用户名: 密码: 验证码:
超积累植物美洲商陆锰累积与耐性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美洲商陆(Phytolacca americana Linn.)是近年来颇受关注的锰超积累植物,然其锰耐性机制仍不清楚。本论文通过实验室人工营养液培养体系,采用电镜结合能谱、超速离心亚细胞组分分离、化学形态提取、高效液相色谱、晶体X射线衍射等方法观察不同锰处理下美洲商陆表观胁迫响应,检测植物对锰的吸收与累积以及锰在植物组织细胞中的分布,分析美洲商陆锰耐受可能涉及因素与锰累积与解毒的关系,综合研究美洲商陆锰耐性的可能作用机制。当前研究进一步促进了植物对锰耐性机理的理解,为实际的锰毒土壤上的作物生产改良、酸性土壤或相关重金属污染土壤的植物修复等提供一定的理论支持与科学依据。取得的主要研究结果与结论如下:
     不同锰处理培养观察显示,美洲商陆对锰具有极强的耐性。5000μM以下锰处理,美洲商陆生长良好,无明显锰毒性症状,而更高浓度锰处理,植物地上部,特别是叶片呈现出典型的锰中毒特征。光合作用检测表明,美洲商陆并非嗜锰植物,过量锰不能促进植物代谢与生长。较高浓度锰连续胁迫下,美洲商陆根部依锰处理浓度高低先后析出含锰晶体,表明美洲商陆对锰存在一定的排斥机制,可能与根际沉淀作用相关。电镜观察发现,锰对美洲商陆细胞毒性作用较弱。扫描电镜下美洲商陆细胞内观察到两类晶体:草酸钙异胞体与含锰晶体。叶片含锰晶体能谱扫描显示,锰可能主要与羟基、羧基、磷酸根等含氧基团结合。检测美洲商陆可能涉及锰耐性的相关作用物质,发现该植物草酸与巯基含量较高。初步研究结果表明,美洲商陆锰耐性可能与草酸、钙、巯基及磷酸根等因素密切相关。
     美洲商陆可以耐受和累积高浓度的锰,将过量的锰累积于叶细胞可溶性组分内,而在细胞器与细胞膜组分的过量累积则导致锰植物毒性。液泡成分包含于可溶性组分内,作为锰累积的关键场所,同时也是植物储存草酸的细胞器。不同锰处理植物,美洲商陆可溶性组分内总可以提供过量的草酸络合过量累积的锰,使之转化为无植物毒性的化学形态。XRD检测证实可溶性组分中锰以草酸盐形式存在。研究表明,锰的液泡区室化作用及草酸的络合作用很可能是美洲商陆锰超积累与耐受最重要的生物机制。
     比较美洲商陆钙和锰的累积发现,钙和锰主要都以草酸盐形式储存于植物叶片中。其中,钙对锰的累积具有非常显著的影响,但美洲商陆叶片中草酸钙晶体并未发现对锰的解毒起到作用。在美洲商陆叶中含锰晶体的发现揭示锰可能被草酸盐络合,也或与磷酸根结合。美洲商陆钙和锰以如此相近的形式累积,提示参考植物对钙的调控机制的认识,深入比较研究锰的吸收、转运与累积,将有助于进一步理解植物对锰动态平衡的维持与植物对锰的解毒机制。
     较高浓度锰连续处理美洲商陆,植物根部随着锰处理浓度的高低先后析出磷酸锰晶体。含磷与缺磷实验发现,磷酸盐可促进美洲商陆锰的累积并明显减缓锰的毒性效应。电镜与能谱检测发现,含磷锰处理的美洲商陆叶与根内存在锰的磷酸盐晶体,而缺磷处理组植物组织中没有出现。特别是美洲商陆根的皮层与表皮,存在明显的锰磷酸盐晶体。当前研究结果表明,磷酸盐在美洲商陆锰的超积累与耐性中扮演着重要角色:一方面,磷酸根在植物体内通过固定作用将锰沉积,降低锰毒性;另一方面,磷酸根可通过根际沉淀作用将锰以磷酸锰晶体形式累积于根表或表层细胞内,从而阻滞植物对锰的进一步吸收。
     研究美洲商陆对不同硫锰作用下的植物锰的累积与总巯基类物质(TSH)含量变化情况,以及分析两者之间对美洲商陆相互作用的关系,结果表明,不同的硫锰处理对美洲商陆TSH含量以及植物锰耐性与累积均具有一定影响。其中,美洲商陆经不同的锰硫处理,其根组织锰的累积量与TSH含量呈现良好的正相关关系。研究结果表明,根中巯基类物质对于美洲商陆锰的耐性与超累积具有重要作用。鉴于美洲商陆极强的生长适应性以及对多种重金属耐受与超积累的特性,根中巯基类物质可能发挥着关键作用,为植物的正常生长和免受外界金属离子的损伤建立重要的保护机制。
Pokeweed (Phytolacca americana Linn.) has drawn much attention for its hyperaccumulation of manganese (Mn) in recent years. However, the mechanisms of its Mn resistance are still not well clarified. The present study carried out series of experiments, including hydroponic culture, photosynthesis detection, scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM), energy dispersive analysis of X-rays (EDX), atom absorption spectrometer (AAS), subcellular fractioning, high performance liquid chromatography (HPLC), extraction of different chemical forms, and phase analysis of X-ray diffraction (XRD), to investigate the responses of pokeweeds treated with different levels of Mn, detect Mn uptake, accumulation and subcellular distribution in pokeweed, analyze the correlation between the possible factors involved with Mn resistance and Mn accumulation and detoxification, and further explore the potential mechanisms of Mn resistance in the plant. This research could advance our understanding of Mn resistance in plant, and provide theoretical evidence and scientific directions for the correction of Mn toxicity to crops and phytoremediation of acid soils or relative heavy metal-contaminated soils. The major results obtained are as follows.
     Pokeweed showed great tolerance to Mn, and it grew well with no discernable Mn phytotoxicity under different Mn treatment. Detection of its photosynthesis found that pokeweed is not a Mn-philic plant, and that Mn can not enhance its metabolism and growth. Mn-containing crystals were found to appear time sequently on the roots of pokeweeds treated with different concentrations of Mn, which suggested that pokeweed could exclude Mn through rhizodeposition. Observation with electronic microscopy found that Mn had minor toxicity to pokeweed cells in which, meanwhile, two kinds of crystals were found, calcium oxalate crystals and Mn-containing crystals. EDX detection showed Mn could be complexed with hydroxyl, carboxyl or phosphate groups. Pokeweed was also found to have a high content of oxalic acid and thiols. The primary study indicated that Mn resistance in pokeweed could be closely related to factors, including oxalic acid, calcium, thiols and phosphate.
     The plant was found to accumulate excess Mn in the leaves, mainly in the water soluble fraction and over 80% existing in a water-soluble chemical form, while accumulating excess Mn in the fraction of cellular organelles and membrane was observed to cause phytotoxicity. In addition, pokeweed was found with intrinsically high oxalate content. In all cases, there were sufficient levels of oxalate to chelate Mn in leaf water extracts throughout different levels of Mn. Phase analysis of X-ray diffraction detected the oxalate-Mn chelate complexes in the freeze-dried soluble fraction of pokeweed leaves. The results suggest that pokeweed accumulates excess Mn in the soluble fraction of leaf cells, most likely in vacuoles, in which the detoxification of Mn could be achieved by chelation with oxalate.
     Ca has an important impact on divalent metal accumulation in plants, and hence, the accumulation of Ca and Mn and their interaction in pokeweed were investigated. Exogenous Ca was observed to have a distinctive impact on the Mn phytotoxicity and accumulation in pokeweed, but exogenous Mn had little influence on the accumulation of Ca. Both Ca and Mn accumulated in pokeweed were detected to be mainly in the form of oxalate. Investigation with SEM and TEM found there were two kinds of crystals in the leaves, Ca oxalate crystals and Mn-containing crystals. Further detection showed that there was no inclusion of Mn inside the Ca oxalate crystals, and that other elements, such as C, 0 and P, were present in the Mn-containing crystals. These results suggest that Ca oxalate crystals in pokeweed have no direct effect on the detoxification of Mn. In addition, the finding of element P and 0 in the Mn-containing crystals indicates that excess Mn could be deposited by phosphate, which could contribute to Mn accumulation and detoxification in pokeweed.
     Mn phosphate crystals were observed to appear on the root surface, and phosphate was investigated to have a distinctive effect on the Mn accumulation and toxicity in pokeweed. The finding of Mn-containing crystals in the leaf and root indicated that Mn could be precipitated by phosphate, and the crystals in the tissue of root cortex, epidermis, root hair and root surface showed that pokeweed could exclude excess Mn by rhizodiposition with phosphate. The results suggest that phosphate plays a very important role in Mn tolerance and exclusion in pokeweed.
     Investigation of Mn accumulation and total sulfhydryl (TSH) and their interaction in pokeweeds treated with different levels of Mn and sulphate found that treatment with different concentrations of sulphate and Mn had an impact on the content of TSH, Mn accumulation and tolerance. In particular, Mn accumulation showed a much positive correlation to the content of TSH in the root. The results suggest that sulfhydryl compounds in the root act as an important role in the Mn hyperaccumulation and resistance in pokeweed. Considering the great adaptability and multiple tolerances to heavy metals, thiols in the pokeweed root could play a vital role which protects the plant from the damages from heavy metal ions.
引文
[1]Mukhopadhyay M.J.,Sharma A.,Manganese in cell metabolism of higher plants,Botanical Review 57(1991) 117-149.
    [2]Marschner H.,Mineral nutrition of higher plants,Academic Press,London,UK,1995.
    [3]Bartlett R.J.,Manganese redox reactions and organic reactions in soils,in:Graham R.D.,Hanoom R.J.,Uren N.C.(Eds.),Manganese in Soils and Plants,Kluwer Academic Publishers,Dortrecht-Boston-London,1988,pp.50-71.
    [4]Horst W.J.,Fecht M.,Naumann A.,Wissemeier A.H.,Maier P.,Physiology of manganese toxicity and tolerance in Vigna unguiculata(L.) Walp.,Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung and Bodenkunde 162(1999) 263-274.
    [5]Horiguchi T.,Mechanism of manganese toxicity and tolerance of plants.2.Deposition of oxidized manganese in plant-tissues,Soil Science and Plant Nutrition 33(1987) 595-606.
    [6]Marschner H.,Mechanisms of adaptation of plants to acid soils,Plant and Soil 134(1991) 1-20.
    [7]Foy C.D.,Weil R.R.,Coradetti C.A.,Differential manganese tolerances of cotton genotypes in nutrient solution,Journal of Plant Nutrition 18(1995) 685-706.
    [8]El-Jaoual T.,Cox D.A.,Manganese toxicity in plants,Journal of Plant Nutrition 21(1998) 353-386.
    [9]Shenker M.,Plessner O.E.,Tel-Or E.,Manganese nutrition effects on tomato growth,chlorophyll concentration,and superoxide dismutase activity,Journal of Plant Physiology 161(2004) 197-202.
    [10]Paschke M.W.,Valdecantos A.,Redente E.F.,Manganese toxicity thresholds for restoration grass species,Environmental Pollution 135(2005) 313-322.
    [11]杨中宝,尤江峰,杨振明,植物对锰的吸收运输及对过量锰的抗氧化响应,植物生理与分子生物学学报33(2007)480-488.
    [12]Foy C.D.,The physiology of metal toxicity in plants,Annual Review of Plant Physiology 29(1978) 511-566.
    [13]张西科,张福锁,植物锰中毒研究进展,土壤学进展 22(1994)13-21.
    [14]刘铮,土壤与植物中锰的研究进展,土壤学进展 19(1991)1-6.
    [15]Tanja D.,Andrea P.,Transport and detoxification of manganese and copper in plants,Brazilian Journal of Plant Physiology 17(2005) 103-112.
    [16]Fernando D.R.,Bakkaus E.J.,Perrier N.,Baker A.J.M.,Woodrow I.E.,Batianoff G.N.,Collins R.N.,Manganese accumulation in the leaf mesophyll of four tree species:a PIXE/EDAX localization study,New Phytologist 171(2006) 751-758.
    [17]Reeves R.D.,Baker A.J.M.,Metal-accumulating Plants,in:Raskin I.,Ensley B.D.(Eds.),Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment,John Wiley & Sons,Inc.,New York,2000,pp.193-229.
    [18]Baker A.J.M.,McGrath S.P.,Reeves R.,Smith J.A.C.,Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils,in:Terry N.,Banuelos G.(Eds.),Phytoremediation of contaminated soil and water,Lewis Publishers,Boca Raton,Florida,USA.,2000,pp.85-107.
    [19]Baker A.J.M.,Brooks R.R.,Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution,Biorecovery 1(1989) 81-126.
    [20]任立民,刘鹏,锰毒及植物耐性机理研究进展,生态学报 27(2007)357-367.
    [21]Ducic T.,Polle A.,Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var.viridis and glauca) seedlings as affected by phosphorus supply,Functional Plant Biology 34(2007) 31-40.
    [22]Fernando D.R.,Woodrow I.E.,Bakkaus E.J.,Collins R.N.,Baker A.J.M.,Batianoff G.N.,Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii(Myrtaceae),Plant and Soil 293(2007) 145-152.
    [23]Fernando D.R.,Woodrow I.E.,Jaffre T.,Dumontet V.,Marshall A.T.,Baker A.J.M.,Foliar manganese accumulation by Maytenus founieri(Celastraceae) in its native New Caledonian habitats:populational variation and localization by X-ray microanalysis,New Phytologist 177(2008) 178-185.
    [24]Hauck M.,Paul A.,Spribille T.,Uptake and toxicity of manganese in epiphytic cyanolichens,Environmental and Experimental Botany 56(2006) 216-224.
    [25]Kochian L.V., Hoekenga O.A., Pineros M.A., How do crop plants tolerate acid soils? - Mechanisms of aluminum tolerance and phosphorous efficiency, Annual Review of Plant Biology 55 (2004) 459-493.
    [26]Min Y., Tie B.Q., Tang M.Z., Aoyama I., Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana, Minerals Engineering 20 (2007) 188-190.
    [27]Peng K.J., Luo C.L., You W.X., Lian C.L., Li X.D., Shen Z.G., Manganese uptake and interactions with cadmium in the hyperaccumulator - Phytolacca americana L., Journal of Hazardous Materials 154 (2008) 674-681.
    [28]Xu X.G., Shi J.Y., Chen Y.X., Chen X.C., Wang H., Perera A, Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae), Plant and Soil 285 (2006) 323-331.
    [29]Xu X.H., Chen X.C., Shi J.Y., Chen Y.X., Wu W.X., Perera A., Effects of manganese on uptake and translocation of nutrients in a hyperaccumulator, Journal of Plant Nutrition 30 (2007) 1737-1751.
    [30]Xue S.G., Chen Y.X., Reeves R.D., Baker A.J.M., Lin Q., Fernando D.R., Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae), Environmental Pollution 131 (2004) 393-399.
    [31] Yang S.X., Deng H., Li M.S., Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba, Plant Soil and Environment 54 (2008) 441-446.
    [32]Pittman J.K., Managing the manganese: molecular mechanisms of manganese transport and homeostasis, New Phytologist 167 (2005) 733-742.
    [33] Tiffin L.O., Translocation of Micronutrients in Plants, in: Mortvedt J.J. (Ed.), Micronutrients in Agriculture, S. S. S. A., Inc., Madison, Wis., 1972, pp. 199-229.
    [34]Xu X.H., Shi J.Y., Chen Y.X., Xue S.G., Wu B., Huang Y.Y., An investigation of cellular distribution of manganese in hyperaccumlator plant Phytolacca acinosa Roxb. using SRXRF analysis, Journal of Environmental Sciences-China 18 (2006) 746-751.
    [35]Fernando D.R., Batianoff G.N., Baker A.J., Woodrow I.E., In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX,Plant Cell and Environment 29(2006)1012-1020.
    [36]Polle T.D.A.,Transport and detoxification of manganese and copper in plants,Brazilian Journal of Plant Physiology 17(2005) 103-112.
    [37]Yang X.,Feng Y.,He Z.,Stoffella P.J.,Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation,Journal of Trace Elements in Medicine and Biology 18(2005) 339-353.
    [38]Tong Y.P.,Kneer R.,Zhu Y.G.,Vacuolar compartmentalization:a second-generation approach to engineering plants for phytoremediation,Trends in Plant Science 9(2004) 7-9.
    [39]Yang X.,Feng Y.,He Z.L.,Stoffella P.J.,Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation,Journal of Trace Elements in Medicine and Biology 18(2005) 339-353.
    [40]Yang X.E.,Jin X.F.,Feng Y.,Islam E.,Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants,Journal of Integrative Plant Biology 47(2005) 1025-1035.
    [41]Clemens S.,Molecular mechanisms of plant metal tolerance and homeostasis,Planta 212(2001) 475-486.
    [42]Memon A.R.,Yatazawa M.,Chemical nature of manganese in the leaves of manganese accumulator plants,Soil Science of Plant Nutrtion 28(1982) 401-412.
    [43]Memon A.R.,Yatazawa M.,Nature of manganese complexes in manganese accumulator plant Acanthopanax Sciadophylloides,Journal of Plant Nutrition 7(1984) 961-974.
    [44]Bidwell S.D.,Woodrow I.E.,Batianoff G.N.,Sommer-Knudsen J.,Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland,Australia,Functional Plant Biology 29(2002)899-905.
    [45]徐向华,超积累植物商陆吸收累积锰机理研究,环境与资源学院,vol.博士学位论文,浙江大学,杭州,2006.
    [46]Gonzalez A.,Steffen K.L.,Lynch J.P.,Light and excess manganese-implications for oxidative stress in common bean,Plant Physiology 118(1998) 493-504.
    [47]史庆华,朱祝军,李娟,钱琼秋,高锰胁迫与低pH对黄瓜根系氧化胁迫和抗氧化酶的复合效应,中国农业科学 38(2005)999-1004.
    [48]Iwasaki K.,Maier P.,Fecht M.,Horst W.J.,Leaf apoplastic silicon enhances manganese tolerance of cowpea(Vigna unguiculata),Journal of Plant Physiology 159(2002) 167-173.
    [49]Fecht-Christoffers M.M.,Braun H.P.,Lemaitre-Guillier C.,VanDorsselaer A.,Horst W.J.,Effect of Manganese toxicity on the proteome of the leaf apoplast in cowpea,Plant Physiology 133(2003) 1935-1946.
    [50]Fecht-Christoffers M.M.,Maier P.,Horst W.J.,Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata,Physiologia Plantarum 117(2003) 237-244.
    [51]Fecht-Christoffers M.M.,Horst W.J.,Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? Journal of Plant Nutrition and Soil Science 168(2005) 590-599.
    [52]Fecht-Christoffers M.M.,Fuhrs H.,Braun H.P.,Horst W.J.,The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance,Plant Physiology 140(2006)1451-1463.
    [53]Foyer C.H.,Theodoulou F.L.,Delrot S.,The functions of inter- and intracellular glutathione transport systems in plants,Trends in Plant Science 6(2001) 486-492.
    [54]Pignocchi C.,Foyer C.H.,Apoplastic ascorbate metabolism and its role in the regulation of cell signalling,Current Opinion in Plant Biology 6(2003) 379-389.
    [55]Vert G.,Grotz N.,Dedaldechamp F.,Gaymard F.,Guerinot M.L.,Briata J.F.,Curie C.,IRT1,an Arabidopsis transporter essential for iron uptake from the soil and for plant growth,Plant Cell 14(2002) 1223-1233.
    [56]Lopez-Millan A.F.,Ellis D.R.,Grusak M.A.,Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula,Plant Molecular Biology 54(2004) 583-596.
    [57]Eckhardt U.,Marques A.M.,Buckhout T.J.,Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants,Plant Molecular Biology 45(2001) 437-448.
    [58]Thomine S., Lelievre F., Debarbieux E., Schroeder J.I., Barbier-Brygoo H., AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency, Plant Journal 34 (2003) 685-695.
    [59]Bereczky Z., Wang H.Y., Schubert V., Ganal M., Bauer P., Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato, Journal of Biology Chemistry 278 (2003) 24697-24704.
    [60]Culotta V.C., Luk E., The many highways for intracellular trafficking of metals, Journal of Inorganic Biochemistry 96 (2003) 9-9.
    [61] Luk E., Jensen L.T., Culotta V.C., The many highways for intracellular trafficking of metals, Journal of Biological Inorganic Chemistry 8 (2003) 803-809.
    [62]Koike S., Inoue H., D.Mizuno, M.Takahashi, H.Nakanishi, Mori S., Nishizawa N.K., OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem, Plant Journal 39 (2004) 415-424.
    [63] Roberts L.A., Pierson A.J., Panaviene Z., Walker E.L., Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter, Plant Physiology 135 (2004) 112-120.
    [64]Schaaf G., Ludewig U., Erenoglu B.E., Mori S., Kitahara T., von Wiren N., ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals, Journal of Biological Chemistry 279 (2004) 9091-9096.
    [65]Wintz H., Fox T., Wu Y.Y., Feng V, Chen W.Q, Chang H.S., Zhu T, Vulpe C., Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis, Journal of Biological Chemistry 278 (2003) 47644-47653.
    [66]Hirschi K.D., Korenkov V.D., Wilganowski N.L., Wagner G.J., Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance, Plant Physiology 124 (2000) 125-133.
    [67]Pittman J.K., Shigaki T., Marshall J.L., Morris J.L., Cheng N.H., Hirschi K.D., Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter, Plant Molecular Biology 56 (2004) 959-971.
    
    [68]Delhaize E., Kataoka T., Hebb D.M., White R.G., Ryan P.R., Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance,Plant Cell 15(2003) 1131-1142.
    [69]Li L.T.,Chen O.S.,Ward D.M.,Kaplan J.,CCC1 is a transporter that mediates vacuolar iron storage in yeast,Journal of Biological Chemistry 276(2001)29515-29519.
    [70]Kamiya T.,Maeshima M.,Residues in internal repeats of the rice cation/H+exchanger are involved in the transport and selection of cations,Journal of Biological Chemistry 279(2004) 812-819.
    [71]Wu Z.Y.,Liang F.,Hong B.M.,Young J.C.,Sussman M.R.,Harper J.F.,Sze H.,An endoplasmic reticulum-bound Ca~(2+)/Mn~(2+) pump,ECA1,supports plant growth and confers tolerance to Mn~(2+) stress,Plant Physiology 130(2002) 128-137.
    [72]Durr G.,Strayle J.,Plemper R.,Elbs S.,Klee S.K.,Catty P.,Wolf D.H.,Rudolph H.K.,The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca~(2+) and Mn~(2+) required for glycosylation,sorting,and endoplasmic reticulum associated protein degradation,Molecular Biological Cell 9(1998) 1149-1162.
    [73]Luk E.,Carroll M.,Baker M.,Culotta V.C.,Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1,a member of the mitochondrial carrier family,Proceedings of the National Academy of Sciences of the United States of America 100(2003) 10353-10357.
    [74]Yang M.,Cobine P.A.,Molik S.,Naranuntarat A.,Lill R.,Winge D.R.,Culotta V.C.,The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2,The EMBO Journal 25(2006) 1775-1783.
    [75]Su Z.,Chai M.F.,Lu P.L.,An R.,Chen J.,Wang X.C.,AtMTM1,a novel mitochondrial protein,may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis,Planta 226(2007) 1031-1039.
    [76]Bartsevich V.V.,Pakrasi H.B.,Manganese transport in the cyanobacterium Synechocystis sp PCC 6803,Journal of Biological Chemistry 271(1996)26057-26061.
    [77]邓泓,叶志鸿,黄铭洪,湿地植物根系泌氧的特征,华东师范大学学报:自然科学版6(2007)69-76.
    [78]刘文菊,朱永官,湿地植物根表的铁锰氧化物膜,生态学报 25(2005) 358-363.
    [79]Kochian L.V., Pineros M.A., Hoekenga O.A., The physiology, genetics and molecular biology of plant aluminum resistance and toxicity, Plant and Soil 274 (2005) 175-195.
    [80]Ma J.F., Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants, Survey of Cell Biology 264 (2007) 225-252.
    [81]Poschenrieder C., Gunse B., Corrales I., Barcelo J., A glance into aluminum toxicity and resistance in plants, Science of the Total Environment 400 (2008) 356-368.
    [82]Zheng S.J., Yang J.L, He Y.F, Yu X.H., Zhang L, You J.F., Shen R.F., Matsumoto H., Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat, Plant Physiology 138 (2005) 297-303.
    [83]Nogueira M.A., Cardoso E.J.B.N., Hampp R., Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean, Plant and Soil 246 (2002) 1-10.
    [84]Soares C.R.F.S., Siqueira J.O., Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil, Biology and Fertility of Soils 44 (2008) 833-841.
    [85]Zhu Y.G., Smith F.A., Smith S.E., Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture, Australian Journal of Agricultural Research 53 (2002) 211-216.
    [86]Sajwan K.S., Paramasivam S., Richardson J.P., Alva A.K., Phosphorus alleviation of cadmium phytotoxicity, Journal of Plant Nutrition 25 (2002) 2027-2034.
    [87]Liao H, Wan H.Y., Shaff J, Wang X.R, Yan X.L., Kochian L.V., Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system, Plant Physiology 141 (2006) 674-684.
    [88]Pellet D.M., Papernik L.A., Kochian L.V., Multiple aluminum-resistance mechanisms in wheat - Roles of root apical phosphate and malate exudation, Plant Physiology 112 (1996) 591-597.
    [89]Pellet D.M., Grunes D.L., Kochian L.V., Organic-acid exudation as an aluminum-tolerance mechanism in maize (Zea-Mays L), Planta 196 (1995) 788-795.
    [90]Papernik L.A., Pellet D.M., Kochian L.V., Aluminum resistance in wheat - the role of malate and phosphate exudation, Plant Physiology 108 (1995) 111-111.
    [91]Lambers H., Juniper D., Cawthray G.R., Veneklaas E.J., Martinez-Ferri E., The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil, Plant and Soil 238 (2002) 111-122.
    [92]Ownby D.R., Galvan K.A., Lydy M.J., Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils, Environmental Pollution 136(2005)315-321.
    
    [93] Wang B.L., Xie Z.M., Chen J.J., Jiang J.T., Su Q.F., Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil, Journal of Environmental Sciences-China 20 (2008) 1109-1117.
    
    [94]Bortner C.E., Toxicity of manganese to Turkish tobacco in acid Kentucky soils, Soil Science 39 (1935) 15-33.
    
    [95]Heintze S.G., Manganese-phosphate reactions in aqueous systems and effects of applications of monocalcium phosphate on availability of manganese to oats in an alkaline fen soil, Plant and Soil 29 (1968) 407-422.
    [96] 黄建国,植物营养学,中国林业出版社,北京,2004,pp.217—222.
    
    [97]Degenhardt J., Larsen P.B., Howell S.H., Kochian L.V., Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH, Plant Physiology 117 (1998) 19-27.
    
    [98]Harada E., Choi Y.E., Investigation of metal exudates from tobacco glandular trichomes under heavy metal stresses using a variable pressure scanning electron microscopy system, Plant Biotechnology 25 (2008) 407-411.
    [99]Sarret G., Harada E., Choi Y.E., Isaure M.P., Geoffroy N., Fakra S., Marcus M.A., Birschwilks M., Clemens S., Manceau A., Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds, Plant Physiology 141 (2006) 1021-1034.
    [100]Peiter E., Montanini B., Gobert A., Pedas P., Husted S., Maathuis F.J.M., Blaudez D., Chalot M., Sanders D., A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance, Proceedings of the National Academy of Sciences of the United States of America 104 (2007) 8532-8537.
    [101]Paul A., Hauck M., Fritz E., Effects of manganese on element distribution and structure in thalli of the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides, Environmental and Experimental Botany 50 (2003) 113-124.
    [102]Foy C.D., Chaney R.L., White M.C., Physiology of metal toxicity in plants, Annual Review of Plant Physiology and Plant Molecular Biology 29 (1978) 511-566.
    [103]Foy C.D., Metal toxicity review stimulates plant breeders - a citation-classic commentary on the physiology of metal toxicity in plants by Foy, CD., Chaney, R.L., White, M.C., Current Contents of Agriculture Biology and Environmental Sciences (1993) 8-8.
    [104]Alam S., Kodama R., Akiha F., Kamei S., Kawai S., Alleviation of manganese phytotoxicity in barley with calcium, Journal of Plant Nutrition 29 (2006) 59-74.
    [105]Sarkar D., Pandey S.K., Sud K.C., Chanemougasoundharam A., In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.), Plant Science 167 (2004) 977-986.
    [106]Raghothama K.G., Phosphate acquisition, Annual Review of Plant Physiology 50 (1999) 665-693.
    [107]Alam S., Kamei S., Kawai S., Amelioration of manganese toxicity in barley with iron, Journal of Plant Nutrition 24 (2001) 1421-1433.
    [108]Alam S., Rahman M.H., Kamei S., Kawai S., Alleviation of manganese toxicity and manganese-induced iron deficiency in barley by additional potassium supply in nutrient solution, Soil Science and Plant Nutrition 48 (2002) 387-392.
    [109]Doncheva S., Poschenrieder C., Stoyanova Z., Georgieva K., Velichkova M., Barcelo J., Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties, Environmental and Experimental Botany 65 (2009) 189-197.
    [110]Stoyanova Z., Zozikova E., Poschenrieder C., Barcelo J., Doncheva S., The effect of silicon on the symptoms of manganese toxicity in maize plants,Acta Biologica Hungarica 59(2008) 479-487.
    [111]Foy C.,Physiological effects of hydrogen,aluminum,and manganese toxicities in acid soils,in:Adams F.(Ed.),Soil Acidity and Liming,Madison,WI:Agron.Soc.Am.,1984,pp.57-97.
    [112]Sanchez P.,Shepard K.,Soule M.,Place F.,Buresh R.,Soil fertility replenishment in Africa.An investment in natural resource capital,in:Buresh R.,Sanchez P.,Calhoun F.(Eds.),Replenishing Soil Fertility in Africa,Madison,WI:Agron.Soc.Am.,1997,pp.1-46.
    [113]Suresh B.,Ravishanker G.A.,Phytoremediation—a novel and promising approach for environmental clean-up,Critical Reviews in Biotechnology 24(2004)97-124
    [114]Kramer U.,Phytoremediation:novel approaches to cleaning up polluted soils,Current Opinion in Biotechnology 16(2005) 133-141.
    [115]国土资源部,中国开发污染土壤的植物修复技术,国土资源 3(2004)48.
    [116]Peng K.,Luo C.,You W.,Lian C.,Li X.,Shen Z.,Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L,Journal of Hazardous Materials 154(2008) 674-681.
    [117]dbEST N.,http://www.ncbi.nlm.nih.gov/dbEST/index.html.
    [118]Hoagland D.R.,Arnon D.I.,The water culture method for growing plants without soil.In California Agricultural Experimental Station:Berkeley,CA,USA,1950.
    [119]Parker D.R.,Norvelll W.A.,Chancy R.L.,GEOCHEM-PC—a chemical speciation program for IBM and compatible personal computers,in:Loeppert R.H.,Schwab,A.P.and Goldberg,S.(Ed.),Soil Chemical Equilibrium and Reaction Models,Soil Science Society of America,Madison,WI,USA,1993,pp.253-269.
    [120]韩雅珊,食品化学实验指导,中国农业大学出版社,北京,1992,pp.18-21.
    [121]Baker C.J.L.,The determination of oxalates in fresh plant material,Analyst 77(1952) 340-344.
    [122]张英鹏,徐旭军,林成永,章永松,都韶婷,李刚,氮素形态对菠菜可食部 分硝酸盐和草酸累积的影响,植物营养与肥料学报 12(2006)227-232.
    [123]Romero-Puertas M.C.,Corpas F.J.,Rodriguez-Serrano M.,Gomez M.,del Rio L.A.,Sandalio L.M.,Differential expression and regulation of antioxidative enzymes by cadmium in pea plants,Journal of Plant Physiology 164(2007)1346-1357.
    [124]Sedlak J.,Lindsay R.H.,Estimation of total,protein-bound,and nonprotein sulfhydryl groups in tissue with Ellman's reagent,Analytical Biochemistry 25(1968) 192-205.
    [125]贺学礼,植物学,高等教育出版社,北京,2004,p.90-112.
    [126]Franceschi V.R.,Nakata P.A.,Calcium oxalate in plants:Formation and function,Annual Review of Plant Biology 56(2005) 41-71.
    [127]Baker A.J.M.,Metal Tolerance,New Phytologist 106(1987) 93-111.
    [128]Barcel J.,Poschenrieder C.,Fast root growth responses,root exudates,and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance:a review,Environmental and Experimental Botany 48(2002) 75-92.
    [129]Clemens S.,Palmgren M.G.,Kruer U.,A long way ahead:understanding and engineering plant metal accumulation,Trends in Plant Science 7(2002) 309-315.
    [130]Sharma S.S.,Dietz K.J.,The relationship between metal toxicity and cellular redox imbalance,Trends in Plant Science 14(2009) 43-50.
    [131]Iwasaki K.,Maier P.,Fecht M.,Horst W.J.,Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea(Vigna unguiculata(L.) Walp.),Plant Soil 238(2002)281-288.
    [132]Clemens S.,Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants,Biochimie 88(2006) 1707-1719.
    [133]Ma J.F.,Role of organic acids in detoxification of aluminum in higher plants,Plant and Cell Physiology 41(2000) 383-390.
    [134]Juice S.M.,Fahey T.J.,Siccama T.G.,Driscoll C.T.,Denny E.G.,Eagar C.,Cleavitt N.L.,Minocha R.,Richardson A.D.,Response of sugar maple to calcium addition to Northern Hardwood Forest,Ecology 87(2006) 1267-1280.
    [135]Mukhopadhyay M.J.,Sharma A.,Manganese in cell metabolism of higher plants, Botanical Review 57 (1991) 117-149.
    [136]Webb M.A., Cell-mediated crystallization of calcium oxalate in plants, Plant Cell 11 (1999) 751-761.
    [137]Nakata RA., Advances in our understanding of calcium oxalate crystal formation and function in plants, Plant Science 164 (2003) 901-909.
    
    [138]Reisinger S., Schiavon M., Terry N., Pilon-Smits E.A.H., Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase, International Journal of Phytoremediation 10 (2008) 440-454.
    
    [139]Satoh M., Karaki E., Kakehashi M., Okazaki E., Gotoh T., Oyama Y., Heavy-metal induced changes in nonproteinaceous thiol levels and heavy-metal binding peptide in Tetraselmis tetrathele (Prasinophyceae), Journal of Phycology 35 (1999) 989-994.
    
    [140]Mishra S., Tripathi R.D., Srivastava S., Dwivedi S., Trivedi P.K., Dhankher O.P, Khare A., Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L., Bioresource Technology 100 (2009) 2155-2161.
    [141]Molina A.S., Nievas C., Chaca M.V.P., Garibotto R, Gonzalez U., Marsa S.M., Luna C., Gimenez M.S., Zirulnik F., Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L., Plant Growth Regulation 56(2008)285-295.
    [142]Pernia B., De Sousa A., Reyes R., Castrillo M., Biomarkers of cadmium pollution in plants, Interciencia 33 (2008) 112-119.
    
    [143]Seth C.S., Chaturvedi P.K., Misra V., The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L., Ecotoxicology and Environmental Safety 71 (2008) 76-85.
    
    [144]Lozano-Rodriguez E., Hernandez L.E., Bonay P., Carpena-Ruiz R.O., Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances, Journal of Experimental Botany 48 (1997) 123-128.
    [145]Xu H.W., Ji X.M., He Z.H., Shi W.P., Zhu G.H., Niu J.K., Li B.S., Peng X.X., Oxalate accumulation and regulation is independent of glycolate Oxidase in rice leaves, Journal of Experimental Botany 57 (2006) 1899-1908.
    [146]Hall J.L., Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany 53 (2002) 1-11.
    [147]Foster A.S., Plant idioblasts: remarkable examples of cell specialization Protoplasma 46 (1956) 184-193.
    [148]Mazen A.M.A., Calcium oxalate deposits in leaves of Corchorus olitotius as related to accumulation of toxic metals, Russian Journal of Plant Physiology 51 (2004)281-285.
    [149]Mazen A.M.A., El Maghraby O.M.O., Accumulation of cadmium, lead and strontium, and a role of calcium oxalate in water hyacinth tolerance, Biologia Plantarum 40 (1998) 411-417.
    [150]Wang H., Tang S.M., Liao X.J., Cao Q.M., Yang A.F., Wang T.Z., A new manganese-hyperaccumulator : Polygonum hydropiper L., Ecology and Environment (Chinese) 16 (2007) 830-834.
    [151]Peng X.X., Yu L., Yang C., Liu Y.H., Genotypic difference in aluminum resistance and oxalate exudation of buckwheat, Journal of Plant Nutrition 26 (2003) 1767-1777.
    [152]Xu H.S., Gu W.L., Dong D.F., Peng X.X., Differential resistance of two subtropical rice cultivars to aluminum toxicity, Journal of Plant Nutrition 27 (2004) 1601-1609.
    [153]Frerot H., Lefebvre C., Petit C., Collin C., Dos Santos A., Escarre J., Zinc tolerance and hyperaccumulation in F-1 and F-2 offspring from intra and interecotype crosses of Thlaspi caerulescens, New Phytologist 165 (2005) 111-119.
    [154]Ma J.F., Ueno D., Zhao F.J., McGrath S.P., Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens, Planta 220(2005)731-736.
    [155]Basic N., Salamin N., Keller C., Galland N., Besnard G., Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations, Biochemical Systematics and Ecology 34 (2006) 667-677.
    [156]Benzarti S., Mohri S., Ono Y., Plant response to heavy metal toxicity. Comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants:Lettuce,radish,and alfalfa,Environmental Toxicology 23(2008) 607-616.
    [157]Robson A.D.,Loneragan J.F.,Sensitivity of annual Medicago species to manganese toxicity as affected by calcium and pH,Australian Journal of Agricultural Research 21(1970) 223-232.
    [158]Heenan D.P.,Carter O.G.,Tolerance of soybean cultivars to manganese toxicity,Crop Science 16(1976) 389-391.
    [159]Davis J.G.,Soil pH and magnesium effects on manganese toxicity in peanuts,Journal of Plant Nutrition 19(1996) 535-550
    [160]Shi Y.B.,Zhang Y.G.,Study on the correction of manganese toxicity in protected cultivation soil,Journal of Anhui Agricultural Science(Chinese) 27(1999)487-489.
    [161]朱端卫,万小琼,耿明建,成瑞喜,酸化及施碳酸钙对土壤各形态锰的影响,植物营养与肥料学报 7(2001)325-330.
    [162]Milos M.,Comte M.,Schaer J.J.,Cox J.A.,Evidence for four capital and six auxiliary cation-binding sites on calmodulin:divalent cation interactions monitored by direct binding and microcalorimetry,Journal of Inorganic Biochemistry 36(1989) 11-25.
    [163]Dou C.M.,Fu X.P.,Chen X.C.,Shi J.Y.,Chen Y.X.,Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana,Plant Biology 11(2009) 664-670.
    [164]Horner H.T.,Wagner B.L.,Calcium oxalate formation in higher plants,in:Khan S.R.(Ed.),Calcium oxalate in biological systems,CRC Press,Boca Raton,FL,1995,pp.53-72.
    [165]Jauregui-Zuniga D.,Ferrer M.A.,Calderon A.A.,Munoz R.,Moreno A.,Heavy metal stress reduces the deposition of calcium oxalate crystals in leaves of Phaseolus vulgaris,Journal of Plant Physiology 162(2005) 1183-1187.
    [166]Modenesi P.,Piana M.,Giordani P.,Tafanelli A.,Bartoli A.,Calcium oxalate and medullary architecture in Xanthomaculina convoluta,Lichenologist 32(2000)505-512.
    [167]Morgan A.J.,Thin-specimen preparation.X-Ray microanalysis in electron microscopy for biologists, Oxford University Press, Oxford, 1985, pp. 52-65.
    [168]Shao Z.Z., Sun F.Q., Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment, Extremophiles 11 (2007)435-443.
    [169]Foy C., Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soils. In acidity and liming, in: Adams F. (Ed.), WI: Agron. Soc. Am., Madison, 1984, pp. 57-97.
    [170]White J.S., Leavens P.B., Zanazzi P.F., Switzerite redefined as Mn_3(PO_4)_2·7H_2O, and metaswitzerite, Mn_3(PO_4)_2·4H_2O, American Mineralogist 71(1986)1221-1223.
    [171]Taylor G.J., Current views of the aluminum stress response: the physiological basis of tolerance, Current Top Plant Biotechnology and Physiology 10 (1991) 57-93.
    [172]Jensen L.T., Ajua-Alemanji M., Culotta V.C., The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis, Journal of Biological Chemistry 278 (2003) 42036-42040.
    [173]Briat J.F., Lebrun M., Plant responses to metal toxicity, Comptes Rendus de l'Academie des Sciences - Series III - Sciences de la Vie 322 (1999) 43-54.
    [174]Schat H., Llugany M., Vooijs R., Hartley-Whitaker J., Bleeker P.M., The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes, Journal of Experimental Botany 53 (2002) 2381-2392.
    [175]Memon A.R., Ozdemir A., Aktoprakligil D., Heavy metal accumulation in plants, Biotechnology & Biotechnogial Equipment 15 (2001) 44-48.
    [176]Cobbett C.S., Heavy metal detoxification in plants: Phytochelatin biosynthesis and function, IUBMB Life 51 (2001) 183-188.
    [177]Maroti M., Bognar J., Effect of Heavy-Metals Inhibiting the growth of plant callus tissues, Acta Botanica Hungarica 35 (1989) 185-198.
    [178]Cobbett C., Goldsbrough P., Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis, Annual Review of Plant Biology 53 (2002) 159-182.
    [179]Jeong S.I.,Kim K.J.,Choo Y.K.,Keum K.S.,Choi B.K.,Jung K.Y.,Phytolacca americana inhibits the high glucose-induced mesangial proliferation via suppressing extracellular matrix accumulation and TGF-beta production,Phytomedicine 11(2004) 175-181.
    [180]D'Cruz O.J.,Uckun F.M.,Pokeweed antiviral protein:a potential nonspermicidal prophylactic antiviral agent,Fertility and Sterility 75(2001) 106-114.
    [181]江行玉,赵可夫,植物重金属伤害及其抗性机理,应用与环境生物学报 7(2001)92-99.
    [182]Alscher R.G.,Donahue J.L.,Cramer C.L.,Reactive oxygen species and antioxidants:Relationships in green cells,Physiol Plantarum 100(1997) 224-233.
    [183]Hasan S.A.,Fariduddin Q.,Ali B.,Hayat S.,Ahmad A.,Cadmium:toxicity and tolerance in plants,Journal of Environmental Biology 30(2009) 165-174.
    [184]DalCorso G.,Farinati S.,Maistri S.,Furini A.,How plants cope with cadmium:Staking all on metabolism and gene expression,Journal of Integrated Plant Biology 50(2008) 1268-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700