用户名: 密码: 验证码:
弱胶结砂岩油藏出砂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对大量弱胶结砂岩油藏的资料进行了综合分析、对比,建立了以测井资料为依托、岩石力学基本理论为基础、定性和定量地研究地层出砂机理、判别和分析弱胶结砂岩地层出砂趋势的理论模型和方法。定性方面,建立了以测井资料为基本输入资料的、判别和分析弱胶结砂岩地层出砂趋势的线弹性的解析模型,将该方法与现有的、大量应用的“C”公式法进行了对比,结果表明,它比现有的“C”公式法更适用于弱胶结砂岩油藏的出砂判别;定量方面,建立了测井资料为基本输入资料的、定量判别和分析弱胶结砂岩地层出砂趋势的3-D有限元力学模型。利用本文所建立的力学模型和方法可以定性和定量地计算井眼周围易出砂区域,为射孔完井提供依据,延长油井的无砂开采期,而且与现有的有限元模型相比,该有限元模型还同时考虑了重力、温度的影响。
     通过对大量弱胶结砂岩油藏的资料的收集整理、综合分析和对比后,发现,弱胶结砂岩油藏以三角洲相、河流相和冲积扇居多,颗粒分选较差;弱胶结砂岩油藏胶结方式以接触式、孔隙式为主,胶结物主要为泥质,胶结弱,对进入到储集层与之接触的流体敏感;弱胶结砂岩油藏通常埋藏浅,孔隙度、渗透率都较高。
     利用所建立的理论模型和方法从定性和定量两个方面就地应力、油藏压力状态、井眼轨迹,以及射孔方位对弱胶结砂岩油藏出砂的影响进行了研究,结果表明:弱胶结砂岩油藏由于胶结弱、岩石强度低,因此,与固结好的砂岩地层相比,弱胶结砂岩对地层内应力变化十分敏感。无论直井还是斜井,也无论裸眼井还是射孔井,地应力状态对疏松砂岩油藏出砂都有直接影响。由于地应力非均匀性的影响,井眼周围某些方位的地层将遭受较高的压应力集中,而导致该方位地层先于其它方位地层剪切屈服、出砂,而且随着原地水平地应力非均匀程度增加,地层出砂的趋势增大。因此,为了防止地层出砂和延长油井开采寿命,应对井眼轨迹以及射孔完井进行优化设计,既考虑到产能的需要,又考虑到防砂的需要,本文所建立的模型对此有较好的参考价值。
     油藏压力状态对出砂也有重要影响。当地层压力稳定时,提高生产压差,射孔孔眼发生剪切屈服、出砂的趋势增大。随着地层压力衰竭,原来不出砂的地层,也可能出砂,因此,对于可能出砂的地层可用本文对此的研究成果,在开采过程中科学合理地、适时调整开采措施,防止和减少地层出砂的可能性。
    
     摘要
     到目前为止,有关重力对砂岩油藏出砂影响的研究还很少见报道,不多的
    研究通常认为岩体自重对砂岩出砂的影响可以忽略。通过本文的研究表明,在
    研究弱胶结砂岩油藏的出砂时,必须考虑重力的影响。对倾斜井眼或倾斜岩层,
    重力作用将加剧弱胶结地层的出砂,不考虑岩体自重的影响时,有可能过高地
    估计倾斜井眼的稳定性。
     温度变化对地层的出砂的影响在目前所查阅资料中也未见报道。通过本文
    的研究表明,在弱胶结砂岩油藏的开采中应注意温度扰动对出砂的影响,温度
    升高或降低对地层结构稳定性和出砂趋势的影响不同。地层受井筒内流体加热
    作用时,随着温差的增大,井壁及其附近地层压性破坏趋势增大;当井筒内压
    力高于地层压力,地层受并筒内流体冷却作用时,随着温差的增大,井壁张性
    破坏趋势增大。当并筒内压力低于地层压力时,保持井内温度低于地层温度,
    在一定程度上有利于井壁和地层的稳定。因此,在注水开发的油田和热采的油
    田,应密切注意温度扰动应力对地层的影响,以确保油田的合理开采和稳产。
     本文的研究工作表明,测井资料在弱胶结砂岩油藏的出砂机理研究以及出
    砂趋势判别中有着重要的用途和广阔的应用前景。利用测井资料不仅可以获取
    定性和定量研究地层出砂趋势所需的岩石强度、地应力等基本输入参数,分析
    和研究地层的岩性组成和粘土矿物组成,为钻井、完井、生产全过程提供指导,
    而且利用测井资料可以直接判别地层的出砂趋势。
     弱胶结疏松砂岩油藏岩石强度低,井眼周围地层容易塑性变形、原油粘度
    高、沉积环境多样、油藏砂岩颗粒的磨圆度和分选都相对较差,因此,对疏松
    弱胶结砂岩油藏完井过程中应该考虑到所选完井方式对井壁的支撑作用,以及
    对各种粒径地层砂的阻挡作用。
     由于弱胶结砂岩油藏以泥质胶结为主,因此,当钻井、钻井、完井、注水,
    以及各种作业过程中不配伍或配伍性差的工作液进入到储集层后,地层中的粘
    土矿物将不可避免地会与工作液发生相互作用,一方面导致地层渗透率降低,
    另一方面促使岩石强度明显降低。并眼周围岩石强度和渗透率降低的结果最终
    都导致地层的出砂趋势增大,因此,对弱胶结砂岩油藏,应从钻井、完井、生
    产全过程系统地考虑防砂,制定相应的防砂措施。
This paper synthetically analyzed various data about weakly consolidated sand formation, and established theoretical models and methods studying on the sand production mechanism and analyzing the sand production trend for weakly consolidated sand formation qualitatively and quantitatively, which employ logging information as support, and are based on rock mechanics fundamental theories. In the qualitative area, the linear-elastic analytical model was established, which employed the logging data as the input one, and by which the sand production trend can be judged and analyzed. Compared with the current and comprehensively used "C" formula method , the results indicated that the "C" formula method is not suitable for the judgement of sand production of weakly consolidated sand formation. In the quantitative area, the 3-Dfinite element mechanical model analyzing the sand production trend for weakly consolidated sand formation was established quantitatively, which employed the logging data as the input one too
    . By using of the models and methods established in this paper, the sand production area surrounding borehole can be qualitatively and quantitatively calculated, which is the basis for the perforation completion, and delays the non-sand production period of oil wells, compared with the finite element method currently used, the 3-Dfinite element model also considered the effect of gravity and temperature.
    Through collection, analysis and comparing large amount data about weakly consolidated sand formation, we get that most weakly consolidated reservoirs are delta facies, fluvial facies and alluvial fan, and the separating and collection of particles are not good enough, and the consolidating manners of weakly consolidated sand reservoirs mainly are contacting and pore consolidating methods, and the cement is clay mainly, so it is sensitive to the fluid entering into formation .as for weakly consolidated formation, it is usually buried relatively shallow, and has high porosity and permeability.
    By using of the theoretical models established in this paper, the effects of in-situ stresses, reservoir pressure, well trajectory and perforation orientation on sand production of weakly consolidated sand formation were studied qualitatively and quantitatively. The results indicated that weakly consolidated sand formation, compared with well consolidated one, is sensitive to the change of stress in formation, owing to its weakly consolidated and low intensity formation, whether vertical well or deviated well, whether open hole or perforated hole, the in-situ stresses will directly influence the sand production of loose sand formation. Because of the
    
    
    Abstract
    heterogeneous of in-situ stress, some area around borehole will suffer much higher stress than other area, which even leads to shear yield and sand production in the area prior to other area , and the more heterogeneous of in-situ stress, the more sand production. So, in order to prevent from sand production and delay the span of production for oil wells, the well trajectory and perforation completion should be optimized, considering the requirement of production capacity and sand prevention. -
    Reservoir pressure also affects sand production, when reservoir pressure keep constant, increasing production pressure difference, the trend of shear yield and sand production of perforation hole will increase. With the depletion of reservoir pressure, the formation that does not produce sand originally may produce sand. So for the formation which may possibly produce sand , scientific and reasonable production method ought to be applied, and the production method also should be adjusted appropriately, so as to decrease the possibility of sand production.
    Up to now, there is little report on the effect of gravity on sand production, some research suggested that the effect of gravity on sand production can be ignored. The results in this paper indicated that gravity should be considered while studying on sand production of weakly consolidated sand formation. As for
引文
[1] K.W. Weissenburger, N.Morita and et al. The Engineering Approach to Sand Production Prediction. SPE16892.
    [2] N.Morita, D.L.Whitfill and et al. Realistic Sand Production Prediction: Numerical Approach. SPE16989.
    [3] N.Morita, D.L.Whitfill and et al. Parametric Study of Sand Production Prediction: Analytical Approach. SPE16990.
    [4] T.K.Perkins and J.S.Weingarten. Stability and Failure Cavities in Unconsolidated Sand and Weakly Consolidated Rock. SPE18244.
    [5] Zihua Zhang, J.M.Peden and et al. The Prediction Of Operating Conditions To Constrain Sand Production From A Gas Well. SPE21681.
    [6] N.Morita and P.A.Boyd. Typical Sand Production Problems: Case Studies and Strategies for Sand Control. SPE22739.
    [7] Nicolas Kessler, Yarlong Wang and et al. A Simplified Pseudo 3D Model to Evalate Sand Production Risk in Deviated Cased Holes. SPE26541.
    [8] M.B.Geilikman, M.B.Dusseault and et al. Sand Production as a Viscoplastic Granular Flow. SPE27343.
    [9] R.J.Chalaturnyk, B.T. Wagg and et al. The mechanisms of solids Production in Unconsolidated Heavy-oil Reservoirs. SPE23780.
    [10] I.D.R. Bradford and J.M.Cook. A Semi-analytic elastoplastic model for wellbore stability with applications to sanding. SPE28070.
    [11] Bernard Tremblay, George Sedgwick and et al. Imaging of Sand Production in a horizontal pack by X-Ray computed tomography. SPE30248.
    [12] P.J.Van den Hoek and et al. A new concept of sand production prediction: theory and laboratory experiments. SPE36418.
    [13] A.P. Kooijman, P.J.Van den Hoek and et al. Horizontal wellbore and sand production in weakly consolidated. SPE36419.
    [14] M.S.Bruno, C.A.Bovberg and et al. Some influences of saturation and fluid flow on sand production: laboratory and discrete element model investigations.
    
    SPE36534.
    [15]Yarlong Wang. Sand production and foamy oil flow in heavy-oil reservoirs. SPE37553.
    [16]R.G.Van de Ketterij and C.J.de Pater. Experimental study on the impact of perforations on hydraulic fracture tortuosity. SPE38149.
    [17]J.Desroches and T.E.Woods. Stress measurements for sand control. SPE/ISRM 47247.
    [18]M.A.Addis and et al. The Influence of the reservoir stress-depletion response on the lifetime considerations of well completion design. SPE/ISRM 47289.
    [19]E.D.Nicholson, G.Goldsmith and et al. Direct observation and Modeling of Sand Production Processes in weak sandstone. SPE/ISRM47328.
    [20]P.J.McLellan and C.D.Hawkes. Application of Probabilistic techniques for assessing sand Production and Borehole Instability risks. SPE/ISRM47334.
    [21]R.Viken and H.Kjorholt. state-of-the-art sand prediction based on an intranet "push the button" interface. SPE/ISRM 47361.
    [22]Jiaxiang Zhang and et al. Mechanical Strength of reservoir materials:key information for sand prediction. SPE/ISRM47365.
    [23]R.C.Burton, E.R.Davis and et al. Application of reservoir strength characterization and formation failure modeling to analyze sand production potential and formulate sand control strategies for a series of north sea gas reservoirs. SPE48979.
    [24]Terri M.Sherlock-Willis and et al. A global perspective on sand control treatments. SPE50652.
    [25]Seehong Ong and et al. Sand production prediction in high rate, perforated and open-hole gas wells. SPE58721.
    [26]A.Venkitaraman and et al. Perforating requirements for sand prevention. SPE58788
    [27]P.J.Van den Hoek and et al. Mechanism of downhole sand cavity re-stabilisation in weakly consolidated sandstones. SPE65183.
    [28]P.J.McLellan, C.D.Hawkes and et al. sand production prediction for horizontal wells gas storage reservoirs. SPE65510/Ps2000-149.
    
    
    [29]Weingarten,J.S., and Perkins, T.K.. Prediction Of sand production in gas wells: method and Gulf of Mexico case studies. SPE24797.
    [30]P.A.Fletcher, C.T. Montgomery and et al. Optimizing hydraulic fracture length to prevent formation failure in oil and gas reservoirs. Proceedings,35th U.S. Rock Mechanics Symposium, June 5-7,1995
    [31]Vriezen,P.B.,A. and Van der Vlis, A.C. Erosion of perforation tunnels in gas wells. SPE5661 presented at 50th Annual Fall Meeting of the SPE, Dallas,TX.(Sept. 1975)
    [32]Antheunis,D.,Vriezen, P.B., and et al. Perforation collapse: Failure of perforated friable sandstones. SPE5750 presented at the SPE-European Spring meeting, Amsterdam, the Netherlands, (April 8-9,1976).
    [33]Antheunis,D.,Luque,R.F. and et al. the onset of sand influx from gas-producing friable sandstone formations-laboratory investigations. SPE8031 (Sept. 1978)
    [34]Chenevert, M.E. and Thompson,T.W., Perforation stability in low permeability gas reservoirs, SPE/DOE Low permeability gas reservoirs, Denver, Colorado, (May 19-22,1985).
    [35]Yassin, A.A.M. An analysis of the factors controlling the production of sand from a perforated completed well in a friable sandstone formation. Phd thesis, Dept. Pet. Eng.,Heriot-Watt University, Edinburgh,(Jan. 1986)
    [36]Suman Jr., G.O., Ellis, R.C. and et al. Sand control handbook, 2nd ed., Gulf Publishing Company,(1983)
    [37]Veeken, C.A.M., Davis, D.R. and et al. Sand production prediction review:Developinhg an integrated approach. SPE22792,(1991),11,PP.
    [38]Tixier, M.P., Loveless,G.W. and et al. Estimation of formation strength from mechanical properties log. SPE4532,(1973),15,PP.
    [39]Coats, G.R. and Denoo,S.A. Mechanical properties program using borehole analysis and Mohr's Circle. Proc. SPWLA 22nd An. Logging Symp.,1981.
    [40]Edwards,D., Joranson, H. and et al. Field normalization of formation mechanical properties for use in sand control management. Proc. SWPLA 29th An. Logging Symp., 1988.
    [41]Risnes, R., Bratli, R.K. and Horsrud, P. Sand stresses around a wellbore.
    
    SPE9650,(1981), 18,PP.
    [42]Bratli, R.K. and Risnes, R. Stability and failure of sand arches. SPE J., (1981), 236-248.
    [43]Antheunis. D., Geertsman, J. and Vriezen. P.B. Mechanical stability of perforation tunnels in friable sandstones. Proc.31st Annual petr. Mech. Engr. Conf. Of the ASME, Mexico City.
    [44]Hall, C.D., and Harrisburger, W.H. Stability of sand archs: a key to sand control. J. Pet. Technol.,July,821-829.
    [45]Fahrenthold, E.P., Elastic and plastic stresses in a porous medium containing spherical and cylindrical cavities. Doctoral dissertation, Rice university, Huston, TX, May 1984.
    [46]Fahrenthold, E.P. and J.B.Cheatnam, Jr., incipient yielding and solids production for perforated casing completions, Journal of energy Resources technology, Vol.108, December 1986, PP.321-325.
    [47]Haimson,B.C., The hydrofracturing stress measuring method and recent field results. Int. J.Rock Mech. Min. Sci. & Geomech. Abstr.(1978),15.
    [48]Breckels, I.M. and Van Eekelen, H.A.M., Relationship between horizontal stress and depth in sedimentary basins. J.Petro.Tech. (1982),2191-2199.
    [49]Rummel, F.. Fracture mechanics approach to hydraulic fracturing stress measurements, fracture mechanics of rock. Edited by B.K.Atkinson, Academic Press, New York(1987).
    [50]Kazi.A., Sen,Z.,and Sadagah, B.H.. Relationship between sonic pulse velocity and uniaxial compressive strength of rocks. Proceedings of the 24th U.S. Symposium on Rock Mechanics (1983), 409-419.
    [51]Tokle,K., Horsrud, P. and Bratle, R.K.. Predicting uniaxial strength from logs. SPE15645 (1986)
    [52]Bruce. S.. A mechanical stability log. SPE 19942 presented at the 1990 IADC?SPE Conference Huston, Texas. Feb 27-Mar2.
    [53]Behrmann. L.A .and et al. Field implications from full scale sand production experiments. SPE38639 presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, Oct 5-8.
    
    
    [54]Presles, C. and Cruesot, M.. A sand failure test can cut both completions costs and the number of development wells. SPE38186 presented ath the 1997 SPE European Formation damage Conference. The Hague. The Netherlands, Jun 2-3.
    [55]Papamichos., Van Den Hock, P.. Size dependency of Castlegate and Berea sandstone hollow cylinder strength on the basis of bifurcation theory. Procedings 35th US Symposium on Rock Mechanics(1995).
    [56]Bradley, W.B. Failure of inclined boreholes. Transactions of the ASME(Dec.1979)232.
    [57]Mody, F.K. and Hale, A.H. Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions. JPT(Nov. 1993) 1093.
    [58]Santarelli, F.J., Brown, E.T. and Maury, V.. Analysis of borehole stresses using pressure-dependent, linear elasticity. Int. J.Rock Mech. Min. Sci & Geomech. Abstr.(23(6)1986) 445.
    [59]Nawrocki,P. and Dusseault, M.B.. Modelling of damaged zones around openings using.radius-dependent Young's Modulus. J. Can. Petrol. Tech. (Mar. 1996)31.
    [60]Cheng, H. and Desseault, M.B. Deformation and diffusion behavior in a solid experiencing damage: continuous damage model and its numerical implementation. Int. J.Rock Mech. Min. Sci & Geomech. Abstr.(30 1986) 1323.
    [61]Shao, J.F. and Khazraei, R.. Borehole stability analysis in brittle rocks with continuous damage with model. In Proc. SPE/ISRM Eurock'94, Balkema, Rotterdam(1994)215.
    [62]Papamichos, E., Vardoulakis, I. And Sulem, J.. Generalized continuum models for borehole stability analysis. In Proc. SPE/ISRM Eurock'94, Balkema, Rotterdam(1994)37.
    [63]Thallak, S., Rothenburg, L. and Dusseault, M.B. Analysis of borehole stability using discrete element models. In Proc. 7th int. Congress on Rock Mechanics, Aachen, Germany(1991) 813.
    [64]Rawlings, C.G., Barton, N.R., Bandis, S.C., Addis, M.A. and Gutierrez, M.S.. Laboratory and numerical discontinuum modeling of borehole stability. JPT(Nov. 1993)1086.
    
    
    [65]Zheng,Z., kemeny, J. and Cook, N.G.W.. Analysis of borehole breakouts. JGR(B94 1989)7171.
    [66]Klein, H.H., Cooper, G.D., and Nelson, S.G.. Design and evaluation of gravel and frac packs with a fully three dimensional wellbore simulator. Paper SPE 35032 presented at the 1995 SPE Formation Damage Control Symposum. Lafayette, Feb. 14-15.
    [67]Wahlmeier, M.A., and Andrews, P.W.. Mechanics of gravel placement and packing: a design and evaluation approach. SPEPE, PP69-82, Feb. 1988.
    [68]Sherlock-Willis, Terri M., Romero, Jean., Rajan, Surya. K.. A coupled wellbore-hydraulic fracture simulator for rigorous analysis of frac-pack applications. Paper SPE39477 presented at the 1998 Formation Damage Symposium. Lafayette, Feb. 18-19.
    [69]Wang, Y. and Desseault, M.B.. Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata-Part Ⅱ. Permeable media.. Int. J.Rock Mech. Min. Sci & Geomech. Abstr.(1991)28,No.4,247.
    [70]McLellan, P.J. and Wang, Y.. Predicting the effects of pore pressure penetration on the extent of wellbore instability: Application of a versatile poro-elastoplastic model. Proc. Eurock'94-SPE/ISRM Rock Mechanics in Petroleum Engineering, Delft, Netherlands(1994)205.
    [71]Detournay, E. and Fairhurst, C.. Two-dimensional elastoplastic analysis of a long, cylindrical cavity under non-hydrostatic loading. Int. J.Rock Mech. Min. Sci & Geomech. Abstr.(1987)24,NO.4,197.
    [72]Bradford, I>D>R., Fuller, J., Thompson, P.J. and Walsgrove,T.R..Benefits of assessing the solids production risk in North Sea reservoir using elastoplastic modeling. SPE/ISRM 47360, Proc. Eurock'98--SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway(1998)2,261.
    [73]McLellan, P.J. and Hawkes, C>D..Application of probabilistic techniques for assessing sand production and borehole instability risks. SPE/ISRM 47360, Proc. Eurock '98--SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway(1998)2,143.
    [74]Mictchell,R.F.,Goodman,M.A. and Wood,E.T.(1987). "Borehole Stresses:
    
    Plasticity and the Drilled Hole Effect". SPE/IADC Drilling Conf., New Orleans,La, Mar., pp.43-49. SPE/IADC 16053
    [75]Hsiao,C.(1988).Growth of Plastic Zone in Porous Medium around a Wellbore. 20th Annual OTC Conf., Houston, Tx, May, pp. 439-448. OTC 5858.
    [76]Aadnφy, B.S. and Chenevert, M.E.(1987). Stability of Highly Inclined Boreholes." SPE/IADC Drilling Conf., New Orleans,La, Mar., pp.25-41. SPE/IADC 16052.
    [77]Gnirk,P.F.(1972). The Mechanical Behaviour of Uncased Wellbores Situated in elastic/Plastic Media under Hydrostatic Stress. SPE J., Feb., pp.49-59. SPE3224.
    [78]Woodland,D.C.(1988).Borehole Instability in the Western Canadian Overthrust Belt. SPE Rocky Mountain Regional Meeting, Casper, Wy, May, pp.319-331. SPE17508.
    [79]Fuh, G.F..Whitfill, D.L. and Schuh,P.R.(1988).Use of Borehole Stability for Successful Drilling of high-angle hole. IADC/SPE Drilling Conf., Dallas, TX,Feb.pp.483-491. IADC/SPE 17235.
    [80]Hottman, C.E., Smith, J.H. and Purcell, W.R.(1978). Relationship among earth stresses, Pore Pressure, and Drilling Problems Offshore Gulf of Alaska. 53rd Annual Tech. Conf. & Exhib. Of SPE, Houston, Oct. SPE 7051.
    [81]Nakken, S.j., Christensen, T.L., Marsden., J.R. and Holt, R.M.(1989). Mechanical behavior of Clays at high Stress levels for Wellbore stability Applications. Proc. Int. Symp. ISRM_SPE, Pau, France, Aug. Pp. 141-148.
    [82]Marsden,J.R.,Wu,B., Hudson,J.A. and Archer, J.S.(1989).Investigation of Peak Rock Strength Behavior for Wellbore stability Applications. Proc. Int. Symp. ISRM_SPE, Pau, France, Aug. Pp.753-760.
    [83]Santarelli,F.J.(1987). "Theoretical and Experimental Investigation of the Stability of the Axisymmetric Wellbore". Ph.D thesis, University of London.
    [84]Kwakwa,K.A., Batchelor, A.S. and Clark, R.(1989). An assessment of the Mechanical Behavior of high-angle Wells In block 22/11. Proc. Offshore Europe 89, Aberdeen, sept. SPE 19240.
    [85]Bradley, W.B.(1979). "Mathematical Stress Cloud-Stress Cloud Can Predict
    
    Borehole Failure ", Oil & Gas J.,Vol.77,No.8,Feb.,pp.92-102.
    [86] Mclean, M.R. & Addis, M.A. Wellbore Stability: The Effect of Strength Criteria on Mud Weight Recommendations SPE 20405
    [87] 刘向君,罗平亚.石油测井与井壁稳定.北京:石油工业出版社.
    [88] 徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社.第一版
    [89] 徐芝纶.弹性力学(上册).北京:高等教育出版社.第二版(158-179)
    [90] 中国石油天然气总公司情报研究所.井壁稳定技术译文集(上册).(30-32)
    [91] Fairhurst,C., "Methods of determining in-situ rock stresses at great depth"TRI-68 Missouri River Div.,Corps of Engineer(1968)
    [92] Vincent Maury. Practical advantages of mud cooling systems for drilling. SPE25732.
    [93] Vincent Maury and J.L.ideiovici. Safe drilling of HP/HT wells, the role of the thermal regime in loss and gain phenomenon. SPE/IADC 29428.
    [94] [英].D.R.J欧文等著,曾国平译,塑性力学有限元—理论与应用,兵器工业出版社,1988年12月。
    [95] 周维垣,高等岩石力学,水利电力出版社,1990年6月.
    [96] 邓天雨,岩力学的弹塑粘性理论基础,煤炭工业出版社,1991年7月.
    [97] 张德兴,有限元法新编教程,同济大学出版社,1989年7月。
    [98] [美]K.J.巴斯著,傅子智译,工程分析中的有限元法,机械工业出版社,1991年7月。
    [99] H.Kiorholt,H.Joranson,et al, Advanced Sand Prediction in a User Friendly Wrapping, SPE/ISRM47333, 8-10 July 1998:133-141
    [100] D.Okland,B.Plischke et al, Perforation Stability Analysis as a Tool for Predicting Sand Production: Application for the Brage Field, SPE35552, 16-17 April 1996: 167-174
    [101] Manabu,Takahiro, et al, Field Application of Multi-Dimensional Diagnosis of Reservoir Rock Stability Against Sanding Problem. SPE64470, 1-4 October 2000.
    [102] N.Morita, D.L.Whitfill,et al, Realistic Sand Production Prediction: Numerical Approach, SPE16989, 27-30 September 1987: 547-559.
    [103] P.J.van den Hoek, et al, A New Concept of Sand Production Prediction:
    
    Theory and Laboratory Experiments, SPE36418,6-9 October 1996: 19-33.
    [104] Veeken, Davies et al, Sand Production Prediction Review: Developing an Integrated Approach, SPE22792, 6-9 October, 1991: 335-344.
    [105] N.Mortia, G.F.Fuh et al, Prediction of Sand Problems of a Horizontal Well from Sand Production Histories of Perforated Cased Wells, SPE48975, 27-30 September 1998: 113-119.
    [106] Ahsene Bouhroum, Xinghui Liu, and Faruk civan, Predictive Model and Verification for Sand Particulates Migration in Gravel Packs, SPE28534, 25-28 September 1994:179-189.
    [107] 罗明高.定量储层地质学.北京:地质出版社,1998
    [108] 李国玉.世界油田图集.北京:石油工业出版社,2000
    [109] 张文照.中国陆相大油田.北京:石油工业出版社,1997
    [110] 大港油田科技丛书.防砂工艺技术.北京:石油工业出版社,1999
    [111] 李宾元,税其达等.水平井完井和防砂.成都:成都科技大学出版社,1994
    [112] 张海芹,贾桂莲等.欢喜岭上台阶兴隆台油层稠油储层特征及评价.特种油气藏,2000.3
    [113] 万仁溥等.采油工程手册.北京:石油工业出版社,2000
    [114] 万仁溥等.油井建井工程.北京:石油工业出版社,2001
    [115] 姜培海,唐文辉.渤海海域稠油油田特征及勘探意义。特种油气藏,1998.2
    [116] [苏]斯比瓦克,波波夫.钻井岩石破碎力学.地质出版社,1983.4
    [117] [美]C.J.科泊利.防砂.石油工业出版社,1985.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700