用户名: 密码: 验证码:
阳离子型生物质吸附剂的研制及其去除水中阴离子的效能及再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综述了国内外大量文献的基础上,首先确立了生物质阳离子吸附剂的改性工艺以及最佳的改性条件(吡啶催化法、中间体引入法和乙二胺交联法);然后通过各种表征手段对不同工艺制备的生物质阳离子吸附剂进行物化特性的表征,探讨了生物质吸附剂的结构特性,以及与各种阴离子之间的构效关系;对比研究了改性生物质阳离子吸附剂在不同吸附条件下(温度、投加量、pH)对硝酸根、磷酸根、高氯酸根、重铬酸根的吸附特性影响,并重点分析了相关的吸附动力学与吸附热力学参数;研究不同过柱条件下(过柱流速、过柱浓度、过柱pH、填柱高度),改性生物质阳离子吸附剂对各种阴离子污染物的过柱穿透参数,并在此基础上研究了过柱条件下饱和吸附柱的化学再生的效果。另外,针对高氯酸根的可生物还原特性,研究了不同条件下富集于生物质吸附剂表面的高氯酸根的微生物还原情况,探讨生物质阳离子吸附剂的微生物再生的可行性。主要结论如下:
     1,吡啶催化法改性制备阳离子型生物质吸附剂的过程中,吡啶催化的阶段(包括催化时间和催化温度)对整个改性合成实验的影响最为明显。中间体引入法的环氧丙基三乙基氯化铵中间体制备过程中,影响最大的条件为中间体的制备温度;而中间体引入法制备阳离子型生物质吸附剂的过程中,合成过程的温度条件对合成影响最大。乙二胺交联法改性制备阳离子型生物质吸附剂的过程中,乙二胺交联反应的阶段对整个合成实验的影响最为明显。结果表明:最佳条件下乙二胺法制备的阳离子型生物质吸附剂对硝酸根、磷酸根的去除率方面,均要比吡啶催化法以及中间体引入法制备的产品要高5-15%左右。因此,乙二胺法改性后制备的阳离子型生物质吸附剂具有更高的吸附容量。同时,研究发现:各种生物质原料中,麦草秸秆改性后的阳离子型吸附剂对硝酸根以及磷酸根表现出更高的吸附性能。因此,后续的改性、表征以及吸附反应均以麦草秸秆改性后的产物作为研究对象。
     2.乙二胺交联法制备得到的麦草秸秆阳离子型吸附剂的增重率及产率要高于吡啶催化法以及中间体引入法的产物。因此,乙二胺交联法能够制备更多的吸附剂,具有更高的商业价值。同时,乙二胺交联法改性后,麦草秸秆的N含量变化最为明显,这表明乙二胺交联法引入了更多含氮基官能团。pH为2.0时,未改性麦草秸秆的表面电荷基本为中性(Zeta电位:+2.1mV);而乙二胺交联法、吡啶改性法以及中间体引入法制备的麦草稻秆吸附剂的Zeta电位分别为+42mV、+39mV和+31mV。改性后的阳离子型麦草秸秆吸附剂的表面引入带正电荷的胺基基团,因此导致其表面电性发生了变化。而乙二胺改性后麦草秸秆表面的电荷较其它改性工艺的产物要高,这说明乙二胺作为交联剂能够引入更多带正电荷的胺基基团。FTIR图谱表明:与未改性的麦草秸秆相比,阳离子型麦草秸秆吸附剂表面引入了大量的胺基官能团与氯代烷,在麦草秸秆表面形成具有吸附功能的吸附结点。拉曼图谱表明:吸附于胺基官能团结点的硝酸根、磷酸根以及高氯酸根,主要是通过静电引力的作用被富集于阳离子型麦草秸秆吸附剂的表面;此时,富集的硝酸根、磷酸根以及高氯酸根仍是以离子形态存在于吸附剂表面,因此,整个吸附过程中基本不存在化学吸附。而阳离子型麦草秸秆吸附剂吸附去除Cr(Ⅵ)的过程中,麦草秸秆吸附剂表面形成了化学键。因此,改性麦草秸秆对Cr(Ⅵ)的去除,除了通过静电吸引作用与吸附剂表面带正电荷的胺基官能团之间的离子交换发生之外,其表面也可能存在其它的化学作用。负载了Cr(Ⅵ)的XPS图显示:575eV处为Cr(Ⅲ)的特征吸收带,这表明,负载于阳离子型麦草秸秆吸附剂表面Cr(Ⅵ)发生了还原反应,生成Cr(Ⅲ)。由于Cr(Ⅲ)为阳离子型金属离子,其与生物质吸附剂表面羧基或羟基官能团反应。从而被附着于吸附剂表面。
     3.改性阳离子型麦草秸秆吸附剂吸附去除硝酸根、磷酸根、高氯酸根以及Cr(Ⅵ)的速度较快,吸附约10-20min即可以达吸附平衡;吸附过程受溶液pH值影响显著,硝酸根、磷酸根、高氯酸根在pH值为4-9时吸附效果较好,Cr(Ⅵ)在2~4时较高。硝酸根、磷酸根、高氯酸根的吸附体系中pH值大于10之后,吸附效果受到明显抑制。在实验温度范围内,阳离子型麦草秸秆吸附剂去除各种阴离子污染物的吸附等温线符合Langmuir单分子层吸附模型;由此计算出的对硝酸根、磷酸根、高氯酸根以及Cr(Ⅵ)的最大吸附容量Qmax(293K)分别为68.5、65.4、163.5和263.6mg/g。热力学特性研究发现,阳离子型麦草秸秆吸附剂吸附去除硝酸盐、磷酸盐和高氯酸盐的过程中吉布斯自由能变化△G为负值;吸附过程焓变△H和熵变△S分别介于-46.5~-53.54kJ/mol和-0.144~-0.257kJ/(mol·K)。这说明阳离子型麦草秸秆吸附剂吸附去除硝酸盐、磷酸盐和高氯酸盐的过程为放热、自发过程,整个体系的有序性得到了增强。而且降低温度有利于吸附反应的发生。而吸附Cr(Ⅵ)的吉布斯自由能变化△G、焓变△H和熵变△S均为负值。这说明阳离子型麦草秸秆吸附剂吸附去除Cr(Ⅵ)的过程为吸热、自发过程,而且升高温度有利于吸附反应的发生。
     4.吸附动力学特性研究发现,阳离子型麦草秸秆吸附剂吸附硝酸盐、磷酸盐、高氯酸盐以及Cr(Ⅵ)的过程符合伪二级动力学方程。采用Arrhenius方程计算得到改性麦草秸秆吸附硝酸盐、磷酸盐、高氯酸盐以及Cr(Ⅵ)的活化能介于7.4-27.4kJ/mol,因此判断该吸附属于离子交换吸附,可能是季铵基和阴离子之间由库仑引力形成的离子键作用。阳离子型麦草秸秆吸附剂吸附去除Cr(Ⅵ)过程中各种阴离子的吸附量和C1的解析量具有很好的正相关性。由此判定离子交换是阳离子型麦草秸秆吸附剂去除Cr(Ⅵ)的主要方式。此外,通过吸附溶液中Cr(Ⅳ)浓度的测试及XPS表征分析得到证实,Cr(Ⅵ)在改性麦草秸秆表面吸附后发生了还原反应,生成了Cr(Ⅲ)。
     5.利用填充了阳离子型麦草秸秆吸附剂的吸附柱对各种阴离子污染物进行过柱吸附研究。结果发现:各种阴离子污染物的过柱吸附特性受过柱的填柱高度、过柱流速、过柱进水阴离子浓度以及过柱pH的影响较大。填柱高度增大,能够吸附更多的阴离子污染物,但是并没有增加吸附剂的吸附效率;过柱流速越大,水力负荷也越大。水力负荷较大时,进水通过吸附柱的时间较短,吸附质与吸附剂之间的接触相对不够充分,导致填充了阳离子型麦草秸秆吸附剂的吸附柱过早被穿透;高浓度进水时,吸附柱内的吸附点位很快被水中大量的阴离子占据,达到饱和吸附,使吸附柱被穿透。因此,选择合适的过柱条件可以有效提高过柱吸附的效率。鉴于此,硝酸盐、磷酸盐以及高氯酸盐的过柱吸附条件为:填料柱高度为2.7cm、进水硝酸盐、磷酸盐以及高氯酸盐的浓度为200mg L-1、进水流速为5mL min-1、调节进水溶液pH为6.0。重铬酸盐的过柱吸附条件为:填料柱高度为2.7cm、进水重铬酸盐浓度为200mg L-1、进水流速为5mL min-1、调节进水溶液pH为3.0。
     6.过柱条件下的化学再生结果表明:利用0.1M HCl、0.1M NaOH及0.1MNaCl再生后,短时间内解析出大量的阴离子。NaCl和HC1溶液对阴离子进行有效解析的机制在于大量高浓度的C1-与阴离子之间的离子交换作用,从而使阴离子被解析下来。而NaOH的解析机理中不仅包括OH-离子同各种阴离子之间的离子交换作用,而且再生溶液强碱的性质也削弱了阳离子型麦草秸秆吸附剂对各种阴离子污染物的吸附性能,从而加速其解析。阳离子型麦草秸秆吸附剂对硝酸盐、磷酸盐、高氯酸盐的吸附容量受再生的次数影响较小,因此,具有较为稳定的吸附容量及吸附稳定性;但是对重铬酸盐的吸附容量则受再生次数影响较大。富集高氯酸根的微生物还原结果表明:微生物再生虽然能够实现对富集高氯酸根的无害化,但是与化学再生相比,其再生效率明显偏低。还原体系中加入的氯离子及硫酸根离子可以将部分负载于吸附剂表面的高氯酸根通过离子交换的机理置换出来,使其在液相中被微生物菌群还原。与硫酸根离子相比,氯离子更有利于增强负载高氯酸根的还原效率。这是因为氯离子置换出负载的高氯酸根后,改性麦草吸附剂回复至初始形态,即:N+(CH2CH3)3Cl-形式存在。强化微生物再生对吸附剂的二次再生效率虽然低于化学再生的97.6%,但是远高于微生物再生的56.3%。
Based on the comprehensive analysis of numerous literatures, three kinds of methods (pyridine catalyst method, two-stage method and ethylenediamine crosslinking method) for modification of biomaterials based adsorbents were first determined in this work. The physicochemical properties and active functional groups of the potential biosorbents were explored and characterised by different techniques. The binding between the adsorbed anions and the functional groups were also evaluated. The adsorption of NO3-,PO43-, C1O4-and Cr(VI) by the biosorbents at different adsorption conditions (temperature, dosage and pH) were conducted; the parameters of adsorption kinetics and thermodynamics were intensively investigated. The adsorption parameters of fixed-bed columns were obtained at different influent conditions (flow rate, pH, influent concentrations and bed heights). Chemical desorption properties were then evaluated based on the column adsorption parameters. In addition, the loaded perchlorate on surface of biosorbents were reduced by the mixed perchlorate-reduction bacteria at different conditions and the reduction discussed in this chapter. The main conclusions were summarized as follows:
     1. In the pyridine catalyst method, the stage of catalyst (including the conditions of catalyst temperature and catalyst time) was the most important process for the biosorbents preparation. The reaction temperature was the essential factor that controlled the preparation of epoxy propyl triethyl ammonium chloride intermediation in two-stage method. In the ethylenediamine crosslinking method, the ethylenediamine crosslinking process was the control factor for the biosorbents preparation. It was observed that the removal efficiencies of NO3-and PO43-by biosorbents modified from thylenediamine crosslinking method was higher (5-15%) than those obtained from pyridine catalyst method, two-stage method. This indicated that the biosorbents modified from thylenediamine crosslinking method had shown higher adsorption capacities for anions. Result also indicated that the biosorbent originated from wheat stalk showed higher NO3-and PO43-uptake capacity as compared with those originrated from corn stalk, cotton stalk and reed.
     2. Biosorbents obtained from ethylenediamine crosslinking method showed the highest weight growth rate and yeild as compared with those of pyridine catalyst method and two-stage method. As a result, the ethylenediamine crosslinking method would be more commercial for preparation of biosorbents. Biosorbents obtained from ethylenediamine crosslinking method showed higher nitrogen content; this indicated that more amine functional groups were grafted into the biomaterials. The zeta potentials of the virgin wheat stalk, modified wheat stalks prepared by pyridine catalyst method, two-stage method and ethylenediamine crosslinking method were+2.1,+39,+31and+42mV, respectively. The results illustrated that a large amounts of positive charged amine groups were attached onto the surface of the virgin wheat stalk, so as the zeta potentials were increased. FTIR spectra indicated that the surface of modified wheat stalk was attached with amine groups and chloroalkane, forming the available adsorptive site for anions. Raman spectra indicated that the adsorption of nitrate, phosphate and perchlorate was mainly based on electrostatic attraction between the adsorbed anions and functional amine groups, and no chemical adsorption was involved. However, chemical bond was observed between the attached Cr(Ⅵ) and the biosorbent. As a result, electrostatic attraction, complexation reaction as well as other chemical binding might be involved for the Cr(Ⅵ) uptake by biosorbents.
     3. The adsorption of NO3-, PO43-, C1O4-and Cr(Ⅵ) by the wheat stalk based biosorbent was a quick adsorption process. The adsorption reached the equilibrium within10-20min. The pH was an essential factor that affected the adsorption process. The optimal adsorption was obtained at4.0-9.0for NO3-, PO43-, and C1O4-and2.0-4.0for Cr(VI). The adsorption isotherms were fit well with Langmuir model, and the maximum adsorption capacities (Qmax) obtained from this model were65.4,54.6,156.3and201.3mg/g for NO3-,PO43-, C1O4-and Cr(Ⅵ), respectively. Parameters of adsorption thermodynamics indicated that the adsorption of NO3-, PO43-, and C1O4-by the wheat stalk based biosorbent was a spontaneous and exothermic adsorption process. A decreased temperature would be in favour of the adsorption process. However, the negative values of△G,△H and△S obtained from Cr(Ⅵ) adsorption illustrated a endothenmic and spontaneous adsorption reaction between the Cr(VI) and the biosorbent. The adsorption was enhanced at higher adsorption temperature.
     4. The adsorption kinetics indicated that the adsorption of NO3-, PO43-, ClO4-and Cr(VI) by the wheat stalk based biosorbent followed pseudo-second-order kinetics equation. The activation energy calculated from the Arrhenius equation were in range of7.4-24.5kJ/mol, which implied that the adsorption was based on ion exchange. Results also indicated the linear relationship between the amouts of adsorbed anions and eluted C;-; this also confirmed the ion exchange mechanism for the anions adsorption by the biosorbent. A small amount of Cr (Ⅲ) was found in the Cr(Ⅵ) adsorption solution. In addition to this, XPS spectra also detected the Cr (Ⅲ) on surface of the biosorbent, which validated the Cr(VI) reduction reaction occurred on surface of the biosorbent.
     5. The fixed-bed column adsorption of various anions were controlled by the influent conditions such as influent concentration, flow rate, influent pH and bed depth. It was found that fixed-bed systems achieved a better uptake of NO3-, PO43-, ClO4and Cr(VI) by the biosorbent at a lower concentration, lower feed flow rate and biosorbent bed-depth. The suitable column adsorption conditions would be helpful for improving the efficiency of the column. As a result, the column adsorption conditions for the NO3-, PO43-, and ClO4-were determined as:bed depth2.7cm, influent concentration200mg L-1, feed flow rate5mL min-1and influent pH6.0. The column adsorption conditions for the Cr(VI) followed as:bed depth2.7cm, influent concentration200mg L-1, feed flow rate5mL min-1and influent pH3.0.。
     6. The chemical regeneration tests were conducted in the fixed-bed column with the0.1M HC1,0.1M NaOH and0.1M NaCl solutions. It was observed that the adsorbed anions could be desorbed in a short time. The desorption mechanism of HC1and NaCl was based on the reverse ion exchange between the high concentration of Cl-and adsorbed anions. After adsorpion of NO3-, PO43-and C1O4-, the spent bisorbent could be reused for several times with less capacity loss. However, the adsorption capacity of the Cr(VI) loaded biosorbent was significantly decreased after four cycles of adsorption-desorption tests. Although the bio-regeneration could reduce the loaded perchlorate to nontoxic chlorate, the biosorbent performance after bio-regeneration with mixed bacteria seemed to be inefficient as compared with the brine desorption technique. The enhanced bio-regeneration method was observed more promising in regeneration of the spent biosorbent as compared with that of direct bio-regeneration method.
引文
[1]Bao, H., B. Gu, Natural Perchlorate Has a Unique Oxygen Isotope Signature[J]. Environ. Sci. Technol.2004,28:5073-5073.
    [2]Samatya, S., N. Kabay, U. Yuksel, M. Arda, M. Yuksel, Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J]. React. Funct. Polym. 2006,66:1206-1214.
    [3]Schoeman, J.J., A. Steyn, Nitrate removal with reverse osmosis in a rural area in South Africa[J]. Desalination.2003,155:15-26.
    [4]Tian, Y., M. Wu, X. Lin, P. Huang, Y. Huang, Synthesis of magnetic wheat straw for arsenic adsorption [J]. J. Hazard. Mater.2011,193:10-16.
    [5]Wang, D.M., H.Y. Lin, S.I. Shah, C.Y. Ni, C.P. Huang, Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Ti-water interface [J]. Sep. Purif. Technol.2009,67:127-134.
    [6]Ye, L., H. You, J. Yao, H. Su, Water treatment technologies for perchlorate:A review [J]. Desalination.2012,298:1-12.
    [7]Hamoudi, S., K. Belkacemi, Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials:Kinetic modeling. Fuel.2013,110:107-113.
    [8]Jiang, H., P. Chen, S. Luo, X. Tu, Q. Cao, M. Shu, Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate[J]. Appl. Surf. Sci.2013,284:942-949.
    [9]Kwon, H.K., S.J. Oh, H.-S. Yang, Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments[J]. Bioresour. Technol.2013,129:387-395.
    [10]Sowmya, A., S. Meenakshi, An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions[J]. J. Environ. Chem.Eng.2013,1:906-915.
    [11]冯霄,电去离子技术浓缩和脱除水中重金属离子和营养盐研究[D].浙江大学博士学位论文[D].2008.
    [12]李敏,电化学法深度去除水中硝酸盐氮[D].此京化工大学硕士学位论文. 2011.
    [13]肖新程,董业斌,李志东,膜生物反应器脱氮除磷技术的研究进展[J].工业用水与废水.2009,40:5-9.
    [14]徐乐中,PH值碱度对脱氮除磷效果的影响及其控制方法[J].给水排水.1996,22:10-13.
    [15]郑敏,张代均,废水化学法脱氮和化学法除磷的研究[J].科技情报开发与经济.2006,16:154-155.
    [16]Li, S.-X., F.-J. Liu, F.-Y. Zheng, Y.-G. Zuo, X.-G. Huang, Effects of nitrate addition and iron speciation on trace element transfer in coastal food webs under phosphate and iron enrichment[J]. Chemosphere.2013,91:1486-1494.
    [17]van Dijk, H.W.J., W.T. de Groot, Eutrophication of a coastal dune area by artificial infiltration[J]. Water Res.1987,21:11-18.
    [18]Biswas, B.K., J.-i. Inoue, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto, H. Kawakita, Adsorptive removal of As(V) and As(Ⅲ) from water by a Zr(Ⅳ)-loaded orange waste gel [J]. J. Hazard. Mater.2008,154:1066-1074.
    [19]顾迎春,廖学品,石碧,皮胶原纤维固载Zr(Ⅳ)对水体中苯羧酸的吸附特性[J].四川大学学报(工程科学版).2010,42:189-194.
    [20]Baran, A., E. Bicak, S.H. Baysal, S. Onal, Comparative studies on the adsorption of Cr(Ⅵ) ions on to various sorbents [J]. Bioresour. Technol.2007,98:661-665.
    [21]黄力群,石国乐,电解法处理含铬废水的改进[J].电镀与环保.1990,10:14-16.
    [22]Byrne, T.M., X. Gu, P. Hou, F.S. Cannon, N.R. Brown, C. Nieto-Delgado, Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration [J]. Carbon.
    [23]Ricardo, A.R., G. Carvalho, S. Velizarov, J.G. Crespo, M.A.M. Reis, Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor [J]. Water Res.2012,46:4556-4568.
    [24]Wu, X., Y. Wang, L. Xu, L. Lv, Removal of perchlorate contaminants by calcined Zn/Al layered double hydroxides:Equilibrium, kinetics, and column studies [J]. Desalination.2010,256:136-140.
    [25]Xie, Y, S. Li, K. Wu, J. Wang, G. Liu, A hybrid adsorption/ultrafiltration process for perchlorate removal [J]. J. Membr. Sci.2011,366:237-244.
    [26} Xu, J., N. Gao,Y.Tang,Y.Deng, M. Sui,Perehlorate-removal using granular activated carbon supported iron compounds:Synthesis, characterization and reactivity [J]. J. Environ. Sci.2010,22:1807-1813.
    [27]Xu, J.-h., N.-y. Gao, Y. Deng, M.-h. Sui, Y.-1. Tang, Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium chloride [J]. Desalination.2011,275:87-92.
    [28]Greer, M.A., G. Goodman, R.C. Pleus, S.E. Greer, Health effects assessment for environmental perchlorate contamination:The dose response for inhibition of thyroidal radioiodine uptake in humans [J]. Environ. Health Persp.2002,110: 927-937.
    [29]Wang, C., L. Lippincott, X. Meng, Kinetics of biological perchlorate reduction and pH effect [J]. J. Hazard. Mater.2008,153:663-669.
    [30]Steinmaus, C., M.D. Miller, L. Cushing, B.C. Blount, A.H. Smith, Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007-08 [J]. Environ. Res.2013,123: 17-24.
    [31]Tikkanen, M.W., Development of a drinking water regulation for perchlorate in California [J]. Anal. Chim. Acta.2006,567:20-25.
    [32]孟凡生,王业耀,薛咏海,饮用水中硝酸盐的去除[J].安全与环境科学.2005,24:34-37.
    [33]Fox, S., Y. Oren, Z. Ronen, J. Gilron, Ion exchange membrane bioreactor for treating groundwater contaminated with high perchlorate concentrations [J]. J. Hazard. Mater.2014,264:552-559.
    [34]Wang, C., L. Lippincott, X. Meng, Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin [J]. Water Res.2008,42: 4619-4628.
    [35]郑家传,利用水葫芦根系去除水中重金属的效率和机理研究[D].中国科学技术大学博士学位论文.2010.
    [36]Hu, Y, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z. Wu, Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions [J]. Chem. Eng. J. 2013,228:392-397.
    [37]Li, X., O. Niitsoo, A. Couzis, Experimental studies on irreversibility of electrostatic adsorption of silica nanoparticles at solid-liquid interface [J]. J. Colloid Interf. Sci.2014,420:50-56.
    [38]Ahmad, M.F., S. Haydar, T.A. Quraishi, Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells [J]. Int. Biodeter. Biodegrad..2013,83:119-128.
    [39]Chatterjee, A., S. Schiewer, Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns [J]. Chem. Eng. J.2014,244:105-116.
    [40]Vankar, P.S., R. Sarswat, A.K. Dwivedi, R.S. Sahu, An assessment and characterization for biosorption efficiency of natural dye waste [J]. J. Clean. Prod. 2013,60:65-70.
    [41]Yuvaraja, G., N. Krishnaiah, M.V. Subbaiah, A. Krishnaiah, Biosorption of Pb(Ⅱ) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste [J]. Colloids Surf. B.2014,114:75-81.
    [42]Basci, N., E. Kocadagistan, B. Kocadagistan, Biosorption of copper (Ⅱ) from aqueous solutions by wheat shell [J]. Desalination.2004,164:135-140.
    [43]Farooq, U., J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature [J] Bioresour.Technol.2010,101:5043-5053.
    [44]Gorgievski, M., D. Bozie, V. Stankovic, N. Strbac, S. Serbula, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw [J] Ecolog. Eng.2013,58:113-122.
    [45]Jurado-Sanchez, B., E. Ballesteros, M. Gallego, Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants [J]. Water Res.2014,51:186-197.
    [46]Rahman, M.F., S. Peldszus, W.B. Anderson, Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment:A review [J]. Water Res.2014,50:318-340.
    [47]Siegrist, R.L., R. Parzen, J. Tomaras, K.S. Lowe, Water movement and fate of nitrogen during drip dispersal of wastewater effluent into a semi-arid landscape [J]. Water Res..2014,52:178-187.
    [48]Jurado-Sanchez, B., E. Ballesteros, M. Gallego, Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants [J]. Water Res.2014,51:186-197.
    [49]Lytle, D.A., T. Sorg, L. Wang, A. Chen, The accumulation of radioactive contaminants in drinking water distribution systems [J]. Water Res..2014,50: 396-407.
    [50]Ferguson, B.C., R.R. Brown, N. Frantzeskaki, F.J. de Haan, A. Deletic, The enabling institutional context for integrated water management:Lessons from Melbourne [J]. Water Res.2013,47:7300-7314.
    [51]Filella, M., I. Pomian-Srzednicki, P.M. Nirel, Development of a powerful approach for classification of surface waters by geochemical signature [J]. Water Res..2014,50:221-228.
    [52]Leusch, F.D.L., S.J. Khan, M.M. Gagnon, P. Quayle, T. Trinh, H. Coleman, C. Rawson, H.F. Chapman, P. Blair, H. Nice, T. Reitsema, Assessment of wastewater and recycled water quality:A comparison of lines of evidence from in vitro, in vivo and chemical analyses [J]. Water Res..2014,50:420-431.
    [53]Bian, Y, S. Yan, H. Xu, Efficiency evaluation for regional urban water use and wastewater decontamination systems in China:A DEA approach [J]. Resour. Conserv. Recycl.2014,83:15-23.
    [54]Liu, Y.-L., K.-L. Luo, X.-X. Lin, X. Gao, R.-X. Ni, S.-B. Wang, X.-L. Tian, Regional distribution of longevity population and chemical characteristics of natural water in Xinjiang, China [J]. Sci. Total Environ.2014,473-474:54-62.
    [55]Zheng, X., D. Chen, Q. Wang, Z. Zhang, Seawater desalination in China: Retrospect and prospect [J]. Chem. Eng. J.2014,242:404-413.
    [56]孟伟,中国流域水环境污染综合防治战略[J].中国环境科学2007,25:712-716.
    [57]刘操,北京水环境中主要阴离子污染物的监测[J].化学分析计量.2002,2:15-16.
    [58]Kir, E., B. Gurler, A. Gulec, Boron removal from aqueous solution by using plasma-modified and unmodified anion-exchange membranes [J]. Desalination.2011, 267:114-117.
    [59]Theiss, F.L., S.J. Couperthwaite, G.A. Ayoko, R.L. Frost, A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides [J]. J. Colloid nterf. Sci.2014,417:356-368.
    [60]Fazeli, S., B. Sohrabi, A.R. Tehrani-Bagha, The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution [J]. Dyes Pigments.2012,95:768-775.
    [61]Silva, L.S., L.C.B. Lima, F.C. Silva, J.M.E. Matos, M.R.M.C. Santos, L.S. Santos Junior, K.S. Sousa, E.C. da Silva Filho, Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol [J]. Chem. Eng. J. 2013,218:89-98.
    [62]Xu, C., W. Tang, J. Du, A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers:A case study [J]. Carbohydr. Polym.2014,102:808-812.
    [63]Zhang, Y.-R., S.-Q. Wang, S.-L. Shen, B.-X. Zhao, A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition [J]. Chem. Eng. J.2013,233:258-264.
    [64]Padilla-Ortega, E., R. Leyva-Ramos, J. Mendoza-Barron, Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite [J]. Appl. Clay Sci.2014,88-89:10-17.
    [65]Sui, M., Y. Zhou, L. Sheng, B. Duan, Adsorption of norfloxacin in aqueous solution by Mg-Al layered double hydroxides with variable metal composition and interlayer anions [J]. Chem. Eng. J.2012,210:451-460.
    [66]Yoon, I.-H., X. Meng, C. Wang, K.-W. Kim, S. Bang, E. Choe, L. Lippincott, Perchlorate adsorption and desorption on activated carbon and anion exchange resin [J]. J. Hazard. Mater.2009,164:87-94.
    [67]白爱敏,我国农村水环境污染防治制度研究[D].郑州大学硕士学位论文.2011.
    [68]Park, J.-Y, H.-J. Byun, W.-H. Choi, W.-H. Kang, Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic waste water [J]. Chemosphere.2008,70:1429-1437.
    [69]Wu, S.-f, L.-h. Wu, Q.-w. Shi, Z.-q. Wang, X.-y. Chen, Y.-s. Li, Effects of a new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils [J]. Jf Environ. Sci.2007,19:841-847.
    [70]杨桢奎编译,水域的富营养化及其防治对策[J].北京:中国环境科学出版社.1989,71-73.
    [71]张绍浩,富营养化湖泊藻类控制技术比较及新方法的研究[D].华中科技大学硕士学位论文.2006.
    [72]王国祥,,成小英,,濮培民,湖泊藻型富营养化控制——技术、理论及应用.湖泊科学.2002,3:273-282.
    [73]唐光临,焦化废水亚硝化反硝化生物脱氮的研究[D].重庆大学博士学位论文.2002.
    [74]王毓仁,化肥厂含氮废水的生物硝化处理试验[J].化工环保.1995,136-140.
    [75]Bucholc, K., M. Szymczak-Zyla, L. Lubecki, A. Zamojska, P. Hapter, E. Tjernstrom, G. Kowalewska, Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production [J]. Sci. Total Environ.2014,473-474:298-307.
    [76]Monteagudo, L., J.L. Moreno, F. Picazo, River eutrophication:Irrigated vs. non-irrigated agriculture through different spatial scales [J]. Water Res.2012,46: 2759-2771.
    [77]Bryan, N.S., H. van Grinsven, Chapter Three-The Role of Nitrate in Human Health [B], in:L.S. Donald (Ed.) Advances in Agronomy, Academic Press,2013, pp. 153-182.
    [78]Cockburn, A., C.W. Heppner, J.L.C.M. Dome, Environmental Contaminants: Nitrate and Nitrite [B], in:Y. Motarjemi (Ed.) Encyclopedia of Food Safety, Academic Press, Waltham,2014, pp.332-336.
    [79]Du, S.-t., Y.-s. Zhang, X.-y. Lin, Accumulation of Nitrate in Vegetables and Its Possible Implications to Human Health [J]. Agr. Sci. China.2007,6:1246-1255.
    [80]Tedd, K.M., C.E. Coxon, B.D.R. Misstear, D. Daly, M. Craig, A. Mannix, N.H.H. Williams, An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate:A case study from the southeast of Ireland [J]. Sci. Total Environ. 2014,476-477:460-476.
    [81]Cockburn, A., C.W. Heppner, J.L.C.M. Dome, Environmental Contaminants: Nitrate and Nitrite [B], in:Y. Motarjemi (Ed.) Encyclopedia of Food Safety, Academic Press, Waltham,2014, pp.332-336.
    [82]曹承进,秦延文,郑丙辉,黄民生,三峡水库主要入库河流磷营养盐特征及其来源分析.环境科学.2008,2:310-314.
    [83]国家环保局,中国环境状况公报.北京:国家环保局2009, 11-18.
    [84]Lurling, M., G. Waajen, F. van Oosterhout, Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication [J]. Water Res.2014,54:78-88.
    [85]van Dijk, H.W.J., W.T. de Groot, Eutrophication of a coastal dune area by artificial infiltration [J]. Water Res.1987,21:11-18.
    [86]赵不凋,刘柏朱,卢晓芳,李大,唐海,彭懿明,水体富营养化的形成、危害和防治[J].安徽农学通报.2007,17:51-53.
    [87]奚姝,河道富营养化原位生态修复工程技术研究[D].浙江大学硕士学位论文.2012.
    [88]蔡亚岐,史亚利,张萍,牟世芬,江桂斌,高氯酸盐的环境污染问题[J].化学进展.2006,11:1554-1564.
    [89]Baidas, S., B. Gao, X. Meng, Perchlorate removal by quaternary amine modified reed [J]. J.Hazard. Mater.2011,189:54-61.
    [90]Im, J.-K., H.-S. Son, K.-D. Zoh, Perchlorate removal in FeO/H20 systems: Impact of oxygen availability and UV radiation [J]. J. Hazard. Mater.2011,192: 457-464.
    [91]Parker, D.R., A.L. Seyfferth, B.K. Reese, Perchlorate in groundwater:A synoptic survey of "Pristine" sites in the coterminous United States Environ. Sci. Technol.2008, 48:1466-1471.
    [92]2008-08-15, Proposed public health goal for perchlorate, in:[EB/OL] (Ed.), Office of Environmental Health Hazard Assessment,2005.
    [93]陈桂葵,孟凡静,骆世明,黎华寿,高氯酸盐环境行为与生态毒理研究进展[J].生态环境.2008,6:2503-2510.
    [94]蔡贤雷,谢寅峰,刘伟龙,邓伟,高氯酸盐污染及修复的研究进展[J].生态学报.2008,11:5592-5600.
    [95]刘勇建,牟世芬,林爱武,崔建华,杜兵,北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究[J].环境科学.2004,2:51-55.
    [96]Baier-Anderson, C., Risk assessment, remedial decisions and the challenge to protect public health:The perchlorate case study [J]. Analy. Chim. Acta.2006,567: 13-19.
    [97]Gan, Z., H. Sun, R. Wang, Y. Deng, Occurrence and exposure evaluation of perchlorate in outdoor dust and soil in mainland China [J]. Sci. Total Environ.2014, 470-471:99-106.
    [98]Steinmaus, C., M.D. Miller, L. Cushing, B.C. Blount, A.H. Smith, Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007-08 [J]. Environ. Res.2013,123: 17-24.
    [99]Kirk, A.B., J.V. Dyke, S.-I. Ohira, P.K. Dasgupta, Relative source contributions for perchlorate exposures in a lactating human cohort [J]. Sci. The Total Environ. 2013,443:939-943.
    [100]Kirk, A.B., M. Kroll, J.V. Dyke, S.-I. Ohira, R.A. Dias, P.K. Dasgupta, Perchlorate, iodine supplements, iodized salt and breast milk iodine content [J]. Sci. Total Environ.2012,420:73-78.
    [101]Wang, Y., L. Jin, M.A. Deshusses, M.R. Matsumoto, The effects of various amendments on the biostimulation of perchlorate reduction in laboratory microcosm and flowthrough soil columns [J]. Chem. Eng. J.2013,232:388-396.
    [102]Gueguen, F., P. Stille, M. Lahd Geagea, R. Boutin, Atmospheric pollution in an urban environment by tree bark biomonitoring-Part I:Trace element analysis [J]. Chemosphere.2012,86:1013-1019.
    [103]Lu, X., X. Zhang, L.Y. Li, H. Chen, Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China [J]. Environ. Res.2014,128:27-34.
    [104]Mandiwana, K.L., T. Resane, N. Panichev, P. Ngobeni, The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution [J]. J. Hazard. Mater. 2006,137:1241-1245.
    [105]Pan, J.-j., J. Jiang, R.-k. Xu, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar [J]. Chemosphere.2014,101: 71-76.
    [106]Xu, H.-y., Z.-h. Yang, G.-m. Zeng, Y.-l. Luo, J. Huang, L.-k. Wang, P.-p. Song, X. Mo, Investigation of pH evolution with Cr(VI) removal in electrocoagulation process:Proposing a real-time control strategy [J]. Chem. Eng. J.2014,239:132-140.
    [107]Blaney, L.M., S. Cinar, A.K. SenGupta, Hybrid anion exchanger for trace phosphate removal from water and waste water [J]. Water Res.2007,41:1603-1613.
    [108]Han, Q., W. Dong, H. Wang, T. Liu, F. Sun, Y. Ying, X. Yan, Effects of coexisting anions on decolorization of azo dye X-3B by ferrate(VI) and a comparative study between ferrate(VI) and potassium [J]permanganate. Sep. Purif. Technol.2013, 108:74-82.
    [109]Keranen, A., T. Leiviska, B.-Y. Gao, O. Hormi, J. Tanskanen, Preparation of novel anion exchangers from pine sawdust and bark, spruce bark, birch bark and peat for the removal of nitrate [J]. Chem. Eng. Sci.2013,98:59-68.
    [110]Sengupta, S., A. Pandit, Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer [J]. Water Res.2011,45: 3318-3330.
    [111]杨德成,Pd-Cu/TiO2催化还原水中的硝酸根和亚硝酸根[D].南开大学硕士学位论文.2011.
    [112]王颖,辛杰,李雪,阮爱东,化学催化还原地下水中硝酸盐的研究进展[J].水处理技术.2010,7:14-19.
    [113]马艳娜,化学除磷强化A~2/O工艺脱氮除磷试验研究[D].郑州大学硕士学位论文.2013.
    [114]王文超,张华,张欣;,化学除磷在城市污水处理中的应用[J].水科学与工程技术.2008,1:14-16.
    [115]谢瑞文,含Cr(Ⅵ)电镀废水处理研究进展[J].生态科学.2006,3:285-288.
    [116]Barrera-Diaz, C., V. Lugo-Lugo, G. Roa-Morales, R. Natividad, S.A. Martinez-Delgadillo, Enhancing the electrochemical Cr(Ⅵ) reduction in aqueous solution [J]. J. Hazard. Mater.2011,185:1362-1368.
    [117]Velazquez-Pena, S., I. Linares-Hernandez, V. Martinez-Miranda, C. Barrera-Diaz, B. Bilyeu, Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(Ⅵ) using boron-doped diamond electrodes [J]. Fuel. 2013,110:12-16.
    [118]Barrera-Diaz, C.E., V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction. J. Hazard. Mater.2012,223-224:1-12.
    [119]Barrera-Diaz, C.E., V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction [J]. J. Hazards Mater.2012,223-224:1-12.
    [120]Lugo-Lugo, V., C. Barrera-Diaz, B. Bilyeu, P. Balderas-Hernandez, F. Urefia-Nunez, V. Sanchez-Mendieta, Cr(Ⅵ) reduction in wastewater using a bimetallic galvanic reactor [J]. J. Hazard. Mater.2010,176:418-425.
    [121]Mukhopadhyay, B., J. Sundquist, R.J. Schmitz, Removal of Cr(Ⅵ) from Cr-contaminated groundwater through electrochemical addition of Fe(Ⅱ) [J]. J. Environ. Manage.2007,82:66-76.
    [122]Hosseini, S.M., S.S. Madaeni, A.R. Heidari, A.R. Moghadassi, Preparation and characterization of polyvinyl chloride/styrene butadiene rubber blend heterogeneous cation exchange membrane modified by potassium perchlorate [J]. Desalination.2011, 279:306-314.
    [123]Dukhin, S.S., N.A. Mishchuk, Intensification of electrodialysis based on electroosmosis of the second kind [J]. J. Membr. Sci.1993,79:199-210.
    [124]Li, L., N. Liu, B. McPherson, R. Lee, Influence of counter ions on the reverse osmosis through MFI zeolite membranes:implications for produced water desalination [J]. Desalination.2008,228:217-225.
    [125]Ahmadiannamini, P., X. Li, W. Goyens, B. Meesschaert, I.F.J. Vankelecom, Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation [J]. J. Membr. Sci.2010,360:250-258.
    [126]Mao, F., G. Zhang, J. Tong, T. Xu, Y. Wu, Anion exchange membranes used in diffusion dialysis for acid recovery from erosive and organic solutions [J]. Sep. Purif. echnol.2014,122:376-383.
    [128]Bilad, M.R., P. Declerck, A. Piasecka, L. Vanysacker, X. Yan, I.F.J. Vankelecom, Development and validation of a high-throughput membrane bioreactor (HT-MBR). J. Membr. Sci.2011,379:146-153.
    [129]肖景霓,膜生物反应器强化除磷脱氮性能研究[D].大连理工大学博士学位论文.2007.
    [130]李志东,李娜,张洪林,膜生物反应器(MBR)处理废水的研究进展[J].净水技术.2007,1:18-22.
    [131]Yoon, S.H., H.S. Kim, J.K. Park, H. Kim, J.Y. Sung, Influence of important operational parameters on performance of a membrane biological reactor. Water Sci. Technol.2000,41:235-242.
    [132]Buisson, H., P. Cote, M. Praderie, H. Paillard, The use of immersed membranes for upgrading wastewater treatment plants. Water Sci. Technol.1998,37:89-95.
    [133]Ansola, G, P. Arroyo, L.E. Saenz de Miera, Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands [J]. Sci. Total Environ.2014,473-474:63-71.
    [134]Horn, T.B., F.V. Zerwes, L.T. Kist, E.L. Machado, Constructed wetland and photocatalytic ozonation for university sewage treatment [J]. Ecol. Eng.2014,63: 134-141.
    [135]Hamaamin, Y.A., U. Adhikari, A.P. Nejadhashemi, T. Harrigan, D.M. Reinhold, Modeling Escherichia coli removal in constructed wetlands under pulse loading [J]. Water Res..2014,50:441-454.
    [136]Vymazal, J., Emergent plants used in free water surface constructed wetlands:A review [J]. Ecol. Eng.2013,61, Part B:582-592.
    [137]Nzengung, V.A., C.H. Wang, G. Harvey, Plant-mediated transformation of perchlorate into chloride. Environ. Sci. Technol.1999,33:1470-1478.
    [138]黄世臣,李熙英,王娟,高效吸附铬的菌株筛选及优化条件.东北林业大学学报.2010,38:105-106.
    [139]Figueiredo, M.C., J. Solla-Gullon, F.J. Vidal-Iglesias, V. Climent, J.M. Feliu, Nitrate reduction at Pt(1 0 0) single crystals and preferentially oriented nanoparticles in neutral media [J]. Cata. Today.2013,202:2-11.
    [140]Jurzik, L., I.A. Hamza, W. Puchert, K. Oberla, M. Wilhelm, Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water [J]. Int. J. Hyg. Environ. Health.2010,213:210-216.
    [141]Wu, S.-f, L.-h. Wu, Q.-w. Shi, Z.-q. Wang, X.-y. Chen, Y.-s. Li, Effects of a new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils [J]. J. Environ. Sci.2007,19:841-847.
    [142]Andalib, M., G. Nakhla, E. McIntee, J. Zhu, Simultaneous denitrification and methanogenesis (SDM):Review of two decades of research [J]. Desalination.2011, 279:1-14.
    [143]Schwientek, M., F. Einsiedl, W. Stichler, A. Stogbauer, H. Strauss, P. Maloszewski, Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system [J]. Chem. Geol.2008,255:60-67.
    [144]Zhang, Z., Y. Li, S. Chen, S. Wang, X. Bao, Simultaneous nitrogen and carbon removal from swine digester liquor by the Canon process and denitrification [J]. Bioresour. Technol.2012,114:84-89.
    [145]Karanasios, K.A., I.A. Vasiliadou, S. Pavlou, D.V. Vayenas, Hydrogenotrophic denitrification of potable water:A review [J]. J. Hazard. Mater.2010,180:20-37.
    [146]Kortstee, G.J.J., K.J. Appeldoorn, C.F.C. Bonting, E.W.J. van Niel, H.W. van Veen, Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal [J]. FEMS Microbiol. Rev.1994,15:137-153.
    [147]Wong, P.Y., K.Y. Cheng, A.H. Kaksonen, D.C. Sutton, M.P. Ginige, A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms [J]. Water Res.2013,47:6488-6495.
    [148]Bardiya, N., J.-H. Bae, Dissimilatory perchlorate reduction:A review [J]. Microbiol. Res.2011,166:237-254.
    [149]Ye, L., H. You, J. Yao, H. Su, Water treatment technologies for perchlorate:A review [J]. Desalination.2012,298:1-12.
    [150]Sun, Y, Q. Yue, B. Gao, B. Wang, Q. Li, L. Huang, X. Xu, Comparison of activated carbons from Arundo donax Linn with H4P2O7 activation by conventional and microwave heating methods [J]. Chem. Eng. J.2012,192:308-314.
    [151]Xu, X., B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, Q. Li, Nitrate adsorption by stratified wheat straw resin in lab-scale columns [J]. Chem. Eng. J.2013,226:1-6.
    [152]Xu, X., B. Gao, Q. Yue, Q. Li, Y. Wang, Nitrate adsorption by multiple biomaterial based resins:Application of pilot-scale and lab-scale products [J]. Chem. Eng. J.I.2013,234:397-405.
    [153]Zhong, Q.-Q., Q.-Y Yue, B.-Y. Gao, Q. Li, X. Xu, A novel amphoteric adsorbent derived from biomass materials:Synthesis and adsorption for Cu(II)/Cr(VI) in single and binary systems [J]. Chem. Eng. J.2013,229:90-98.
    [154]Zhong, Q.-Q., Q.-Y. Yue, Q. Li, X. Xu, B.-Y. Gao, Preparation, characterization of modified wheat residue and its utilization for the anionic dye removal [J]. Desalination.2011,267:193-200.
    [155]Mahmudov, R., C.P. Huang, Perchlorate removal by activated carbon adsorption. Sep. Purif. Technol.2010,70:329-337.
    [156]Park, H.-J., C.-K. Na, Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. J. Colloid Interf. Sci.2006,301:46-54.
    [157]Xu, X., B.-Y. Gao, Q.-Y. Yue, Q.-Q. Zhong, Preparation of agricultural by-product based anion exchanger and its utilization for nitrate and phosphate removal [J]. Bioresour. Technol.2010,101:8558-8564.
    [158]Wartelle, L.H., W.E. Marshall, Quaternized agricultural by-products as anion exchange resins [J]. J. Environ. Manage.2006,78:157-162.
    [159]彭锋,农林生物质半纤维素分离纯化、结构表征及化学改性的研究[D].华南理工大学博士学位论文.2010.
    [160]Trache, D., A. Donnot, K. Khimeche, R. Benelmir, N. Brosse, Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres [J]. Carbohydr. Polym.2014,104:223-230.
    [161]Sharma, P.R., A.J. Varma, Functionalized celluloses and their nanoparticles: Morphology, thermal properties, and solubility studies [J]. Carbohydr. Polym.2014, 104:135-142.
    [162]蒋国良,袁超,史景钊,褚伟,王淮东,生物质转化技术与应用研究进展[J].河南农业大学学报.2005,39:464-471.
    [163]Nomiyama, T., N. Aihara, A. Chitose, M. Yamada, S. Tojo, Chapter 2-Biomass as Local Resource [B], in:S. Tojo, T. Hirasawa (Eds.) Research Approaches to Sustainable Biomass Systems, Academic Press, Boston,2014, pp.7-17.
    [164]Qian, E.W., Chapter 7-Pretreatment and Saccharification of Lignocellulosic Biomass[B], in:S. Tojo, T. Hirasawa (Eds.) Research Approaches to Sustainable Biomass Systems, Academic Press, Boston,2014, pp.181-204.
    [165]Umar, M.S., P. Jennings, T. Urmee, Generating renewable energy from oil palm biomass in Malaysia:The Feed-in Tariff policy framework [J]. Biomass Bioenergy. 2014,62:37-46.
    [166]Nguyen, H.T., E. Yoda, M. Komiyama, Catalytic supercritical water gasification of proteinaceous biomass:Catalyst performances in gasification of ethanol fermentation stillage with batch and flow reactors [J]. Chem. Eng. Sci.2014,109: 197-203.
    [167]Singh, R., A. Shukla, S. Tiwari, M. Srivastava, A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential [J]. Renew. Sustain. En. Rev.2014,32:713-728.
    [168]Scherer, P., L. Neumann, B. Demirel, O. Schmidt, M. Unbehauen, Long term fermentation studies about the nutritional requirements for biogasification of fodder beet silage as mono-substrate[J]. Biomass Bioenergy.2009,33:873-881.
    [169]Gilbert, P., P. Thornley, A.B. Riche, The influence of organic and inorganic fertiliser application rates on UK biomass crop sustainability[J]. Biomass Bioenergy. 2011,35:1170-1181.
    [170]Seleiman, M.F., A. Santanen, S. Jaakkola, P. Ekholm, H. Hartikainen, F.L. Stoddard, P.S.A. Makela, Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers [J]. Biomass Bioenergy.2013,59:477-485.
    [171]Witek-Krowiak, A., R.G Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent [J]. Desalination. 2011,265:126-134.
    [172]Suzuki, Y., T. Kametani, T. Maruyama, Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent [J]. Water Res.2005,39: 1803-1808.
    [173]Pavan, F.A., I.S. Lima, E.C. Lima, C. Airoldi, Y. Gushikem, Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions [J]. J. Hazard. Mater.2006,137:527-533.
    [174]Mishra, PC., R.K. Patel, Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium [J]. J. Environ. Manage.2009,90:519-522.
    [175]Bhatnagar, A., M. Sillanpaa, A review of emerging adsorbents for nitrate removal from water [J]. Chem. Eng. J.2011,168:493-504.
    [176]Orlando, U.S., T. Okuda, A.U. Baes, W. Nishijima, M. Okada, Chemical properties of anion-exchangers prepared from waste natural materials [J]. React. Funct. Polym.2003,55:311-318.
    [177]Orlando, U.S., A.U. Baes, W. Nishijima, M. Okada, Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity [J]. Chemosphere.2002,48:1041-1046.
    [178]Acharya, J., J.N. Sahu, B.K. Sahoo, C.R. Mohanty, B.C. Meikap, Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride [J]. Chem. Eng. J.2009,150:25-39.
    [179]Budinova, T., D. Savova, B.Tsyntsarski, C.O. Ania, B. Cabal, J.B. Parra, N. Petrov, Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions [J]. Appl. Surf. Sci.2009,255:4650-4657.
    [180]Mohan, D., C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents-A critical review [J]. J. Hazard. Mater.2007,142:1-53.
    [181]Kihc, M., E. Apaydin-Varol, A.E. Piitun, Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnC12, K2CO3, NaOH and H3PO4 [J]. Appl. Surf. Sci.2012,261:247-254.
    [182]Nabais, J.V., P. Carrott, M.M.L. Ribeiro Carrott, V. Luz, A.L. Ortiz, Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor:The coffee endocarp [J]. Bioresour.Technol.2008,99: 7224-7231.
    [183]Orlando, U.S., T. Okuda, A.U. Baes, W. Nishijima, M. Okada, Chemical properties of anion-exchangers prepared from waste natural materials. React. Funct. Polym.2003,55:311-318.
    [184]Orlando, U.S., A.U. Baes, W. Nishijima, M. Okada, A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials [J]. Bioresour. Technol.2002,83:195-198.
    [185]Anirudhan, T.S., M.R. Unnithan, Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery [J]. Chemosphere.2007,66:60-66.
    [186]Park, D., Y.-S. Yun, J.M. Park, Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp [J]. Chemosphere.2005,60:1356-1364.
    [187]Paudyal, H., B. Pangeni, K. Nath Ghimire, K. Inoue, K. Ohto, H. Kawakita, S. Alam, Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water [J]. Chem. Eng. J.2012,195-196: 289-296.
    [188]Paudyal, H., B. Pangeni, K. Inoue, H. Kawakita, K. Ohto, K.N. Ghimire, H. Harada, S. Alam, Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue [J]. Chem. Eng. J.2013,223:844-853.
    [189]Liu, J., Q. Zhou, J. Chen, L. Zhang, N. Chang, Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chem. Eng. J.2013,215-216: 859-867.
    [190]Zhang, L., Q. Zhou, J. Liu, N. Chang, L. Wan, J. Chen, Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber [J]. Chem. Eng. J.2012,185-186: 160-167.
    [191]王琰琰,磁性玉米秸秆对两种碱性染料的吸附研究[D].四川大学硕士学位论文.2011.
    [192]Hassan, M.L., N.F. Kassem, A.H. Abd El-Kader, Novel Zr(IV)/Sugar Beet Pulp Composite for Removal of Sulfate and Nitrate Anions [J]. J. Appl. Polym. Sci.2010, 117:2205-2212.
    [193]Namasivayam, C., W.H. Holl, Quaternized biomass as an anion exchanger for the removal of nitrate and other anions from water [J]. J. Chem. Technol. Biotechnol. 2005,80:164-168.
    [194]Anirudhan, T.S., T.A. Rauf, S.R. Rejeena, Removal and recovery of phosphate ions from aqueous solutions by amine functionalized epichlorohydrin-grafted cellulose [J]. Desalination.2012,285:277-284.
    [195]Xu, X., B. Gao, Q. Yue, Q. Zhong, Sorption of phosphate onto giant reed based adsorbent:FTIR, Raman spectrum analysis and dynamic sorption/desorption properties in filter bed [J]. Bioresour. Technol.2011,102:5278-5282.
    [196]Yao, R., F. Meng, L. Zhang, D. Ma, M. Wang, Defluoridation of water using neodymium-modified chitosan [J]. J. Hazard. Mater.2009,165:454-460.
    [197]Mulinari, D.R., T.G. Cruz, M.O.H. Cioffi, H J.C. Voorwald, M.L.C.P. Da Silva, G.J.M. Rocha, Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride [J]. Carbohydr. Res.2010,345:1865-1871.
    [198]Ho, Y.S., Adsorption characteristics of zinc-cyanide complexes by waste brewery biomass [J]. J. Ind. Eng. Chemi.2005,11:478-479.
    [199]Gupta, N., C. Balomajumder, V.K. Agarwal, Adsorption of cyanide ion on pressmud surface:A modeling approach [J]. Chem. Eng. J.2012,191:548-556.
    [200]Dai, X., M.I. Jeffrey, P.L. Breuer, A mechanistic model of the equilibrium adsorption of copper cyanide species onto activated carbon [J]. Hydrometallurgy. 2010,101:99-107.
    [201]Yazici, E.Y., H. Deveci, I. Alp, Treatment of cyanide effluents by oxidation and adsorption in batch and column studies [J]. J. Hazard. Mater.2009,166:1362-1366.
    [202]Park, D., Y.-S. Yun, H.W. Lee, J.M. Park, Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures [J]. Bioresour.Technol.2008, 99:1141-1147.
    [203]Park, D., S.-R. Lim, Y.-S. Yun, J.M. Park, Development of a new Cr(VI)-biosorbent from agricultural biowaste [J]. Bioresour. Technol.2008,99: 8810-8818.
    [204]Chen, S., Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk:A fixed-bed column study [J]. Bioresour. Technol.2012,113:114-120.
    [205]Sharma, D.C., C.F. Forster, A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents [J]. Bioresour. Technol.1994,47: 257-264.
    [206]Raji, C., T.S. Anirudhan, Batch Cr(VI) removal by polyacrylamide-grafted sawdust:Kinetics and thermodynamics [J]. Water Res.1998,32:3772-3780.
    [207]Boddu, V.M., K. Abburi, J.L. Talbott, E.D. Smith, R. Haasch, Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent [J]. Water Res.2008,42:633-642.
    [208]麻芳,曲荣君,孙昌梅,张盈,纪春暖,李秀勇,阮新,生物吸附材料吸附水中砷的研究进展[J].离子交换与吸附.2010,2.
    [209]Robinson, T., B. Chandran, P. Nigam, Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk [J]. Environ. Int.2002,28:29-33.
    [210]Robinson, T., B. Chandran, P. Nigam, Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw [J]. Water Res.2002,36: 2824-2830.
    [211]Gong, R., Y. Sun, J. Chen, H. Liu, C. Yang, Effect of chemical modification on dye adsorption capacity of peanut hull [J]. Dyes Pigments.2005,67:175-181.
    [212]Amrane, A., M. Chabani, A. Bensmaili, Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem. Eng. J.2006,125:111-117.
    [213]Patel, A., G. Zuo, S.G. Lehman, M. Badruzzaman, D.A. Clifford, D.J. Roberts, Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate[J]. Water Res.2008,42:4291-4298.
    [214]Cai, J., L. Aimin, S. Hongyan, F. Zhenghao, L. Chao, Z. Quanxing, Equilibrium and kinetic studies on the adsorption of aniline compounds from aqueous phase onto bifunctional polymeric adsorbent with sulfonic groups [J]. Chemosphere.2005,61: 502-509.
    [215]韩永忠,韩丽,陈金龙,吸附硝基苯酚的超高交联树脂微波辅助再生研究[J].环境科学与技术.2006,6:34-36.
    [216]Manju, G.N., C. Raji, T.S. Anirudhan, Evaluation of coconut husk carbon for the removal of arsenic from water[J]. Water Res.1998,32:3062-3070.
    [217]曹威,改性稻草去除水中S042-和Cr(Ⅵ)的特性和机理研究[D].华南理工大学博士学位论文.2012.
    [218]谭心,改性农作物秸秆吸附联用生物还原去除水体中高氯酸根的效果研究[D].山东大学硕士学位论文.2013.
    [219]Tan, X., B. Gao, X. Xu, Y. Wang, J. Ling, Q. Yue, Q. Li, Perchlorate uptake by wheat straw based adsorbent from aqueous solution and its subsequent biological regeneration [J]. Chem. Eng. J.2012,211-212:37-45.
    [220]Nor, S.J., S.H. Lee, K.-S. Cho, D.K. Cha, K.I. Lee, H.W Ryu, Microbial treatment of high-strength perchlorate wastewater. Bioresource Technology.2011,102: 835-841.
    [221]Wang, C, L. Lippincott, X. Meng, Kinetics of biological perchlorate reduction and pH effect. J Hazard Mater.2008,153:663-669.
    [222]Gao, B.-Y., X. Xu, Y. Wang, Q.-Y Yue, X.-M. Xu, Preparation and characteristics of quaternary amino anion exchanger from wheat residue [J]. J. Hazard. Mater.2009,165:461-468.
    [223]Xu, X., B. Gao, Y. Zhao, S. Chen, X. Tan, Q. Yue, J. Lin, Y. Wang, Nitrate removal from aqueous solution by Arundo donax L. reed based anion exchange resin [J]. Journal of Hazardous Materials.2012,203-204:86-92.
    [224]Xu, X., B. Gao, X. Tan, X. Zhang, Q. Yue, Y Wang, Q. Li, Nitrate adsorption by stratified wheat straw resin in lab-scale columns [J]. Chemical Engineering Journal. 2013,226:1-6.
    [225]许醒,麦草阴离子吸附剂的研制及对磷酸根的吸附性能研究[D].山东大学.2009.
    [226]施来顺,郭波,赵亚牛,郭之宁,环氧丙基三乙基氯化胺中间体的合成研究[J].石油沥青.2005,19:15-18.
    [227]王宇,利用农业秸秆制备阴离子吸附剂及其性能的研究[D].山东大学.2007.
    [228]Wang, Y.-F., B.-Y. Gao, Q.-Y. Yue, Y. Wang, Z.-L. Yang, Removal of acid and direct dye by epichlorohydrin-dimethylamine:Flocculation performance and floc aggregation properties [J]. Bioresour. Technol.2012,113:265-271.
    [229]Liu, Z.-T., Y Yang, L. Zhang, P. Sun, Z.-W. Liu, J. Lu, H. Xiong, Y Peng, S. Tang, Study on the performance of ramie fiber modified with ethylenediamine [J]. Carbohydr. Polym.2008,71:18-25.
    [230]Bicaak, N., B. Filiz nkal, Removal of nitrite ions from aqueous solutions by cross-linked polymer of ethylenediamine with epichlorohydrin [J]. React. Funct. Polym.1998,36:71-77.
    [231]Yang, Z., B. Gao, Y. Wang, X. Liu, Q. Yue, Synthesis and application of polyferric chloride-poly (epichlorohydrin-dimethylamine) composites using different crosslinkers [J]. Chem. Eng. J.2012,213:8-15.
    [232]Liu, Y, X. Sun, B. Li, Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells [J]. Carbohydr. Polym.2010,81:335-339.
    [233]Wang, W.-Y, Q.-Y. Yue, X. Xu, B.-Y. Gao, J. Zhang, Q. Li, J.-T. Xu, Optimized conditions in preparation of giant reed quaternary amino anion exchanger for phosphate removal [J]. Chem. Eng. J.2010,157:161-167.
    [234]Ergudenler, A., A.E. Ghaly, A comparative study on the thermal decomposition of four cereal straws in an oxidizing atmosphere [J]. Bioresour. Technol.1994,50: 201-208.
    [235]Wang, C., F. Wang, Q. Yang, R. Liang, Thermogravimetric studies of the behavior of wheat straw with added coal during combustion [J]. Biomass Bioenergy. 2009,33:50-56.
    [236]Ghaffar, S.H., M. Fan, Structural analysis for lignin characteristics in biomass straw [J]. Biomass Bioenergy.2013,57:264-279.
    [237]Hasan Khan Tushar, M.S., N. Mahinpey, A. Khan, H. Ibrahim, P. Kumar, R. Idem, Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw [J]. Biomass Bioenergy.2012,37:97-105.
    [238]Xu, X., B. Gao, X. Tan, X. Zhang, D. Yue, Q. Yue, Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk [J]. Carbohydr. Polym.2013,98: 132-138.
    [239]Xu, X., B.-Y. Gao, X. Tang, Q.-Y. Yue, Q.-Q. Zhong, Q. Li, Characteristics of cellulosic amine-crosslinked copolymer and its sorption properties for Cr(VI) from aqueous solutions [J]. J. Hazard. Mater.2011,189:420-426.
    [240]Xu, X., B.-Y. Gao, Q.-Y. Yue, Q.-Q. Zhong, X. Zhan, Preparation, characterization of wheat residue based anion exchangers and its utilization for the phosphate removal from aqueous solution [J]. Carbohydr. Polym.2010,82: 1212-1218.
    [241]Xu, X., Y. Gao, B. Gao, X. Tan, Y.-Q. Zhao, Q. Yue, Y. Wang, Characteristics of diethylenetriamine-crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate [J]. J. Hazard. Mater.2011,192:1690-1696.
    [242]Pehlivan, E., T. Altun, S. Parlayici, Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution [J]. Food Chem.2012, 135:2229-2234.
    [243]Zhang, W, C. Li, M. Liang, Y. Geng, C. Lu, Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+from aqueous solution [J]. J. Hazard. Mater.2010,181:468-473.
    [244]Chen, L., F. Hong, X.-x. Yang, S.-f. Han, Biotransformation of wheat straw to bacterial cellulose and its mechanism [J]. Bioresour. Technol.2013,135:464-468.
    [245]Bhattacharya, P., S. Ghosh, A. Mukhopadhyay, Efficiency of combined ceramic microfiltration and biosorbent based treatment of high organic loading composite wastewater:An approach for agricultural reuse [J]. J. Environ. Chem. Eng.2013,1: 38-49.
    [246]Ma, L., Y. Peng, B. Wu, D. Lei, H. Xu, Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution [J]. Chem. Eng. J. 2013,225:59-67.
    [247]Cheng, H.N., L.H. Wartelle, K.T. Klasson, J.C. Edwards, Solid-state NMR and ESR studies of activated carbons produced from pecan shells [J]. Carbon.2010,48: 2455-2469.
    [248]Kavianinia, I., P.G. Plieger, N.G. Kandile, D.R.K. Harding, Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper (Ⅱ) [J]. Carbohydr. Polym.2012,90:875-886.
    [249]Baidas, S., B. Gao, X. Meng, Perchlorate removal by quaternary amine modified reed [J]. J. Hazard. Mater.2011,189:54-61.
    [250]Chen, S., Q. Yue, B. Gao, Q. Li, X. Xu, Preparation and characteristics of anion exchanger from corn stalks [J]. Desalination.2011,274:113-119.
    [251]Venkata Mohan, S., S.V. Ramanaiah, B. Rajkumar, P.N. Sarma, Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation [J]. J. Hazard. Mater.2007,141:465-474.
    [252]Yang, F., H. Liu, J. Qu, J. Paul Chen, Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption [J]. Bioresour.Technol.2011,102:2821-2828.
    [253]Zhang, W., C. Li, M. Liang, Y Geng, C. Lu, Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution [J]. J. Hazard. Materi.2010,181:468-473.
    [254]Garcia-Zubiri, I.X., G. Gonzalez-Gaitano, J.R. Isasi, Sorption models in cyclodextrin polymers:Langmuir, Freundlich, and a dual-mode approach [J]. J. Colloid Interf. Sci.2009,337:11-18.
    [255]Mittal, A., L. Kurup, J. Mittal, Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers [J]. J. Hazard. Mater.2007,146:243-248.
    [256]Chabani, M., A. Amrane, A. Bensmaili, Kinetic modelling of the adsorption of nitrates by ion exchange resin [J]. Chem. Eng. J.2006,125:111-117.
    [257]Chabani, M., A. Amrane, A. Bensmaili, Kinetics of nitrates adsorption on Amberlite IRA 400 resin [J]. Desalination.2007,206:560-567.
    [258]Chabani, M., A. Bensmaili, Kinetic modelling of the retention of nitrates by Amberlite IRA 410 [J]. Desalination.2005,185:509-515.
    [259]Belaid, K.D., S. Kacha, M. Kameche, Z. Derriche, Adsorption kinetics of some textile dyes onto granular activated carbon [J]. J. Environ. Chem. Eng.2013,1: 496-503.
    [260]Hamayun, M., T. Mahmood, A. Naeem, M. Muska, S.U. Din, M. Waseem, Equilibrium and kinetics studies of arsenate adsorption by FePO4 [J]. Chemosphere. 2014,99:207-215.
    [261]Demiral, H., G Gunduzoglu, Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse [J]. Bioresour. Technol.2010,101: 1675-1680.
    [262]Katal, R., M.S. Baei, H.T. Rahmati, H. Esfandian, Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk [J]. J. Ind. Eng. Chem.2012,18:295-302.
    [263]Ghaedi, M., B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon [J]. Chem. Engi. J.2012, 187:133-141.
    [264]Li, Q., Q.-Y. Yue, Y. Su, B.-Y. Gao, H.-J. Sun, Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite [J]. Chem. Eng. J.2010,158:489-497.
    [265]Ma, J., Y. Jia, Y. Jing, Y. Yao, J. Sun, Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite [J]. Dyes Pigments.2012,93: 1441-1446.
    [266]Chen, S.H., Q.Y. Yue, B.Y. Gao, X. Xu, Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J. Colloid Interf. Sci.2010,349:256-264.
    [267]Chen, S.H., Q.Y. Yue, B.Y. Gao, Q. Li, X. Xu, Preparation and characteristics of anion exchanger from corn stalks. Desalination.2011,274:113-119.
    [268]Demirbas, A., Adsorption of Cr(III) and Cr(VI) ions from aqueous solutions on to modified lignin. Energy Sources.2005,27:1449-1455.
    [269]Park, D., S.R. Lim, Y.S. Yun, J.M. Park, Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresour. Technol.2008,99: 8810-8818.
    [270]Xu, X., B.Y. Gao, X. Tan, Q.Y. Yue, Q.Q. Zhong, Q.A. Li, Characteristics of amine-crosslinked wheat straw and its adsorption mechanisms for phosphate and chromium (VI) removal from aqueous solution. Carbohydr. Polym.2011,84: 1054-1060.
    [271]Xu, X., B.Y. Gao, X. Tang, Q.Y. Yue, Q.Q. Zhong, Q. Li, Characteristics of cellulosic amine-crosslinked copolymer and its sorption properties for Cr(VI) from aqueous solutions. J. Hazard. Mater.2011,189:420-426.
    [272]Chen, S.H., Q.Y. Yue, B.Y. Gao, Q. Li, X. Xu, Removal of Cr(VI) from aqueous solution using modified corn stalks:Characteristic, equilibrium, kinetic and thermodynamic study. Chem. Eng. J.2011,168:909-917.
    [273]Chen, S.H., Q.Y. Yue, B.Y. Gao, Q. Li, X. Xu, K.F. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk:A fixed-bed column study. Bioresour. Technol.2012,113:114-120.
    [274]Singh, K.K., S.H. Hasan, M. Talat, V.K. Singh, S.K. Gangwar, Removal of Cr (VI) from aqueous solutions using wheat bran. Chem. Eng. J.2009,151:113-121.
    [275]Bai, R.S., T.E. Abraham, Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res.2002,36:1224-1236.
    [276]Babu, B.V., S. Gupta, Adsorption of Cr(VI) using activated neem leaves:kinetic studies. Adsorption.2008,14:85-92.
    [277]Wu, J., H. Zhang, P.J. He, Q. Yao, L.M. Shao, Cr(VI) removal from aqueous solution by dried activated sludge biomass. J. Hazard. Mater.2010,176:697-703.
    [278]Modrzejewska, Z., W. Sujka, M. Dorabialska, R. Zarzycki, Adsorption of Cr(VI) on cross-linked chitosan beads. Sep. Sci. Technol.2006,41:111-122.
    [279]Raji, C., T.S. Anirudhan, Batch Cr(VI) removal by polyacryl amide-grafted sawdust:Kinetics and thermodynamics. Water Res.1998,32:3772-3780.
    [280]Agarwal, G.S., H.K. Bhuptawat, S. Chaudhari, Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol.2006,97:949-956.
    [281]Niu, H., B. Volesky, Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy.2003,71:209-215.
    [282]Yang, J., M. Yu, T. Qiu, Adsorption thermodynamics and kinetics of Cr(VI) on KIP210 resin [J]. J. Ind. Eng. Chem.2014,20:480-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700