用户名: 密码: 验证码:
密度泛函理论计算在电催化反应以及电催化剂设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展低贵金属含量、高催化活性和高稳定性的氧还原反应(ORR)催化剂是质子交换膜燃料电池(PEMFC)成为规模化实用技术的关键。催化剂的合理设计依赖于对反应机理的深入认识。由于“电极/电解液”界面难以实现超低温与超高真空等条件,因而直接从实验上获得电化学条件下氧还原反应的分子水平信息非常困难。同时,单纯依赖实验技术的“合成—测试”这一传统催化剂筛选模式不仅效率低,而且成本高。建立在以密度泛函理论(DFT)为主的量子化学方法和高性能计算技术基础上的现代计算化学则为分子水平的电催化研究带来契机。基于此,本论文利用DFT计算对Pt电极表面的ORR机理进行了深入研究,在此基础上建立了基于DFT计算设计筛选ORR催化剂的判据,并对贵金属Pt、Pd与元素周期表中各种过渡金属形成的合金的热力学、化学及电子性质进行了详细计算,从而确定有应用前景的ORR催化剂。另外,鉴于CO2的化学转化在解决当前能源和环境问题方面的重要性,我们对CO2的化学与电化学还原过程进行了初步研究。本论文的主要内容和结果总结如下:
     1.Pt(111)表面ORR机理的DFT计算研究
     利用基于平面波的DFT几何结构优化、电子结构分析和最小能量路径计算等方法研究了氧气分子在Pt表面的吸附和解离、以及解离产物进一步质子化形成H20的过程,结果表明:
     (1)ORR中形成了两种类型的分子态化学吸附中间体:质子化的端位(end-on)吸附物OOH*和非质子化的桥式(t-b-t)吸附物OO*。其中端位OOH*中间体亚稳态,可以在几乎无需活化的情况下经过去质子化过程形成更稳定的桥式吸附态OO*或解离成原子吸附态。也就是说,O2分子的化学吸附过程经历了一个先质子化再去质子化的过程。
     (2)在水合质子存在时,02分子的化学吸附是一个强放热过程,其释放的能力足以克服随后的解离过程所需的活化能垒。因此,02分子的解离过程无需外部能量输入。无论是在高覆盖度还是低覆盖度的表面,整个四电子ORR过程的决速步骤是吸附O原子质子化形成OH吸附物的过程。这修正了早期关于ORR决速步骤是OOH*的形成的认识,并解释了为什么氧原子吸附能可以作为ORR催化剂理论设计的依据。
     2.基于DFT计算的ORR合金催化剂设计
     提出以合金形成能、贵金属表面偏析能和氧原子吸附能作为描述符设计低贵金属含量、高活性和高稳定性ORR合金催化剂的思路。利用DFT计算对Pt.Pd与各种过渡金属形成的合金的热力学、表面化学和电子性质进行了系统研究,在此基础上预测Pt3V、Pt3Fe、Pt3Co、Pt3Ni、Pt3Cu、Pt3Zn、Pt3Mo和Pt3W等Pt基合金,以及Pd3V,Pd3Fe,Pd3Zn,Pd3Nb和Pd3Ta等Pd基合金具有好的ORR催化活性和稳定性。部分结果已有文献报道或经过本实验室的实验验证。
     对引起合金ORR催化活性增强的原因进行了探讨,分析了各种合金中晶格收缩效应和配体效应对表面贵金属原子的电子性质的影响。结果表明,晶格收缩使得d-band中心(εd)下移,而配体效应即可以导致d-band中心下移,也可以导致d-band中心的上移。例如,晶格为面心立方且d电子数为10的过渡金属的配体效应会使Pt的εd上移,而晶格为六方晶系且d电子数为10的过渡金属的配体效应则使Pt的劬下移,d电子数小于10的过渡金属的配体效应在大多数情况下使Pt的εd下移。
     3.CO2在Cu表面还原为碳氢化合物的DFT计算研究
     通过DFT反应能计算和最小能量路径分析研究了气相中C02在Cu(111)和Cu(100)单晶表面的还原过程。结果表明在Cu(111)表面C02还原的可能反应路径为:C02(g)+H*→COOH*→(CO+OH)*、(CO+H)*→CHO*、CHO+H→CH2O*←(CH2+O)*、CH2*+2H*→CH4或2CH2*→C2H4,整个反应由CO2(g)+H*→COOH*→(CO+OH)*,(CO+H)*→CHO*和CH2O*→(CH2+O)术这几个反应步骤共同控制;Cu(100)表面的可能反应路径为:C02(g)→(CO+O)*,(CO+H)*→CHO*,CHO+H→CH2O*→(CH2+O)*,2CH2*→C2H4,整个反应由(CO+H)*→CHO*步骤控制。
     计算了不同电极电势下C02电化学还原各步骤的反应能。结果表明在-0.50V(Vs RHE)以正的电势下Cu(111)和Cu(100)表面主要形成HCOO和CO吸附物。随着电势逐渐变负,C02加氢解离形成CO的反应越来越容易,CO成为主要产物。随电势进一步变负,CO的后续加氢反应逐渐变为强放热反应,因而形成碳氢化合物的趋势变强。与CO2的化学还原不同的是,电化学环境下CO质子化形成的CHO中间体倾向于解离形成CH,而在气相中,CHO中间体则倾向于进一步质子化形成CH20中间体。无论在气相中还是电化学环境下,Cu(100)表面更有利于C2H4产物的形成。这与实验的观察结果一致。
Developing catalysts for oxygen reduction reaction(ORR) with low noble metal contents、high catalytic activity and high stability is the key for large-scale application of proton exchange membrane fuel cell (PEMFC). Rational design of catalysts relies on in-depth understanding of ORR mechanism. Since the "electrode/electrolyte" interfaces are mostly inaccessible to low temperature and ultra-high vacuum conditions, it is difficult to experimentally obtain molecular information of ORR with surface-science techniques. At the same time, the traditional "synthesis-test" catalyst searching mode is a rather cost-ineffective process. However, modern computational chemistry based on density functional theory (DFT) and high-performance computing technology offers a novel opportunity for studying electrocatalysis at the molecular level. In this thesis, we have performed detailed DFT calculations studies on the ORR electrocatalysis, including the reaction mechanism and catalysts design. Considering the increasing importance of the chemical transformation of CO2 in the area of energy and environment, we also performed DFT calculations studies on the chemical and electrochemical reduction processes of CO2. The main contents and results are summarized as follows:
     1. DFT Study of ORR Mechanism on Pt(111) Surface
     The DFT geometric optimization, electronic structure and minimum energy paths calculations have been used to investigate the adsorption and dissociation of O2 molecule, and the protonation of the dissociated adsorbates. The results indicated the following:
     (1) Two molecular chemisorbed intermediates are involved in ORR:the protonated end-on state of OOH* and the unprotonated t-b-t state of OO*. The end-on OOH* is metastable, which can transform to the more stable t-b-t molecular state or dissociates to atomic adsorbates in nearly nonactivated processes. That is, O2 may undergo a sequential protonation and de-protonation process in the earlier stage of reduction;
     (2) In the presence of the hydrated proton, the chemisorption of O2 molecule is a strong exothermic process, releasing energy larger than the activation energy required for the subsequent dissociation. Therefore, O2 molecule could dissociate without external energy input. In the entire four-electron ORR, the protonation of adsorbed 0 atom to form OH is the slowest step, therefore the rate-determining-step(rds). Such a finding about the rds of ORR can well explain why catalysts that bind atomic oxygen more weakly have better ORR activity, which can not be well accounted for with the earlier view that the rds of ORR is the formation of OOH*.
     2. Theoretical design of ORR catalysts based on DFT calculations
     In the light of the above reaction mechanism study, we have proposed a multiple-descriptor strategy for rational design of efficient and durable ORR alloy catalysts with low precious metal content. We argued that good alloy catalysts for ORR should simultaneously have negative alloy formation energy, negative surface segregation energy of precious metals and lower oxygen binding strength than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pt-M and Pd-M alloys (M refers to the non-precious transition metals in periodic table), Pt-based alloys including Pt3V, Pt3Fe, Pt3Co, Pt3Ni, Pt3Cu, Pt3Zn, Pt3Mo, Pt3W and Pd-based alloys including Pd3V, Pd3Fe, Pd3Zn, Pd3Nb, and Pd3Ta were predicted to have improved catalytic activity and durability for ORR, among which some alloys have indeed been reported to have excellent ORR catalytic activity in the literature.
     The origins for ORR activity enhancement in these alloys have been analyzed in terms of the lattice compression effect and the ligand effect of the alloying transition metals on the electronic property of surface atoms. The results indicated that the lattice compression leads to downshift of d-band center of surface atoms, while the ligand effect could lead to either downshift or upshift of d-band center depending on the lattice and electronic properties of the transition metals. For metals with face-centered cubic lattice and ten d electrons, the ligand effect causes upshift of d-band center of Pt, while the ligand effect of the transition metals with hexagonal lattice structure and ten d electrons would downshift the d-band center of Pt. For transition metals with less than ten d electrons, the ligand effect mostly results in downshift of the d-band center of Pt.
     3. DFT Calculation Study on the Reduction of CO2 to Hydrocarbons on Cu Surfaces
     CO2 reduction processes on Cu(111) and Cu(100) single crystal surfaces were studied with DFT calculations on the reaction energy and the minimum energy paths. The results indicated that the possible reaction paths for CO2 reduction on Cu(111) surface are CO2(g)+H*→COOH*→(CO+OH)*, (CO+H)*→CHO*, CHO+H→CH2O*→(CH2+O)*, CH2*+2H*→CH4 or 2CH2*→C2H4, while on Cu(100) surface are CO2(g)→(CO+O)*, (CO+H)*→CHO*, CHO+H→CH2O*→(CH2+O)*,2CH2*→C2H4. On Cu(111) surface, the reaction rate is controlled by steps of CH2O*→(CH2+O)*, CO2(g)+H*→COOH→(CO+OH)* and (CO+ H)*→CHO*, while on Cu(100) surface the rate reaction is controlled by step of (CO +H)*→CHO*.
     The reaction energies for various steps in the electrochemical reduction of C02 were calculated under different electrode potentials. The results indicated that HCOO and CO are mainly formed when the potential is more positive than-0.50V (vs.RHE). The hydrogenated dissociation of C02 to form CO and the subsequent hydrogenation of CO become increasingly exothermic as the potential goes negative, so that hydrocarbons gradually becomes the favored products in the electrochemical reduction. Under electrochemical conditions, CHO intermediate prefers to dissociate to form CH, rather than to form CH2O intermediate via protonation as does in gas phase reduction. Agreeing with experimental results, our calculations indicated that is preferably formed on Cu(100) surface.
引文
[1]林维明.燃料电池系统.北京:化学工业出版社,1996,7.
    [2]Heisenberg WK. Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen/Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations. Z. Phys.1925,33:879-893.
    [3]Schrodinger E. Quantisierung als Eigenwertproblem(Erste Mitteilung). Ann. der. Physik.1926,79:361-376.
    [4]Heitler W, London F. Wechselwirkung neutraler Atome und homoopolare Bindung nach der Quantenmechanik. Z. Phys.1927,44:455-472.
    [5]Pauling L. The Nature of the Chemical Bond, Cornell University Press,1960.
    [6]Mulliken RS. Bonding Power of Electrons and Theory of Valence. Chem. Rev. 1931,9:347-388.
    [7]Fukui K, Fujimoto H. Frontier Orbitals and Reaction Paths:Selected Papers of Kenichi Fukui, World Scientific Publishing Company,1997.
    [8]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京,清华大学出版社.1984.
    [9]唐熬庆,杨忠志,李前树.量子化学.北京:科学出版社.1982.
    [10]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法.北京:科学出版社,2009.
    [11]Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965,140:A1133-A1138.
    [12]Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77:3865-3868.
    [13]Ashcroft NW, Mermin ND. Solid State Physics. Holt Saunders, Philadelphia, 1976,113.
    [14]Chadi DJ, Cohen ML. Special Points in the Brillouin Zone. Phys. Rev. B.1973,8: 5747-5753.
    [15]Joannopoulos JD, Cohen ML. Electronic charge densities for ZnS in the wurtzite and zincblende structures.J. Phys. C:Solid state Phys.1973,6:1572-1585.
    [16]Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B.1976,13:5188-5192.
    [17]Evarestov RA, Smirnov VP. Special points of the brillouin zone and their use in the solid state theory. Phys. Status. Solidi. B.1983,119:9-40.
    [18]Robertson IJ, Payne MC. k-point sampling and the k.p method in pseudopotential total energy calculations. J. Phys:Condens. Matter.1990,2:9837-9852.
    [19]Robertson IJ, Payne MC. The k.p method in pseudopotential total energy calculations:error reduction and absolute energies. J. Phys:Condens. Matter.1991,3: 8841-8853.
    [20]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展.化学进展.2005,17:192-202.
    [21]Payne M, Teter MP, Allan DC. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.1992,64:1045-1097.
    [22]Blochl PE. Projector augmented-wave method. Phys. Rev. B.1994,50: 17953-17979.
    [23]Francis GP, Payne MC. Finite basis set corrections to total energy pseudopotential calculations.J. Phys:Condens. Matter.1990,2:4395-4404.
    [24]谢希德,陆栋.固体能带理论.上海:复旦大学出版社.1998,66.
    [25]Pyykko P, Hermann S. In Chemical Modelling: Aplications and Theory. Vol 1. Chapter 5. London: The Royal Society of Chemistry,2000.
    [26]Martin RM. Electronic Structure: Basic Theory and Practical Methods. Combridge: Cambridge University Press,2004.
    [27]Nφrskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B.2004,108:17886-17892.
    [28]Behler J, Delley B, Lorenz S, Reuter K, Scheffler M. Dissociation of O2 at Al(111):The role of spin selection rules. Phys. Rev. Lett.2005,94:036104.
    [29]Bucko T, Hafner J, Benco L. Adsorption and vibrational spectroscopy of CO on mordenite: ab-initio density-functional study.J. Phys. Chem. B.2005,109: 7345-7357.
    [30]Hensen EJM, Zhu Q, van Santen RA. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites.2. On the effect of the iron and aluminum content and the preparation route. J. Catal.2005,233:136-146.
    [31]Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK. Ammonia synthesis from first-principles calculations. Science.2005,307:555-558.
    [32]Kieken LD, Neurock M, Mei DH. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen. J. Phys. Chem. B.2005,109:2234-2244.
    [33]Xu Y, Greeley J, Mavrikakis M. Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J. Am. Chem. Soc.2005,127:12823-12827.
    [34]Zellner MB, Goda AM, Skoplyak O, Barteau MA, Chen JG. Trends in the adsorption and decomposition of hydrogen and ethylene on monolayer metal films:A combined DFT and experimental study. Surf. Sci.2005,583:281-296.
    [35]Filhol JS, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem. Int. Ed.2006,45:402-406.
    [36]Koper MTM. Combining experiment and theory for understanding electrocatalysis. J. Electroanal. Chem.2005,574:375-386.
    [37]Roques RM, Anderson AB. Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J. Electrochem. Soc.2004,151:E85-E91.
    [38]Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys.2007,9:3241-3250.
    [39]Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep.2002,45:121-229.
    [40]Markovic NM, Grgur BN, Ross PN. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B.1997,101:5405-5413.
    [41]Anderson AB, Albu TV. Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction. J. Am. Chem. Soc.1999,121:11855-11863.
    [42]Anderson AB, Albu TV. Catalytic Effect of Platinum on Oxygen Reduction An Ab Intio Model Including Electrode Potential Dependence. J. Electrochem. Soc.2000, 147:4229-4238.
    [43]Sidik RA, Anderson AB. Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanal. Chem.2002,528:69-76.
    [44]Sha Y, Yu TH, Liu Y, Merinov BV, Goddard III WA. Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction. J. Phys. Chem. Lett.2010,1:856-861.
    [45]Tomasi J, Persico M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev.1994,94: 2027-2094.
    [46]Cramer C, Truhlar D. Implicit Solvation Models:Equilibria, Structure, Spectra, And Dynamics. Chem. Rev.1999,99:2161-2200.
    [47]Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard III WA, Honig B. Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory.J. Am. Chem. Soc.1994,116:11875-11882.
    [48]Rogstad KN, Jang YH, Sowers LC, Goddard III WA. First Principles Calculations of the pKa Values and Tautomers of Isoguanine and Xanthine. Chem. Res. Toxicol.2003,16:1455-1462.
    [49]Nielsen RJ, Goddard WA. Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes. J. Am. Chem. Soc.2006,128: 9651-9660.
    [50]Jones CJ, Doug T, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard Ⅲ WA. Selective Oxidation of Methane to Methanol Catalyzed, with C-H Activation, by Homogeneous, Cationic Gold. Angew. Chem., Int. Ed.2005,43:2-5.
    [51]Karlberg GS, Rossmeisl J, Nφrskov JK. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys. Chem. Chem. Phys.2007,37:5158-5161.
    [52]Karlberg GS, Jaramillo TF, Skulason E, Rossmeisl J, Bligaard T, Nφrskov JK. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys. Rev. Lett.2007,99:126101.
    [53]Filhol JS, Neurock M. Elucidation of the Electrochemical Activation of Water over Pd by First Principles. Angew. Chem. Int. Ed.2006,45:402-406.
    [54]Taylor CD, Wasileski SA, Filhol JS, Neurock M. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B.2006,73: 165402.
    [55]Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM. Ab initio simulation of charged slabs at constant chemical potential. J. Chem. Phys.2001,115:1661-1669.
    [56]Sanchez CG, Lozovoi AY, Alavi A. Field Evaporation from first-principles. Mol. Phys.2004,102:1045-1056.
    [57]Rothenberg G. Catalysis: Concepts and Green Applications. Wiley-VCH. 2008,65.
    [58]Nφrskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH. Universality in heterogeneous catalysis. J. Catal.2002,209:275-278.
    [59]Hammer B, Nφrskov JK. Electronic factors determining the reactivity of metal surfaces. Surf. Sci.1995,343:211-220.
    [60]Hammer B, Nφrskov JK. Why gold is the noblest of all the metals. Nature.1995, 376:238-240.
    [61]Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc.2001,123:8404-8405.
    [62]Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelli EA, Adzic RR. Catalytic Activity-d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions. J. Phys. Chem. C.2007,111:404-410.
    [63]Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK. Computational highthroughput screening of electrocatalytic materials for hydrogen evolution. Nature. Mater.2006,5:909-913.
    [64]Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK. Catalyst design by interpolation in the periodic table:Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc.2001,123:8404-8405.
    [65]Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Mavrikakis M, Dumesic JA. A Cu/Pt near-surface alloy for water-gas shift catalysis. J. Am. Chem. Soc.2007.129:6485-6490.
    [66]Sehested J, Larsen KE, Kustov AL, Frey AM, Johannessen T, Bligaard T, Andersson MP, Norskov JK, Christensen CH. Discovery of technical methanation catalysts based on computational screening. Top. Catal.2007,45:9-13.
    [67]Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc.2005,152:J23-J26.
    [68]Greeley J, Kibler L, El-Aziz AM, Kolb DM, Norskov JK. Hydrogen evolution over bimetallic systems:understanding the trends. Chem. Phys. Chem.2006,7: 1032-1035.
    [69]Stohr J, Gland JL, Eberhardt W, Outka D, Madix RJ, Sette F, Koestner R, Doebler U. Bonding and Bond Lengths of Chemisorbed Molecules from Near-Edge X-Ray-Absorption Fine-Structure Studies. Phys. Rev. Lett.1983,51:2414-2417.
    [70]Outka DA, Stohr J, Jark W, Stevens P, Solomon J, Madix RJ. Orientation and bond length of molecular oxygen on Ag(110) and Pt(111):A near-edge x-ray-absorption fine-structure study. Phys. Rev. B.1987,35:4119-4122.
    [71]Wurth W, Stohr J, Feulner P, Pan X, Bauchspiess KR, Baba Y, Hudel E, Rocker G, Menzel D. Bonding, structure, and magnetism of physisorbed and chemisorbed O2 on Pt(111). Phys. Rev. Lett.1990,65:2426-2429.
    [72]Steininger H, Lehwald S, Ibach H. Adsorption of oxygen on Pt(111). Surf. Sci. 1982,123:1-17.
    [73]Avery NR, An EELS and TDS study of molecular oxygen desorption and decomposition on Pt(111). Chem. Phys. Lett.1983,96:371-373.
    [74]Parker DH, Bartram ME, Koel BE, Study of high coverages of atomic oxygen on the Pt(111) surface. Surf. Sci.1989,217:489-510.
    [75]Mendez MA, Oed W, Fricke A, Hammer L, Heinz K, Miiller K. LEED structure analysis of p(√3 x√3)R30°-O/Ni(111). Surf. Sci.1991,253:99-106.
    [76]Puglia C, Nilsson A, Hernnais B, Karis O, Bennich P, Martensson, N. Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surf. Sci.1995,342:119-133.
    [77]Adzic RR, in: J. Lipkowski. P.N. Ross (Eds.), Electrocatalysis. New York: Wiley/VCH,1998:Chapter 5.
    [78]Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta.1967,12:615-628.
    [79]Yeager E, Razaq M, Gervasio D, Razaq A, Tryk D, in:Scheerson D, Tryk D, Daroux M, Xing X. (Eds.). Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Proc. vol.92-11, The Electrochemical Society Inc., Pennington, NJ, 1992:440.
    [80]Michaelides A, Hu P. Catalytic Water Formation on Platinum:A First-Principles Study. J. Am. Chem. Soc.2001,123:4235-4242.
    [81]Hyman MP, Medlin JW. Mechanistic Study of the Electrochemical Oxygen Reduction Reaction on Pt(111) Using Density Functional Theory. J. phys. Chem. B. 2006,110:15338-15344.
    [82]Qi L, Yu JG, Li J. Coverage Dependence and Hydroperoxyl-Mediated Pathway of Catalytic Water Formation on Pt(111) Surface. J. Chem. Phys.2006,125:054701.
    [83]Zhang T, Anderson AB. Oxygen Reduction on Platinum Electrodes in Base: Theoretical Study. Electrochim. Acta.2007,53:982-989.
    [84]Jocob T, Goddard WA. Water Formation on Pt and Pt-Based Alloys:A Theoretical Description of a Catalytic Reaction. Chem. Phys. Chem.2006,7: 992-1005.
    [85]Nilekar AU, Mavrikakis M. Improved Oxygen Reduction Reactivity of Platinum Monolayers on Transition Metal Surfaces. Surf. Sci.2008,602:L89-L94.
    [86]Janik MJ, Taylor CD, Neurock M. First-Principles Analysis of the Initial Electroduction Steps of Oxygen over Pt(111). J. Electrochem. Soc.2009,156: B126-B135.
    [87]Panchenko A, Koper MTM, et al. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J. Electrochem. Soc.2004,151: A2016-A2027.
    [88]Neyerlin KC, Gu W, Jorne J, Gasteiger HA. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J. Electrochem. Soc.2006, 153.A1955-A1963.
    [89]Wang JX, Zhang JL, Adzic RR. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. A.2007,111: 12702-12710.
    [90]Wang Y, Balbuena PB. Roles of Proton and Electric Field in the Electroreduction of O2 on Pt(111) Surfaces:Results of an Ab-Initio Molecular Dynamics Study. J. Phys. Chem. B.2004,108:4376-4384.
    [91]Bockris JOM, Reddy AKN. Modern Electrochemistry; Plenum Press: New York, 1970.
    [92]Anderson AB, Roques J, Mukerjee S, Murthi VS, Markovic NM, Stamenkovic V. Activation energies for oxygen reduction on platinum alloys:Theory and experiment. J. Phys. Chem. B.2005,109:1198-1203.
    [93]Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J. Electroanal. Chem.1993, 357:201-224.
    [94]Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir.2006,22:10409-10415.
    [95]Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM. Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:Pt-Skin versus Pt-Skeleton Surfaces.J. Am. Chem. Soc.2006,128:8813-8819.
    [96]Stamenkovic VR, Fowler B, Mun BS,-Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science.2007,315:493-497.
    [97]Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature. Mater.2007,6:241-247.
    [98]Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed.2005,44:2132-2135.
    [99]Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR. Mixedmetal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc.2005,127:12480-12481.
    [100]Alonso-Vante N, Malakhov Ⅳ, Nikitenko SG, Savinova ER, Kochubey DI. The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochim. Acta.2002,47:3807-3814.
    [101]Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature.2006,443:63-66.
    [102]Kitchin JR, Nφrskov JK, Barteau MA, Chen JG. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys.2004.120:10240-10246.
    [103]Mavrikakis M, Stoltze P, Nφrskov JK. Making gold less noble. Catal. Lett. 2000,64:101-106.
    [104]Mukerjee S, Srinivasan S, Soriaga M, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction.J. Electrochem. Soc.1995,142:1409-1422.
    [105]Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B.2002,106:4181-4191.
    [106]Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM. Surface composition effects in electrocatalysis:Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B.2002,106:11970-11979.
    [107]Toda T, Igarashi H, Uchida H, Watanabe M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999,146:3750-3756.
    [108]Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J. Electroanal. Chem.1999,460:258-262.
    [109]Jalan V, Taylor EJ. Importance of interactomic spacing in catalytic reduction of oxygen in phosphoric acid. J. Electrochem. Soc.1983,130:2299-2301.
    [110]Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M. CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys.2001,3:306-314.
    [111]Paffett MT, Beery JG, Gottesfeld S. Oxygen Reduction at Pto.65Cro.35, Pt0.2Cr0.8 and roughened platinum. J. Electrochem. Soc.1988,135:1431-1436.
    [112]Wan LJ, Moriyama T, Ito M, Uchida H, Watanabe M. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. Chem. Commun.2002,10:28-29.
    [113]Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells. J. Electrochem. Soc.1994,141:2659-2668.
    [114]Ruban AV, Skriver HL, Norskov JK. Surface segregation energies in transition-metal alloys. Phys. Rev. B.1999,59:15990-16000.
    [115]Atli A, Abon M, Beccat P, Bertolini JC, Tardy B. Carbon monoxide adsorption on a Pt80Fe2o(111) single-crystal alloy. Surf. Sci.1994,302:121-125.
    [116]Toda T, Igarashi H, Watanabe M. Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J. Electrochem. Soc.1998,145:4185-188.
    [117]Xu Y, Ruban AV, Mavrikakis M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc.2004,126:4717-4725.
    [118]Greeley J, Norskov JK, Mavrikakis M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem.2002,53:319-348.
    [119]Mavrikakis M, Hammer B, Norskov JK. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett.1998,81:2819-2822.
    [120]Greeley, J. Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Noskov JK. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature. Chem.2009,1, 552-556.
    [121]Fernandez JL, Walsh DA, Bard AJ. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co(M:Pd, Ag, Au). J. Am. Chem. Soc.2005,127: 357-365.
    [122]Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota KI. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3d transition metal alloys for direct methanol fuel cells. J. Electrochem. Soc.2006,153:A20-A24.
    [123]Mustain WE, Kepler K, Prakash J. CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim. Acta.2007, 52:2102-2108.
    [124]Savadogo O, Lee K, Oishi K, Mitsushimas S, Kamiya N, Ota KI. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem. Commun.2004,6:105-109.
    [125]Shao MH, Sasaki K, Adzic RR. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc.2006,128:3526-3527.
    [126]Shao M, Sasaki K, Liu P, Adzic RR. Pd3Fe and Pt monolayer-modified Pd3Fe Electrocatalysts for Oxygen Reduction. Z. Phys. Chem.2007,221:1175-1190.
    [127]Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE.Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim. Acta.2007,52:5108-5118.
    [128]Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J. Power. Sources.2007,167:243-249.
    [129]Zhang L, Lee K, Zhang JJ. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim. Acta. 2007,52:3088-3094.
    [130]Fernandez JL, White JM, Sun YM, Tang WJ, Henkelman G, Bard AJ. Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods. Langmuir.2006,22:10426-10431.
    [131]Wang YX, Balbuena PB. Design of oxygen reduction bimetallic catalysts: Ab-initioderived thermodynamic guidelines. J. Phys. Chem. B.2005,109: 18902-18906.
    [132]Wang YX, Balbuena PB. Potential energy surface profile of the oxygen reduction reaction on a Pt cluster:Adsorption and decomposition of OOH and H2O2.J. Chem. Theory. Comput.2005,1:935-943.
    [133]Lamas EJ, Balbuena PB. Oxygen reduction on Pd0.75Co0.25(111) and Pt0.75Co0.25(111) surfaces:An ab initio comparative study. J. Chem. Theory. Comput. 2006,2:1388-1394.
    [134]Suo YG, Zhuang L, Lu JT. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem. Int. Ed.2007,46:2862-2864.
    [135]Shao M, Liu P, Zhang J, Adzic RR.. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B.2007,111: 6772-6775.
    [136]Bozzolo G, Noebe RD, Khalil J, Morse J. Atomistic analysis of surface segregation in Ni-Pd alloys. Appl. Surf. Sci.2003,219:149-157.
    [1](a) Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science.2007,315:493-497; (b) Stamenkovic VR, Mun BS, Arenz M, Mayrhofer K JJ, Lucas CA, Wang GF, Ross PN, Markovic NM. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature. Mater. 2007,6:241-247; (c) Shao MH, Liu P, Adzic RR. Superoxide Anion is the Intermediate in the Oxygen Reduction Reaction on Platinum Electrodes. J. Am. Chem. Soc.2006,128:7408-7409; (d) Greeley J, Norskov JK. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction. J. Phys. Chem. C.2009,113:4932-4939.
    [2](a) Adzic RR. Recent Advances in the Kinetics of Oxygen Reduction, in Electrocatalysis; Lipkowski J, Ross PN, Eds, Wiley-VCH:New York,1998:197; (b) Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces:A Selective Review. Fuel Cell. 2001,1:105-116; (c) Shi Z, Zhang JJ, Liu ZS, Wang HJ, Wilkinson DP. Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochim. Acta. 2006,51:1905-1916; (d) Gottsfeld S. Electrocatalysis of Oxygen Reduction In Polymer Electrolyte Fuel Cells:A Brief History and a Critical Examination of Present Theory and Diagnostics. in Fuel Cell Catalysis: A Surface Science Approach; Koper, MTM., Eds, Wiley&Sons, Chichester,2009, Chap.1.
    [3](a) Damjanovic A, Brusic V, Bockris JO'M. Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy. J. Phys. Chem.1967,71: 2471-2742; (b) Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta.1967,12:615-628.
    [4](a) Sepa DB, Vojnovic MV, Damjanovic A. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim. Acta.1981,26:781-791; (b) Sepa DB, Vojnovic MV, Vracar Lj.M, Damjanovic A. Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes. Electrochim. Acta.1987,32:129-134.
    [5]Yeager E, Razaq M, Gervasio D, Razak A, Tryk AD. The electrolyte factor in O2 reduction electrocatalysis. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, The Electrochemical Society: Pennington, NJ,1992:440-473.
    [6]Machado SAS, Tanaka AA, Gonzales ER. Underpotential deposition of copper and its influence in the oxygen reduction on platinum. Electrochim. Acta.1991,36: 1325-1331.
    [7]Sidik RA, Anderson AB. Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanal. Chem.2002,528:69-76.
    [8]Hyman MP, Medlin JW. Mechanistic Study of the Electrochemical Oxygen Reduction Reaction on Pt(111) Using Density Functional Theory. J. phys. Chem. B. 2006,110:15338-15344.
    [9](a) Wang YX, Balbuena PB. Ab Initio Molecular Dynamics Simulations of the Oxygen Reduction Reaction on a Pt(111) Surface in the Presence of Hydrated Hydronium (H3O)+(H2O)2:Direct or Series Pathway? J. Phys. Chem. B.2005,109: 14896-14907; (b) Wang Y, Balbuena PB. Roles of Proton and Electric Field in the Electroreduction of O2 on Pt(111) Surfaces:Results of an Ab-Initio Molecular Dynamics Study. J. Phys. Chem. B.2004,108:4376-4384.
    [10]Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77:3865-3868.
    [11]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B.1990,41:7892-7895.
    [12]Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B.1989,40:3616-3621.
    [13]Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys.2000, 113:9978-9985.
    [14]Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000, 113:9901-9904.
    [15]Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P. PWSCF and PHONON: Plane-Wave Pseudo-Potential Codes, http://www.pwscf.org,2001.
    [16]Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graphics Modell.1999,17:176-179.
    [17]Kokalj A, Causa M. Scientific Visualization in Computational Quantum Chemistry. In Proceedings of High Performance Graphics Systems and Applications European Workshop; CINECA-Interuniversity Consortium:Bologna, Italy,2000.
    [18]Kokalj A, Causa M. XCrySDen:(X-Window) CRYstalline Structures and DENsities. http://www-k3.ijs.si/kokali/xc/XCrySDen.html, 2001.
    [19]Eichler A, Hafner J. Molecular Precursors in the Dissociative Adsorption of O2 on Pt(111). Phys. Rev. Lett.1997,79:4481-4484.
    [20]Valencia F, Romero AH, Ancilotto F, Silvestrelli PL. Lithium Adsorption on Graphite from Density Functional Theory Calculations. J. Phys. Chem. B.2006,110: 14832-14841.
    [21]Nduwimana A, Gong XG, Wang XQ. Relative stability of missing-row reconstructed (110) surfaces of noble metals. Appl. Surf. Sci.2003,219:129-135.
    [22](a) Niedner-Schatteburg G. Infrared Spectroscopy and Ab Initio Theory of Isolated H5O2+:From Buckets of Water to the Schrodinger Equation and Back. Angew. Chem. Int. Ed.2008,47:1008-1011; (b) Marx D, Tuckerman ME, Hutter J, Parrinello M. The nature of the hydrated excess proton in water. Nature.1999,397:601-604; (c) Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan. Spectral Signatures of Hydrated Proton Vibrations in Water Clusters. Science.2005,308:1765-1769.
    [23](a) Lozovoi A, Alavi A, Kohanoff J, Lynden-Bell R. Ab initio simulation of charged slabs at constant chemical potential. J. Chem. Phys.2001,115:1661-1669; (b) Filhola JS, Bocquet ML. Charge control of the water monolayer/Pd interface. Chem. Phys. Lett.2007,438:203-207.
    [24]Hammer B. Special Sites at Noble and Late Transition Metal Catalysts. Top. Catal.2006,37:3-16.
    [25]Bligaard T.Norskov JK,Dahl S,Matthiesen J, Christensen CH,Sehested J. The Brφnsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal.2004,224:206-217.
    [26]Thiel PA, Madey TE. The interaction of water with solid surfaces—fundamental aspects. Surf. Sci. Rep.1987,7:21-385.
    [27]Henderson MA. Interaction of water with solid surfaces:fundamental aspects revisited. Surf. Sci. Rep.2002,46:5-308.
    [28]Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A. Structure and bonding of water on Pt(111). Phys. Rev. Lett.2002, 89:276102.
    [29]Rossmeisl J, Nφrskov JK, Taylor CD, Janik MJ, Neurock M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B.2006,110:21833-21839.
    [30]Filhol JS, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem. Int. Ed.2006,45:402-406.
    [31]Roques RM, Anderson AB. Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J. Electrochem. Soc.2004,151:E85-E91.
    [32]Zundel G. In The Hydrogen BondsRecent Developments in Theory and Experiments. Ⅱ. Structure and Spectroscopy. Schuster P, Zundel G, Sandorfy C, Eds, North-Holland Publishing Company:Amsterdam,1976,683-766.
    [33]Eigen M. Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part Ⅰ: Elmentary Processes. Angew. Chem., Int. Ed.1964,3:1-19.
    [34]Marx D, Tuckerman ME, Hutter J, Parrinello M. The nature of the hydrated excess proton in water. Nature.1999,397:601-604.
    [35]Panchenko A, Koper MTM. Shubina TE, Mitchell SJ, Roduner E. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J. Electrochem. Soc.2004,151:A2016-A2027.
    [1]Guerin S. Hayden BE, Lee CE, Mormiche C, Owen JR, Russell AE, Theobald B, Thompsett D. Combinatorial Electrochemical Screening of Fuel Cell Electrocatalysts. J. Comb. Chem.2004,6:149-158.
    [2]Stamenkovic VR, Fowler B, Mun BS, Wang GF, Mayrhofer KJJ, Ross PN, Lucas CA, Markovic NM. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science.2007,315:493-497.
    [3]Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc.2001,123:8404-8405.
    [4]Kitchin JR, Norskov JK, Barteau MA, Chen JG. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys.2004.120:10240-10246.
    [5]Greeley J, Norskov JK, Mavrikakis M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem.2002,53:319-348.
    [6]Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Christensen CH, Norskov JK. Towards computational screening in heterogeneous catalysis:Paretooptimal methanation catalysts.J. Catal.2006,239:501-506.
    [7]Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I. Design of a surface alloy catalyst for steam reforming. Science.1998,279:1913-1915.
    [8]Greeley J, Mavrikakis M. Alloy catalysts designed from first-principles. Nature. Mater.2004,3:810-815.
    [9]Greeley, J. Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Noskov JK. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem.2009,1:552-556.
    [10]Mukerjee S, Srinivasan, Soriaga MP. Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction. J. Electrochem. Soc. 1995,142:1409-1422.
    [11]Hammer B, Norskov JK. Electronic factors determining the reactivity of metal surfaces. Surf. Sci.1995,343:211-220.
    [12]Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature.1995, 376:238-240.
    [13]Lovvik OM. Surface segregation in palladium based alloys from density-functional calculations. Surf. Sci.2005,583:100-106.
    [14]Norskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH. Universality in heterogeneous catalysis. J. Catal.2002,209:275-278.
    [15]Allinger NL, Zhou XF, Bergsma J. Molecular Mechanics Parameters.J. Mol. Struct. (THEOCHEM).1994,312:69-83.
    [16]De Boer FR, Boom R, Mattens WCM, Miedema AR. Niessen AK. Cohesion in Metals, Amsterdam, North-Holland,1988.
    [17]Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM. Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:Pt-Skin versus Pt-Skeleton Surfaces. J. Am. Chem. Soc.2006,128:8813-8819.
    [18]Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature. Mater.2007,6:241-247.
    [19]Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y. Enhanced Activity for Oxygen Reduction Reaction on "Pt3Co" Nanoparticles:Direct Evidence of Percolated and Sandwich-Segregation Structures. J. Am. Chem. Soc. 2008,130:13818-13819.
    [20]Shirlaine K, Strasser P. Electrocatalysis on Bimetallic Surfaces:Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying. J. Am. Chem. Soc.2007,129:12624-12625.
    [21]Shao MH, Sasaki K, Adzic RR. Pd-Fe Nanoparticles as Electrocatalysts for Oxygen Reduction.J. Am. Chem. Soc.2006,128:3526-3527.
    [1]Chaplin RPS, Wragg AA. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J. Appl. Electrochem.2003,33:1107-1123.
    [2]Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes Part Ⅱ. Simultaneous reduction of carbon dioxide and nitrite ions at Cu, Ag and Au catalysts. J. Electroanal. Chem.1998,442:67-72.
    [3]Hori Y. In Environmental Aspects of Electrochemistry and Photoelectrochemistry; Tomkiewicz M, Haynes R, Yoneyama H, Hori Y, Eds.; The Electrochemical Society: Pennington, NJ,1993, pl.
    [4]Dean JA (Ed.), Lange's Handbook of Chemistry,15th ed., McGraw-Hill, New York,1999.
    [5]Bard AJ, Parsons R, Jordan J, Eds., Standard potentials in aqeous solution. New York:IUPAC, Physical and Analytical Chemistry Divisions, Marcel-Dekker,1985.
    [6]Kita H. In Electrochemistry. Bloom H, Gutman F, (eds). Plenum Press, New York, 1975,131-155.
    [7]Jitaru M. Electrochemical Carbon Dioxide Reduction-Fundamental and Applied Topics. J. Univ. Chem. Technol. Metall.2007,42:333-344.
    [8]Ito K, Ikeda sh, Noda H. In Sol. World Congr., Proc. Bienn. Congr. Int. Sol. Energy Soc. Ardan ME, Susan MA, Coleman M, (eds). Pergamon, Oxford,1992, 1(part 2):884-889.
    [9]Pritchard J. On the structure of CO adlayers on Cu(100) and Cu(111). Surf. Sci. 1979,79:231-244.
    [10]Hori Y, Koga O, Yamazaki H, Matsuo T. Infrared Spectroscopy of Adsorbed CO and Intermediate Species in Electrochemical Reduction of CO2 to Hydrocarbons on a Cu Electrode. Electrochim. Acta.1995,40 2617-2622.
    [11]Krause J, Borgmann D, Wedler G. Photoelectron spectroscopic study of the adsorption of carbon dioxide on Cu(110) and Cu(110)/K—as compared with the systems Fe(110)/CO2 and Fe(110)/K+CO2. Surf. Sci.1996,347:1-10.
    [12]Bonicke IA, Kirstein W, Thieme F. A study on CO2 dissociation on a stepped (332) copper surface. Surf. Sci.1994,307-309:177-181.
    [13]Hori Y, Kikuti K, Suzuki S. Production of CO and CH4 in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Hydrogecarbonate Solution. Chem. Lett.1985,14:1695-1698.
    [14]Noda H, Ikeda S, Oda Y, Ito K. Potential Dependencies of the Products on Electrochemical Reduction of Carbon Dioxide at a Copper Electrode. Chem. Lett. 1989,18:289-292.
    [15]Hori Y, Murata A, Yoshinami Y. Adsorption of CO, intermediately formed in electrochemical reduction of CO2, at a copper electrode. J. Chem. Soc. Faraday Trans. 1991,87:125-128.
    [16]Hori Y, Murata A, Tsukamoto T, Wakebe H, Koga O, Yamazaki H. Adsorption of carbon dioxide at a copper electrode accompanied by electron transfer observed by electron transfer observed by voltammetry and IR spectroscopy. Electrochim. Acta. 1994,39:2495-2500.
    [17]Frese KW, Jr. Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Sullivan BP, Krist K, Guard HE; Elsevier: Amsterdam,1993:191.
    [18]Hori Y, Wakebe H, Tsukamoto T, Koga O. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci.1995,335:258-263.
    [19]Hori Y, Takahashi I, Koga O, Hoshi N. Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes. J. Phys. Chem. B 2002,106:15-17.
    [20]Kim JJ, Summers DP, Frese KW, Jr. Reduction of CO2 and CO to methane on Cu foil electrodes. J. Electroanal. Chem.1988,245:223-244.
    [21]Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. I.1989,85:2309-2326.
    [22]Hori Y, Murata A, Takahashi R, Suzuki S. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc.1987,109:5022-5023.
    [23]DeWulf DW, Jin T, Bard AJ. Electrochmical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Anqueous Solutions.J. Electrochem. Soc.1989,136:1686-1691.
    [24]Cook RL, MacDuff RC, Sammells AF. On the Electrochemical Reduction of Carbon at In Situ Electrodeposited Copper. J. Electrochem. Soc.1988,135: 1320-1326.
    [25]Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata. T. Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous KHCO3 Media. J. Electrochem. Soc.1990,137:1772-1778.
    [26]Kyriacou GZ, Anagnostopoulos AK. Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction.J. Appl. Electrochem.1993,23:483-486.
    [27]Kaneco S, Iiba K, Ohta K, Mizuno T. Electrochemical CO2 reduction on a copper wire electrode in tetraethylammonium perchlorate+methanol at extremely low temperature. Energy Sources.1999,21:643-648.
    [28]Kaneco S, Iiba K, Ohta K, Mizuno T. Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature.J. Solid State Electrochem.1999,3:424-428.
    [29]Kaneco S, Iiba K, Hiei N, Ohta K, Mizuno T, Suzuki T. Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim. Acta.1999,44:4701-4706.
    [30]Kaneco S, Iiba K, Suzuki S, Ohta K, Mizuno T. Electrochemical Reduction of Carbon Dioxide to Hydrocarbons with High Faradaic Efficiency in LiOH/Methanol. J. Phys. Chem. B.1999,103:7456-7460.
    [31]Kaneco S, Iiba K, Suziki S, Ohta K, Mizuno T. Reduction of carbon dioxide to petrochemical intermediates. Energy Sources.2000,22:127-135.
    [32]Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L. Electrochemical reduction of carbon dioxide on flat metallic cathodes. J. Appl. Electrochem.1997,27:875-889.
    [33]Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77:3865-3868.
    [34]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B.1990,41:7892-7895.
    [35]Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B.1989,40:3616-3621.
    [36]Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P. PWSCF and PHONON: Plane-Wave Pseudo-Potential Codes. http://www.pwscf.org,2001.
    [37]Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graphics Modell.1999,17:176-179.
    [38]Kokalj A, Causa M. Scientific Visualization in Computational Quantum Chemistry. In Proceedings of High Performance Graphics Systems and Applications European Workshop; CINECA-Interuniversity Consortium: Bologna, Italy,2000.
    [39]Kokalj A, Causa M. XCrySDen: (X-Window) CRYstalline Structures and DENsities. http://www-k3.ijs.si/kokalj/xc/XCrySDen.html,2001.
    [40]Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys.2000, 113:9978-9985.
    [41]Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000, 113:9901-9904.
    [42]Hollins P, Pritchard J. Interactions of CO molecules adsorbed on Cu(111). Surf. Sci.1979,89:486-495.
    [43]Kirstein W, Kruger B, Thieme F. CO adsorption studies on pure and Ni-covered Cu(111) surfaces. Surf. Sci.1986,176:505-529.
    [44]Bonicke I, Kirstein W, Spinzig S, Thieme F. CO adsorption studies on a stepped Cu(111) surface. Surf. Sci.1994,313:231-238.
    [45]Kneitz S, Gemeinhardt J, Steinruck HP. A molecular beam study of the adsorption dynamics of CO on Ru(0001), Cu(111) and a pseudomorphic Cu monolayer on Ru(0001). Surf. Sci.1999,440:307-320.
    [46]Feibelman PJ, Hammer B, Norskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J. The CO/Pt(111) Puzzle. J.Phys.Chem.B.2001,105:4018-4025.
    [47]Gil A, Clotet A, Ricart JM, Kresse G, Garcia-Hernandez M, Rosch N, Sautet P. Site preference of CO chemisorbed on Pt(111) from density functional calculations. Surf. Sci.2003,530:71-87.
    [48]Deluzarche A, Hindermann JP, Kieffer R, Breault R, Kiennemann A. Ethanol formation mechanism from carbon monoxide+molecular hydrogen on a rhodium/titanium dioxide catalyst. J.Phys. Chem.1984,88:4993-4995.
    [49]Kiennemann A, Breault R, Hindermann JP, Laurin M. Ethanol promotion by the addition of cerium to rhodium-silica catalysts. J. Chem. Soc. Faraday Trans.1.1987, 83:2119-2128.
    [50]Diagne C, Idriss H, Hindermann JP, Kiennemann A. Promoting effects of lithium on Pd/CeO2 catalysts in carbon monoxide-hydrogen reactions:Chemical trapping and temperature-programmed desorption studies. Appl. Catal.1989,51:165-180.
    [51]Remediakis IN, Abild-Pedersen F, Norskov JK. DFT Study of Formaldehyde and Methanol Synthesis from CO and H2 on Ni(111). J. Phys. Chem. B.2004,108: 14535-14540.
    [52]Choi YM, Liu P. Mechanism of Ethanol Synthesis from Syngas on Rh(111). J. Am. Chem. Soc.2009,131:13054-13061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700