carbon and nitrogen metabolisms in seeding growing under salt stress, and consequently resulted in a better seedling growth.
     Salt and waterlogging stresses and their combination reduced photosynthesis of both cultivars, depressed carbon and nitrogen metabolism, and led to an imbalance between K+ and Na+ in wheat plants.Plant senescence was then predated and duration of grain filling was shortened. Finally, both grain yield and quality were affected by these stresses.The adversary effects on yield and quality in wheat were severer under salt and combination of salt and waterloging than the single waterlogging in this study.
引文
Al-Karaki G N. Germination, sodium, and potassium concentration of barley seeds as influenced by salinity[J].J. Plant Nutr.,2001,24:511-522
    Ashraf M, Shahbaz. Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria[J]. Photosynthetica,2003,41:273-280
    Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, there light-inducible responses in plants[J].Planta,2000,210:215-221
    Beligni M V, Fath A, Bethke P C, et al. Nitric oxide acts as an antioxidant and delays proprammed cell death in barely aleurone layers[J].Plant Physiol.,2002,129:1642-1650
    Bethke P C, Badger M R, Jone R L. Apolastic synthesis of nitric oxide by plant tissues[J].Plant cell, 2004,16:332-341
    Bewley J D,Black M. Seed:Physiology of development and germination[M].New York:Plenum Press, 1997
    Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J].EMBO J.,1991,10:1723-1732
    Ching T M. Biochemical aspects of seed vigor[J]. Seed Science & Technology,1973,1:73-76
    Cristina-Pedroso M, Magahaces J R, Durzan D.A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues[J].J. Exp. Bot.,2000,51:1027-1036
    Delledonne M. NO news is good news for plants[J].Curr. Opin. Plant Biol.,2005,8:390-396
    Dixit V, Pandey V, Shyam R. Chromium ions inactivate electron transport an enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria[J].Plant Cell Environ., 2002,25:687-693
    Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. Am. J. Bot.,1999,86:1146-1153
    Duan P, Ding F, Wang F, et al. Priming of seeds with nitric oxide donor sodium nitro-prusside (SNP) alleviates the inhibition on wheat seed germination by salt stress[J].Journal of Plant Physiology and Molecular Biology,2007,33 (3):244-250
    Flowers T J. The mechanism of salt tolerance in halophytes[J].Ann Rev Plant Physiol,1977,28:89-121
    Foyer C H, Descourvierse P, Kunert K J. Protection against oxygen radicals:an important defense mechanism studied in transgenic plants[J].Plant Cell Environ.,1994,17:507-523
    Garcia J A, Gallego M C, Serrano A, et al. Trends in block-seasonal extreme rainfall over the iberian peninsula in the second half of the twentieth century[J]. J. Climate.,2007,20:113-130
    Gulzar S, Khan M A, Ungar I A. Effect of salinity and temperature on the germination of Urochondra setulosa (Trin) CE Hubbard[J]. Seed Sci. Tech.,2001,1:21-29
    Hadzi-Taskovic V, Kukavica B,Vuletic M. Hydroquinone peroxidase activity of maize root mitochondria[J].Protoplasma,2007,231:137-144
    Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant systems and O2-·/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins[J].Plant Physiol.,2001,127:817-831
    Hernandez J A, Jimenez A, Mullineaux P, et al. Tolerance of pea(Pisum sativum L.) to longterm salt stress is associated with induction of antioxidant defenses[J].Plant Cell Environ.,2000,23: 853-862
    IPCC. Climate change 2007:contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge,2007
    Koch K E. Carbohydrate-modulated gene expression in plants[J].Annu. Rev. Plant Physoil. and Plant Mol. Bio.,1996,47:509-540
    Krishnara S, Thorpe T A. Salinity stress effects on [14C-1]-and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat[J].International Journal of Plant Science,1996, 157(1):110-117
    Krishnaraj S, Mawson B T, Yeung E C, et al. Utilization of induction and quenching kinetics of chlorophyll a fluorescence for in vivo salinity screening studies in wheat(Triticum aestivumvars. Kharchia-65 and Fielder)[J].Canadian Journal of Botany,1993,71 (1):87-92
    Kurepa J,Herouart D,Montagu MV,et al. Diferential expression of Cu/Zn and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments [J]. Plant Cell Physiol.,1997,38:463-470
    Lawlor D W. Photosynthesis productivity and environment[J]. J. Exp. Bot.,1995,46:1449-1461
    Levitt J. Reponses of plants to environmental stress [M].New York:Academe Press,1980
    Loewe A, Einig W, Shi L, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucros synthesis in source leaves of spruce and aspen[J]. New Phytol.,2000,145:565-574
    Mackemess S A H, John C F, Jordan B, et al. Early signaling components in ultraviolet-β-responses: distinct roles for different reactive oxygen species and nitric oxide[J].FEBS Lett.,2001,489: 237-242
    Mass E V. Spike and leaf development in salt-stressed wheat[J]. Crop Sci.,1990,30:1309-1313
    Maxwell K, Johnson G N. Chlorophyll fluorescence-practical guide[J].J. Exp. Bot.,2005,1:659-668
    Maxwell D P, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells[J].Proc. Natl. Acad. Sci. USA,1999,96:8271-8276
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J].Trends in Plant Science,2004,9:490-498
    Mittova V, Guy M, Tal M, et al. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. mes of the wild salt-tolerant tomato species Lycopersicon pennellii[J]. J. Exp Bot.,2004,55:1105-1113
    Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoredu-ction of its primary oxidation product of monodehydroascorbate radicals in thylakoids[J]. Plant Cell Physiology,1992,33:541-553
    Muller P, Li X P, Niyogi K K. Non-photochemical quenching:A response to excess light energy[J].Plant Physiol.,2001,125:1558-1566
    Pang C H, Zhang S J, Gong Z Z, et al. NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa[J].Physiol. Plant,2001,125:490-499
    Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat[J].I. Starch. Aust J Agric Res.,1998,49 (5):757-766
    Purvis A, Shewfelt R L. Does the alternative pathway ameliorate chilling injury in sensitive plant-tissues? [J]. Physiol Plant,2006,88:712-718
    Ramagopal S.Inhibition of seed germination by salt and its subsequent effect on embryonic protein synthesis in barley[J].J. Plant Physiol.,1990,136:621-625
    Ritzema H P, Satyanarayana T V, Raman S, et al. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India:Lessons learned in farmers'fields[J].Agric. Water Manage., 2008,95:179-189
    Rogers G S,Gras P W, Batey I L, et al..The influence of atmospheric CO2 concentration on the protein, starch and mixing properties of wheat flour[J].Aust. J. Plant Physiol.,1998,25 (3):387-393
    Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil Ⅰ. Grain yield and yield components[J]. Soil & Tillage Research,2004,77:169-177
    Schumahcer R S, Johnson R H. Characteristics of U.S.extreme rain events during 1999-2003[J]. Weather Forecast,2006,21:69-85
    Shi Q, Ding F, Wang X, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J].Plant Physiol. Bioch.,2007,45:542-550
    Simontaechi M, Jasid S. Puntarjilo S. Nitric oxide generation during early germination of sorghum seeds[J]. Plant Sci.,2004,167:839-847
    Song S Q, Kenneth M, Fredlund, et al. Changes in low-molecular weight heat shock protein 22 of mitochondria during high-temperature accelerated ageing of Beta vulgaris L. seeds[J].Acta Phytophysiologica Sinica,2001,27 (1):73-80
    Stone P J, Nicolas M E. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post anthesis heat stress[J].Aust. J. Plant Physiol.,1994,21 (6):887-900
    Streller S, Kromer S, Winsgle G. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L[J].Plant Cell Physiol.,1994,35:859-867
    Sweetlove L J, Foyer C H. Roles for reactive oxygen species and antioxidants in plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria:from genome to function, vol 1. (Advances in photosynthesis and respiration) Kluwer, Dordrecht,2004, pp:307-320
    Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J].Photosynthetica,2008,46:21-27
    Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci.,2002,163:515-523
    Ungar I A. Halophyte seed germination [J]. Bot. Rev.,1978,44:233-254
    Van den Ende W, Roover J D, Laere A V. Effect of nitrogen concentration on fructan metabolizing enzymes in young chicory plnats (Cichorium intybus)[J].Physiol. Plant,1999,105:2-8
    Wang F H, Wang X Q, Ken S.Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China[J].Field Crops Research,2004,87:35-42
    Zheng Y, Wang Z, Sun X, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage[J].Environmental and Experimental Botany,2008,62:129-138
    Zheng L, Su M, Wu X, et al. Antioxidant Stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation[J]Biol. Trace Elem. Res.,2008,121:69-79
    Zhou G K, Kong Y Z, Liang H G. Possible participation of active oxygen species in the induction of cyanide-resistant pathway at the initial senescence of tobacco callus[J]. Russ. J. Plant Physiol.,2001, 48 (5):684-691
    蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响[J].植物生理学通讯,2000,36(2):110-113
    曹旸,蔡士宾,朱伟等.国内外麦类作物耐湿性研究进展[J].国外农学-麦类作物,1996,(6):48-49
    常江,李金才.渍水对小麦氮磷钾营养效应的研究[J].土壤学报,1999,36:423-427
    陈德明,俞仁培.盐胁迫下不同小麦品种的耐盐性及其离子特征[J].土壤学报,1998,35(1):88-94
    除光斗.陕西省小麦品质与生态条件的关系[J].陕西农业科学,1987,3:4-5,27
    段德玉,刘小京,冯凤莲等.盐分和水分胁迫对盐生植物灰绿黎种子萌发的影响[J].植物资源与环境学报,2004,23(1):7-11
    范雪梅,姜东,戴廷波等.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响[J].土壤学报,2005,42(5):875-879
    范雪梅,姜东,戴廷波等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报,2005,16(10):1883-1888
    范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685
    范雪梅,姜东,戴廷波等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141
    范雪梅,姜东,戴廷波等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志,2006,25(2):149-154
    范雪梅,戴廷波,姜东等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    傅家瑞.种子生理[M].北京:科学出版社出版,1985
    高永生,陈集双.盐胁迫下镧对小麦幼苗叶片抗氧化系统活性的影响[J].中国稀土学报,2005,23(4):490-495
    郭房庆,汤章城.NaCl胁迫下抗盐突变体和野生型小麦Na+、K+累积的差异分析[J].植物学报,1999,41(5):515-518
    李合生,孟庆伟,夏凯等.现代植物生理学[M].北京:高等教育出版社,2005
    李金才,常江,魏凤珍.小麦湿害生理及其与小麦生产的关系[J].植物生理学通讯,1997,33(4):304-312
    李金才,尹钧,李德福.不同生育时期渍水对冬小麦K素吸收和分配的影响[J].安徽农业科学,2004,32(3):447,455
    李金才,魏凤珍,余松烈等.孕穗期渍水对冬小麦根系衰老的影响[J].应用生态学报,2000,11(5):723-726
    李树华,许兴,惠红霞等.不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应[J].麦类作物学报,2000,20(4):63-67
    李育才,陈有清,王忠智等.盐碱地春小麦低产原因及高产栽培技术[J].山西农业科学,1990,2:16-18
    洪剑明,柴小清,曾晓光等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报,1996,22(5):634--637
    侯旭光,赵可夫.非盐生植物棉花和盐生植物灰绿黎的盐害机理[J].山东大学学报(自然科学版),1999,34(2):230-235
    胡晋.种子生物学[M].北京:高等教育出版社,2006
    胡继超,曹卫星,姜东等.小麦水分胁迫影响因子的定量研究.Ⅰ·干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320
    兰涛,姜东,谢祝捷等.化后干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报,2004,18(1):193-196
    梁超,王超,杨秀风等.‘德抗961’小麦耐盐生理特性研究[J].西北植物学报,2006,26(10):2075-2082
    刘友良.植物水分逆境生理[M].北京:农业出版社,1992,109-127
    姜东,陶勤南,曹卫星.渍水对小麦节间水溶性碳水化合物积累与再分配的影响[J].作物学报, 2002,28(2):230-234
    姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响[J].应用生态学报,2002,13(11):1519-1521
    姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    彭建云,綦翠华,陈敏等.盐处理对不同抗盐性小麦幼苗叶绿素荧光参数的影响[J].安徽农业科学,2008,36(10):3970-3972
    邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应[J].生态学报,2008,28(1):302-309
    申玉香,郭文善,周影等.盐分胁迫对小麦花后剑叶衰老特性和产量的影响[J].扬州大学学报(农业与生命科学版),2007,28(1):59-63
    申玉香,王爱民,李洪山等.盐分胁迫对宁盐1号小麦群体质量·产量及蛋白质含量的影响[J].安徽农业科学,2008,36(34):14866-14868
    申玉香,郭文善,周影等.盐分胁迫对小麦籽粒蛋白质及其组分含量变化动态的影响[J].麦类作物学报,2006,26(6):100-103
    孙立荣,郝福顺,吕建洲等.外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J].生态学报,2008,28(11):5714-5722
    谭维娜,戴廷波,荆奇等.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报,2007,27(2):314-317
    王绍中,章练红.环境生态条件对小麦品质的影响研究进展[J].华北农学院,1994,9(增刊):141-144
    王遵亲.中国盐渍土[M].北京:科学出版社,1993
    王宝山,邹琦.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J].植物生理学报,2000,26:181-188
    魏爱丽,杨臣,陈云昭等.盐胁迫下大豆小真叶愈伤组织可溶性蛋白含量变化的研究[J].山西农业大学学报,1997,17(4):318-321
    魏凤珍,李金才,尹钧等.不同生育时期根际土壤渍水逆境对冬小麦N、P、K素营养的影响[J].水土保持学报,2006,20(3):162-165
    魏凤珍,李金才,尹钧等.孕穗期渍水逆境对冬小麦氮素营养及产量的影响[J].中国农学通报,2006,22(9):127-129
    夏阳,林杉,陶洪斌等.不同基因型小麦对NaCl胁迫的反应[J].植物营养与肥料学报,2000,16(4):417-423
    谢家琦,李金才,魏凤珍.花后渍水逆境对冬小麦产量及氮磷钾营养状况的影响[J].中国农学通 报,2008,24(7):425-429
    谢祝捷,姜东,曹卫星等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(10):1047-1052
    许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-244
    姚金保,姚国才,杨学等缺失不同Wx蛋白对普通小麦直链淀粉含量及淀粉特性的影响[J].麦类作物学报,2005,25(6):29-33
    阎顺国,沈禹颖.生态因子对碱茅种子萌发期耐盐性影响的数量分析[J].植物生态学报,1996,20(5):414-422
    杨劲松,陈德明.作物抗盐机制研究Ⅰ.小麦水分保持与质膜渗透性[J].土壤学报,2002,39(4):524-528
    杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118
    杨晓慧,蒋卫杰,魏珉等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305
    于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006
    袁海涛,付秀云,郝鲁湘等.耐盐小麦主要农艺性状的表现及其与产量的关系[J].国外农学-麦类作物,1996,5:26-28
    岳鸿伟,谭维娜,姜东等.花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响[J].作物学报,2007,33(11):1845-1849
    曾幼玲,蔡忠贞,马纪等.盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J].生态学杂志,2006,25(9):1014-1018
    赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251
    赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993
    赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报,2007,15(1):63-66
    赵旭,王林权,周春菊等.盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响[J].生态学报,2007,27(1):205-213
    赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化[J].植物生理与分子生物学学报,2005,31(1):103-106
    张超强,杨颖丽,王莱等.盐胁迫对小麦幼苗叶片H202产生和抗氧化酶活性的影响[J].西北师范大学学报(自然科学版),2007,43(1):71-75
    张万钧,王斗天,范海等.盐生植物种子萌发的特点及其生理基础[J].应用与环境与环境生物学 报,2001,7(2):117-121
    周苏枚,王晨阳,张重义等.土壤渍水对小麦根系生长及营养代谢的影响[J].作物学报,2001,27(5):674-679
    朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,2002,8(2):177-180
    Affourtit C, Krab K, Moore A L. Control of plant mitochondrial respiration[J]. Biochim Biophys Acta, 2001,1504:58-69
    Al-Karaki G N. Germination, sodium, and potassium concentration of barley seeds as influenced by salinity[J]. J. Plant Nutr.,2001,24:511-522
    Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.)[J]. Plant Soil,2001,231:243-254
    Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L) [J].Environ. Exp. Bot.,2008,63: 266-273
    Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers [J]. Biotechnol. Adv.,2009,27:84-93
    Athar H R, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat[J].Environ. Exp. Bot.,2008,63:224-231
    Beligni M V, Lamattina L.Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J]. Planta,2000,210:215-221
    Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues[J].Planta,1999,208:337-344
    Bewley J D. Seed germination and plant dormancy[J]. Paint Cell,1997,9:1055-1066
    Braidot E, Petrussa E, Macri F, et al. Plant mitochondrial electrical potential monitored by fluorescence quenching of rhodamine 123[J]. Biol. Plantarum,1998,41:193-201
    Chung B Y, Kim J H, Lee K S, et al. Deposition pattern of hydrogen peroxide in the leaf sheaths of rice under salt stress[J]. Biol. Plantarum,2006,50:469-472
    Clark D, Durner J, Navarre D A, et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase[J]. Mol Plant-Microbe Interact,2000,13:1380-1384
    Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory functions[J].Trends Plant Sci.,2005,10:195-200
    Crowe J H,Corwe L M. Membrane integrity in anhydrobiotic orgnaisms:toward a mechanism for stabilizing dry seeds. In:Somero G N,Osmond C B, Bolis C L., eds. Water and life. Berlin: Springe-Verlag,1992,87-103.Springer-Verlag, Berlin. ISBN 3-540-54112-8
    Dalling M J, Boland G, Wilson J H. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J].Australian Journal Plant Physiology,1976,3:721
    Delledonne M. NO news is good news for plants[J].Curr. Opin. Plant Biol.,2005,8:390-396
    Delledonne M, Zeier J, Moareco A, et al. Signal interactions between nitric oxide and active oxygen intermediates in the plant hypersensitive disease resistance response[J].Proc. Natl. Acad. Sci. USA, 2001,98:13454-13459
    Du Z, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid peroxidation in sugar rich plant tissue extracts[J].J. Agric. Food Chem.,1992,40:1566-1570
    Fales F W. The assimilation and degradation of carbohydrates by yeast cells[J].Journal Biological Chemistry,1951,193:113-124
    Gallardo K, Job C, Groot S P C, et al. Proteomies of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds[J].Plant Physiol.,2002,129:823-837
    Hu K D, Hu L Y, Li Y H, et al. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress[J]. Plant Growth Regul.,2007,53:173-183
    Li Q, Niu H, Yin J, et al. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley(Hordeum vulgare)[J].Colloids and Surfaces B:Biointerfaces,2008,65: 220-225
    Liu J H, Inoue H, Moriguchi T. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots[J]. Environ. Exp. Bot.,2008, 62,28-35
    Lipton S A, Yun-Beom C H, Pan Z H, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds[J].Nature,1993,364: 626-632
    Kishorekumar A, Abdul J C, Manivannan P, et al. Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius[J]. Colloid. Surf. B:Biointerf.,2007,60:207-212
    Maxwell DP, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells[J]. Proc. Natl. Acad. Sci., USA,1999,96:8271-8276
    Markino A, Mae T, Ohiro K. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence[J].Plant and Cell Physiology,1984,25:429-437
    Martinez G R, Mascio P D, Bonini M G, et al. Peroxynitrite does not decompose to singlet oxygen (1ΔgO2) and nitroxyl (NO-)[J]. Proceedings National Academy of Sciences USA,2000,97: 10307-10312
    Misra N, Dwivedi U N. Genotypic difference in salinity tolerance of green gram cultivars[J].Plant Sci., 2004,166:1135-1142
    Mittova V, Tal M, Volokita M. et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersion pennellii[J]. Plant Cell Environ.,2003,26:845-856
    Moloi M J, Westhuizen A J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid[J]. J. Plant Physiol.,2006,163:1118-1125
    Mφller I M. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species[J].Annu. Rev. Plant Physiol. Plant Mol., Biol.,2001,52: 561-591
    Muuns R. Comparative physiology of salt and water stress[J]. Plant Cell Environment,2002,25: 239-250
    Parida A K, Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60:324-349.
    Petrussa E, Casolo V, Peresson C, et al. Activity of a K+ATP channel in Arum spadix mitochondria during thermogenesis[J].J. Plant physiol.,2008,165:1360-1369
    Pomeroy M K. Studies on the respiratory properties of mitochondrial isolated from developing winter wheat seeding[J].Plant Physiol.,1974,53:653-657
    Purvis A, Shewfelt R L. Does the alternative pathway ameliorate chilling injury in sensitive
    plant-tissues?[J].Physiol Plant,2006,88:712-718
    Ramagopal S.Inhibition of seed germination by salt and its subsequent effect on embryonic protein synthesis in barley[J].J. Plant Physiol.,1990,136:621-625
    Raza S H, Athar H R, Ashraf M, et al. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance[J].Environ. Exp. Bot.,2007,60:368-376
    Ruan H, Shen W, Ye M, et al. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat(Triticum aestivum L.) leaves[J].Chinese Science Bulletin,2002,47:677-671
    Shapiro A D. Nitric oxide signaling in plants [J]. Vitam Horm,2005,72:339-398
    Shao R X,Shang-Guan Z P. Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings[J].Acta Ecologica Sinica,2008,28 (1):302-309
    Shi Q, Ding F, Wang X, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J].Plant Physiology and Biochemistry,2007,45:542-550
    Singh H P, Batish D R, Kaur G, et al. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J].Environmental and Experimental Botany,2008,63:158-167
    Song L, Ding W, Zhao M, et al. Nitric oxide protectsagainst oxidative stress under heat stress in the calluses from two ecotypes of reed[J].Plant Sci.,2006,171:449-458
    Song S Q, Kenneth M, Fredlund, et al. Changes in low-molecular weight heat shock protein 22 of mitochondria during high-temperature accelerated ageing of Beta vulgaris L. seeds[J]. Acta Phytophysiologica Sinica,2001,27 (1):73-80
    Sui N, Liu X Y, Wang N, et al. Response of xanthophylls cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene[J].Photosy-nthetica,2007,45:447-454
    Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J].Photosynthetica,2008,46:21-27
    Tarrago J F, Nicolas G. Starch degradation in the cotyledons of germinating lentils[J]. Plant Physiol., 1976,58:618-621
    Tian X, Lei Y. Nitric oxide treatment alleviates drought stress in wheat seedlings[J].Biol. Plantarum, 2006,50:775-778
    Tseng M J, Liu C W, Yiu J C.Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts[J].Plant Physiol. Bioch.,2007,45:822-833
    Wei X H, Wang L M, Long R J, et al. Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves[J].Journal of Plant Physiology and Molecular Biology,2006,32:257-260
    Yang C W, Wang C Y, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46:107-114
    Xue L, Li S, Sheng H, et al. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium[J].Current Microbiology,2007,55:294-301
    Zhang H, Shen W, Xu L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J].Acta Botanica Sinica,2003,45:901-905
    Zhang H, Shen W B, Zhang W, et al. A rapid response of β-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination[J].Planta,2005,220:708-716
    Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast[J].Planta,2006,224: 545-555
    Zhao L, He J, Wang X, et al. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures[J].Journal of Plant Physiology,2008,165:182-191
    Zhu J K. Plant salt tolerance[J].Trends Plant Sci.,2001,6:66-71
    樊怀福,郭世荣,焦彦生等.外源NO对NaCl胁迫下黄瓜(Cucumis sativus L.)幼苗生长和谷胱甘肽抗氧化酶系统的影响[J].生态学报,2007,27(2):546-553
    傅家瑞.种子生理[M].北京:科学出版社,1985
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    刘建新,胡浩斌,王鑫.硅对盐胁迫下黑麦草幼苗活性氧代谢和光合参数的影响[J].中国草地学报,2008,30(5):25-31
    麦博儒,郑有飞,梁骏.模拟酸雨对小麦叶片同化物、生长和产量的影响[J].应用生态学报,2008,19(10):2227-2233
    牛传坡,蒋静艳,黄耀.UV-B辐射强度变化对冬小麦碳氮代谢的影响[J].农业环境科学学报,2007,26(4):1327-1332
    上海植物生理学会.现代植物生理学实验指南[M].北京:科学技术出版社,1999
    邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度[J].生态学报,2008,28(1):302-309
    孙立荣,郝福顺,吕建洲等.外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J].生态学报,2008,28(11):5174-2275
    王东,于振文,王旭东.硫素对冬小麦籽粒蛋白质积累的影响[J].作物学报,2003,29(6):878-883
    王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植 物生理与分子生物学学报,2004,30(2):195-200
    吴雪霞,朱月林,朱为民等.外源一氧化氮对NaCl胁迫下番茄幼苗光合作用和离子含量的影响[J].植物营养与肥料学报[J].2007,13(4):658-663
    吴雪霞,朱月林,朱为民等.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J].西北植物学报,2006,26(6):1206-1211
    赵旭,王林权,周春菊等.盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响[J].生态学报,2007,27(1):205-213
    张华,孙永刚,张帆等.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响[J].植物生理与分子生物学学报,2005,31(3):241-246
    张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003
    Ahmed S, Nawata E, Hosokawa M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J].Plant Sci.,2002,163:117-123
    Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J] Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999,50:601-639
    Behera R K, Mishra P C, Choudhury N K. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves[J].Plant Physiol.,2002,159: 967-973
    Du Z, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid peroxidation in sugar rich plant tissue extracts[J]. J. Agric. Food Chem.,1992,40:1566-1570
    Fales F W. The assimilation and degradation of carbohydrates by yeast cells [J]. Journal Biological Chemistry,1951,193:113-124
    Flexas J, Bota F, Loreto F. et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J].Plant Biol.,2004,6:269-279
    Flowers T J. The mechanism of salt tolerance in halophytes[J].Ann Rev Plant Physiol.,1977,28: 89-121
    Foyer C H, Descourvierse P, Kunert K J. Protection against oxygen radicals:an important defense mechanism studied in transgenic plants[J].Plant Cell Environ.,1994,17:507-523
    Garcia J A, Gallego M C A, Serrano J M, et al. Trends in block-seasonal extreme rainfall over the Iberian Peninsula in the second half of the twentieth century[J].J. Climate.,2007,20:113-130
    Hideg E, Takatsy A, Sar C P, et al. Utilizing new adamantly spin traps in studying UV-B-induced oxidative damage of photosystem Ⅱ[J]. J. Photochem. Photobiol. B Biol.,1999,48:174-179
    Holm J. Bioavailability of starch in various wheat based bread product:evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion[J]. American Journal of Clinical Nutrition,1992,55:420-429
    Huppe L P, Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal calls[J].Ann. Rev. Plant Physiol. Plant Mol Biol.,1994,45:577-607
    IPCC. Climate change 2007:contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge,2007
    Li S, Cai J, Wan G, et al. Studies on structure and function of chloroplasts II isolation and interchangeability of pure coupling factors[J].Acta Bot. Sin.,1978,20:103-107
    Lin K, Weng C, Lo H, et al. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions[J]. Plant Sci.,2004,167:355-365
    Kao W, Tsai T, Shih C. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments[J].Photosynthetica,2003,41:415-419
    McCarty R E. ATP synthase of chloroplast thylakoid membranes:a more in depth characterization of its ATPase activity[J].J. Bioenerg. Biomembr.,2005,37:289-297
    McCarty R E, Racker E. Partial resolution of the enzymes catalyzing photosphorylation[J].J. Biol. Chem.,1968,243:129-137
    Moloi M J, Westhuizen A J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid[J].J. Plant Physiol.,2006,163:1118-1125
    Munns R. Comparative physiology of salt and water stress[J].Plant Cell Environ.,2002,25:239-250
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast[J]. Plant Cell Physiol.,1981,22:676-690
    Peeters K M U, Vanlaere J. Amino acid metabolism associated with N-mobilize-tion from the flag leaf of wheat(Triticum aestivum L.)during grain development[J].Plant Cell and Environment,1994,17: 131-141
    Ruan Y, Hu Y, Schmidhalter U. Insights on the role of tillering in salt tolerance of spring wheat from detillering[J].Environmental and Experimental Botany,2008,64:33-42
    Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil I. Grain yield and yield components [J]. Soil & Tillage Research,2004,77:169-177
    Schumahcer R S, Johnson R H. Characteristics of U.S.extreme rain events during 1999-2003[J]. Weather Forecast,2006,21:69-85
    Sharma N, Gupta N K, Gupta S, et al. Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes[J]. Photosynthetica,2005,43: 609-613
    Shi X, Wei J, Shen Y. Effects of sequential deletions of residues from the N-or Cterminus on the function of subunit of the chloroplast ATP synthase[J]. Biochemistry,2001,40:10825-10831
    Stepien P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Biol. Plant.,2006,50:610-616
    Stewart J M, Guinn G. Chilling injury and changes in adenosine triphosphate of cotton Seedlings[J]. Plant Physiol.,1969,44:605-608
    Sui N, Liu X Y, Wang N, et al. Response of xanthophylls cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene[J].Photosyn-thetica,2007,45:447-454
    Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica,2008,46:21-27
    Taussky H H, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus [J]. J. Biol. Chem.,1953,202:675-685
    Wagner W, Keller F, Wiemken A. Fructan metabolism in cereals:Induction in leaves and compartmentation in protoplasts and vacuoles[J]. Zeitschrift fur Pflanzenphysio-logie,1983,112: 359-372
    Wang N, Fisher D B. Monitoring phloem unloading and post-phloem transport by incroperfusion of attached wheat grains[J]. Plant Physiology,1994,104:7-16
    Xie Z, Jiang D, Cao W, et al. Effects of post-Anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains[J]. Journal of Plant Physiology and Molecular Biology,2003,29 (4):309-316
    Yang X, Liang Z, Wen X, et al. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants[J].Plant Mol. Biol., 2008,66:73-86
    Zheng L, Su M, Wu X, et al. Antioxidant Stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation[J].Biol. Trace Elem. Res.,2008,121:69-79
    Zheng Y, Wang Z, Sun X, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage[J].Environmental and Experimental Botany,2008,62:129-138
    邓志英,田纪春,胡瑞波等.基因型和环境对小麦主要品质性状参数的影响[J].2006,26(8):2757-2763
    范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685
    范雪梅,姜东,戴廷波等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志,2006,25(2):149-154
    范雪梅,姜东,戴廷波等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报,2005,16(10):1183-1888
    范雪梅,姜东,戴廷波等.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    谷艳芳,丁圣彦,李婷婷等.盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响[J].生态学报,2009,29(2):840-845
    郭淑霞,龚元石.不同氮肥水平下盐分对菠菜生长及产量的影响[J].种子,2005,24(6):37-40
    韩志卿,张电学,王介元等.长期施肥对土壤有机质氧化稳定性动态变化及其与肥力关系的影响[J].河北农业大学学报,2000,23(3):31-35
    姜东,于振文,李永庚等.冬小麦叶茎粒可溶性糖含量变化及其与籽粒淀粉积累的关系[J].麦类作物学报,2001,21(3):38-41
    姜东,陶勤南,曹卫星.渍水对小麦节间水溶性碳水化合物积累与再分配的影响[J].作物学报,2002,230-234
    姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    荆奇,戴廷波,姜东等.不同生态条件下不同基因型干物质和氮素积累与分配特征[J].南京农业大学学报,2004,27(1):1-5
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    李金才,尹钧,李德福.不同生育时期渍水对冬小麦K素吸收和分配的影响[J].安徽农业科学,2004,32(3):447,455
    李九星,崔金梅,高瑞玲.小麦籽粒蛋白质积累动态的研究[J].河南农业大学学报,1991,25(4):366-371
    李树华,许兴,李红霞等.土壤盐分对小麦籽粒蛋白质含量及产量性状的影响[J].干旱地区农业研究,2002,20(4):38--41
    李友军,熊瑛,吕强等.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系[J].2005,38(11):2219-2226
    刘晓兵,李文雄,张志学.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的研究[J].东北农业大学学报,1995,26(3):220-225
    刘兆普,沈其荣,邓力群等.麦鱼套作对滨海盐土改良的影响[J].土壤通报,1998,29(2):49-51
    邵桂花,常汝镇,陈一舞.大豆耐盐性研究进展[J].大豆科学,1993,12(3):244-248
    邵庆勤,杨文钰,樊高琼.不同氮肥水平下烯效唑对小麦可溶性糖和淀粉含量的影响[J].2006,20(4):12-15
    上海植物生理学会.现代植物生理学实验指南[M].北京:科学技术出版社,1999
    申玉香,郭文善,周影等.盐分胁迫对小麦花后剑叶衰老特性和产量的影响[J].扬州大学学报(农业与生命科学版),2007,28(1):59-63
    田纪春,王学臣,刘广田.植物光合作用与光合氮、碳代谢的耦联及调节[J].生命科学,2001,13(4):145-147
    王月福,于振文,李尚霞等.土壤肥力对小麦开花后各器官游离氨基酸和籽粒蛋白质含量变化的影响[J].麦类作物学报,2003,23(1):41-43
    王振林,贺明荣,傅金民等.源库调节对灌溉与旱地小麦开花后光合产物生产和分配的影响[J].作物学报,1999,25(2):162-168
    魏爱丽,杨臣,陈云昭等.盐胁迫下大豆小真叶愈伤组织可溶性蛋白含量变化的研究[J].山西农业大学学报,1997,17(4):318-321
    谢祝捷,姜东,曹卫星等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(10):1047-1052
    杨晓慧,蒋卫杰,魏珉等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305
    张林生、蒋纪云,张保军.小麦籽粒发育过程中游离氨基酸的变化[J].作物学报,1998,24(4):459-463
    张明生,彭忠华,谢波等.甘薯离体叶片失水速率及渗透调节物质与品种抗早性的关系[J].中国农业科学,2004,37(1):152-156
    张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003
    赵长星,马东辉,王月福等.施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响[J].生态学报,2008,28(9):4396-4404
    赵辉,戴廷波,姜东等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应
    用生态学报,2007,18(2):333-338
    朱新开,严六零,郭文善等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报,2002,22(1):51-55
    Almansouri M, Kinet J M, Lutts S.Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.)[J].Plant Soil,2001,231:243-254
    Beligni M V, Lamattina L. Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J].Planta,2000,210:215-221
    Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulator functions[J]. Trends Plant Sci.,2005,10:195-200
    Delledonne M. NO news is good news for plants[J].Curr. Opin. Plant Biol.,2005,8:390-396
    Duan P, Ding F, Wang F, et al. Primingof seeds with nitric oxide donor sodium nitropusside (SNP) alleviates the inhibition on wheat seed germination by salt stress[J].Journal of Plant Physiotogy and Molecular Biology,2007,33 (3):244-250
    Flexas J, Bota F, Loreto F.et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biol.,2004,6:269-279
    Gadallah M A A.Effects of kinetin on growth, grain yield and some mineral elements in wheat plants growing under excess salinity and oxygen deficiency[J].Plant Growth Regulation,1999,27:63-74
    Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant systems and O2-·/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins[J].Plant Physiol.,2001,127:817-831
    Hu K D, Hu L Y, Li Y H, et al. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress[J].Plant Growth Regul.,2007,53:173-183
    IPCC. Climate change 2007:contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge 2007
    Kopyra M, Gwozdz E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J].Plant Physiology and Biochemistry,2003,41:1011-1017
    Leshem Y Y, Haramaty E. Plant aging:the emission of NO and ethylene and the effect of NO-releasing compounds on growth of pea (Pisumsativum) foliage[J].Plant Physiol.,1996,148:258-263
    Li Q, Niu H, Yin J, et al. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare)[J].Colloids and Surfaces B:Biointerfaces,2008,65: 220-225
    Martinez G R, Mascio P D, Bonini M G, et al. Peroxynitrite does not decompose to singlet oxygen (1ΔgO2) and nitroxyl (NO-)[J].Proceedings National Academy of Sciences USA,2000,97: 10307-10312
    McCarty R E. ATP synthase of chloroplast thylakoid membranes:a more in depth characterization of its ATPase activity[J].J. Bioenerg. Biomembr.,2005,37:289-297
    Mittova V, Guy M, Tal M, et al. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild-tolerant tomato species Lycopersicon pennellii[J].J. Exp.Bot.,2004,55: 1105-1113
    Munns R. Comparative physiology of salt and water stress[J].Plant Cell Environ.,2002,25:239-250
    Purvis A, Shewfelt R L. Does the alternative pathway ameliorate chilling injury in sensitive plant-tissues? [J].Physiol Plant,2006,88:712-718
    Rehman S.The effect of sodium chloride on the Ca2+ K+ and Na+ concentrations of the seed coat and embryo of Acacia tortillas[J].Annuals of Applied Biology,1998,133:269-279
    Ritzema H P, Satyanarayana T V, Raman S, et al. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India:Lessons learned in farmers'fields[J]. Agric. Water Manage., 2008,95:179-189
    Ruan H, Shen W, Ye M, et al. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L.) leaves[J]. Chinese Science Bulletin,2002,47 (8):677-681
    Saqib M, Saqib J R, Qureshi H. Na+ exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma[J].Plant Sci.,2005,169:125-130
    Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil Ⅰ. Grain yield and yield components[J]. Soil & Tillage Research,2004,77:169-177
    Sanchez J M, Otero X L, Izco J. Relationships between vegetation and environmental characteristics in salt-marsh system on the coast of Northwest Spain[J]. Plant Ecology,1998,136:1-8
    Shao R X,Shang-Guan Z P. Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings[J].Acta Ecologica Sinica,2008,28:302-309
    Shen B, Jensen R G, Bohnert H. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts[J].Plant Physiol.,1997,113:1177-1183
    Shi Q, Ding F, Wang X, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J].Plant Physiology and Biochemistry,2007,45:542-550
    Song J, Fan H, Zhao Y, et al. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte suaeda salsa in an intertidal zone and on saline inland[J]. Aquatic Botany,2008,88:331-337
    Song S Q, Kenneth M, Fredlund, et al. Changes in low-molecular weight heat shock protein 22 of mitochondria during high-temperature accelerated ageing of Beta vulgaris L. seeds[J].Acta Phytophysiologica Sinica,2001,27:73-80
    Sosebee R E, Wan C. Plant ecophysiology:a case study of honey mesquite. In:Symposium on shrub ecophysiology and biotechnology. Logan, Utah,1987, pp:103-117
    Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J].Photosynthetica,2008,46:21-27
    Ungar I A. Seed germination and seed-bank ecology of halophytes[M].New York,1995
    Wei X H, Wang L M, Long R J, et al. Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves[J].Journal of Plant Physiology and Molecular Biology,2006,32:257-260
    Yang C, Wang P, Li C, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetic,2008,46(1):107-114
    Zhang C F, Peng S B,Bennett J. Glutamine synthetase and its iso-forms in rice spikelets and rachis during grain developmen[J]. J. Plant Physiol.,2000,156:230-233
    Zhang H, Shen W B, Zhang W, et al. A rapid response of P-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination[J]. Planta,2005,220:708-716
    Zhang H, Shen W, Xu L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Botanica Sinica,2003,45 (8):901-905
    Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast[J].Planta,2006,224:545-555
    Zheng Y, Wang Z, Sun X, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage[J].Environmental and Experimental Botany,2008,62:129-138
    范雪梅,姜东,戴廷波等.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685
    傅家瑞.种子生理[M].科学出版社出版,1985
    高永生,陈集双.盐胁迫下镧对小麦幼苗叶片抗氧化系统活性的影响[J].中国稀土学报,2008,23(4):491-495
    谷艳芳,丁圣彦,李婷婷等.盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响[J].生态学报,2009,29(2):840-845
    李合生,孟庆伟,夏凯等.现代植物生理学[M].北京:高等教育出版社,2005
    李青松,周春菊,尚浩博等.盐胁迫下蒸腾对冬小麦地上部钠积累的影响[J].植物营养与肥料学报,2009,15(1):32-40
    李树华,许兴,惠红霞等.不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应[J].麦类作物学报,2000,20(4):63-67
    姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    金善宝.中国小麦学[M].北京:中国农业科技出版社,1996
    梁超,王超,杨秀风等.‘德抗961’小麦耐盐生理特性研究[J].西北植物学报,2006,26(10)2075-2082
    苗济文,马云瑞,罗代雄等.土壤盐分对宁夏春小麦的影响[J].西北农业学报,1995,4(3):81-8
    申玉香,郭文善,周影等.盐分胁迫对小麦花后剑叶衰老特性和产量的影响[J].扬州大学学报(农业与生命科学版),2007,28(1):59-63
    申玉香,郭文善,周影等.盐分胁迫对小麦籽粒蛋白质及其组分含量变化动态的影响[J].麦类作 物学报,2006,26(6):100-103
    史冬平,杨笑,张永清.镧浸种对盐胁迫下小麦幼苗生长及其生理特征的影响[J].西北植物学报,2008,28(4):0730-0736
    宋书泉,程红炎,姜孝成等.种子生物学[M].北京:科学出版社,2008
    孙永刚,凌腾芳,王家杰等.外源一氧化氮供体硝普钠对小麦种子萌发早期p-淀粉酶及其亚细胞分布的影响[J].作物学报,2008,34(9):1608-1614
    谭维娜,戴廷波,荆奇等.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报,2007,27(2):314-317
    王晨阳,马元喜,周苏玫等.土壤干旱对冬小麦衰老的影响[J].河南农业大学学报,1996,30(4):309-313
    王俊红,魏小红,龙瑞军等.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的影响[J].甘肃农业大学学报,2008,43(2):77-81
    王罗霞,赵志光,王锁民.一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响[J].草业学报,2006,15(4):104-108
    王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报,2004,30(2):195-200
    王子霞,张跃强,海热古力等.小麦×小黑麦杂种幼胚一步成苗的研究[J].新疆农业科学,2007,44(3):58-60
    吴光男.作物发育生理[M].北京:中国农业科技出版社,2000
    肖强,陈娟,吴飞华等.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J].作物学报,2008,34(10):1849-1853
    许为纲,胡琳,吕金印等.冬小麦抽穗始期标记C同化物分配与运转的研究[J].核农学报,1998,12(1):7-11
    杨少辉,季静,王罡等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139-142
    于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006
    张超强,杨颖丽,王莱等.盐胁迫对小麦幼苗叶片H202产生和抗氧化酶活性的影响[J].西北师范大学学报(自然科学版),2007,42(1):71-75
    张华,孙永刚,张帆等.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响[J].植物生理与分子生物学学报,2005,31(3):241-246
    张敏,蔡瑞国,李慧芝等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008,28(1):310-320
    张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和转运特征及籽粒蛋白质含量关系[J].作物学报,1997,23(6):712-718
    朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,2002,8(2):177-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700