用户名: 密码: 验证码:
Tresca材料椭球形孔扩张问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土工程中诸多问题可以用小孔扩张理论来解释,本课题“Tresca材料椭球形孔扩张问题研究”针对小孔扩张理论中的椭球形孔扩张问题,分别采用复变函数保角变换及改变平衡系数法进行理论分析、采用电敏低强度弹塑性材料进行室内物理模拟试验、采用ABAQUS进行数值模拟等方法,对Tresca材料中椭球形孔扩张过程的受力及位移特性进行了系统的计算和分析。
     论文采用复变函数中保角变换等方法对无限均质岩土体中单连通孔洞扩张问题的弹性状态应力和位移进行了求解和分析,在假设材料服从Tresca准则基础上分析了无限均质体中的单连通孔洞,特别是对受均布内压荷载的椭球形孔洞的弹塑性力学性状进行了求解和分析,给出了弹塑性界线的影响因素、形状函数和求解方法,分析了材料进入塑性状态后,塑性区域的扩展特点,同时采用滑移线理论分析了椭圆孔周围塑性状态应力及位移的分布。
     论文针对不同长短轴比值的椭球形孔扩张问题,首次采用改变平衡方程中k值的方法,推导给出了弹性阶段的应力及位移公式、弹塑性阶段的弹性应力和塑性应力计算公式,给出了无限体中椭球形扩张下的孔壁位移表达式,在探讨k值物理含义和取值原则的基础上给出了不同k值情况下问题的理论闭合解算例,同时指出,柱形孔扩张解和球形孔扩张解是椭球形孔扩张解的上下限值。
     论文首次通过电敏弹塑性材料的模型试验研究了不同长短轴比值的椭球形孔扩张问题,研究了椭球形孔扩张过程中周围介质的力学特性特别是塑性区范围随荷载的变化规律,通过在材料内部径向方向布置不同测点、轴向方向布置不同测层来实测逐渐增大压力作用下周围介质中的电阻比变化,通过电阻比的演变规律来研究其力学特性的演变规律,实测规律和理论分析规律一致,验证了理论分析的正确性。
     论文通过数值模拟研究了不同长短轴比值下椭球形孔扩张问题,分析了在内压力逐渐增大过程中孔壁的变形形状和孔周围介质的弹塑性性状及位移场演变规律与特点,数值模拟结果规律和数值与理论分析结果一致,验证了理论分析的正确性。
Analysis of the expansion of cylindrical and spherical cavities in soil and rock provides a surprisingly versatile and accurate geomechanics approach for study of important problems in geotechnical engineering. It is necessary to extend the cavity expansion methods. The primary objective of this study is to perform ellipsoidal cavity expansion analysis in geotechnical engineering area for implementing and improving the cavity expansion methods.
     Adopted theoretical analysis, numerical simulation and physical simulation test, Oval cavity(which shape is different from circle and cylinder ) expansion problem is studied.
     Through complex variable methods of conformal transformation, elastic properties and displacement of ellipsoidal cavity in infinite homogeneity soil are studied. And the plastic properties which includs elastio-plastic boundary’s figure, influecing factor and solving methods also have been reasearched by supposing for Tresca matria. At the same time the slip line field around the ellipse are given by using difference methods.
     By analogying the hollow sphere expansion and thick-walled cylider expansion, through changing the figure factor k value in equilibrium equation, the stress and displacement formula both in elastic state and in plastic state are given for the ellipsoidal expansion. And using the model test parameter, the theoretical result of test’s stress and displacement are sloved.
     The paper has also studied the similar cylindrical expansion from the perspective of indoor physical model test. By changing the test materials, it is the first innovation to performance the measurable materials in studying the cavity expansion problems. And it has acheieved the resistance ratio around the cavity, by compare to the resistance ratio versus strain in material testing, the strain field around similar-cylindrical cavity has gain. The resistance ratio versus strain is different in the elastic state and in the plastic state, so it can deduce the material’s elastic or plastic state under different uniform internal pressure at the cell.
     Though numerci analysis, it has been found that, at low internal pressure the cell has a relative large deformed, and at higher internal pressure level the cell’s plastic deformed has a feature of tenting for circle figure. This is consistent with theoretical analysis.
引文
[1] Hai-sui Yu, Cavity Expansion Methods in Geomechanics[M], kluwer academic publishers, London , 2000.
    [2] Hai-Sui Yu. Cavity Expansion Theory and its Application to the Analysis of Pressuremeters[D]. University of Oxford,1990.
    [3] Hai-Sui YU, Plasticity and geotechnics[M], Springer Science+Business Media, the United States of America, 2006.
    [4] Yu H. S. and Carter J. P, Rigorous similarity solution for cavity expansion in cohesive-frictional soils[J], The international Journal of geomechanics, 2002, 2(2): 233-258.
    [5] Yu H. S. and Houlsby G. T., Finite cavity expansion in dilation soils: loading analysis[J], Geotechnique, 1991, 41(2): 173-183.
    [6] H. S. Yu and S. W. Sloan, Finite element limit analysis of reinforced soils[J], Computer & Structures, 63(1997), 3: 567-577.
    [7] H.S.Yu and M.Z.Hossain, Lower bound shakedown analysis of layered pavements using discontinous stress fields[J], Comput. Methods Appl. Mech. Engrg., 167(1998): 209-222.
    [8] H.X. Li and H.S. Yu, A nonlinear programming approach to kinematic shakedown analysis of frictional materials[J], International Journal of Solids and Structures, 43 (2006): 6594–6614.
    [9] Y. Yang, H.S. Yu and K.K. Muraleetharan, Solution existence conditions for elastoplastic constitutive models of granular materials[J], International Journal of Plasticity, 21 (2005): 2406–2425.
    [10] H.X. Li and H.S. Yu, Kinematic limit analysis of frictional materials using nonlinear programming[J], International Journal of Solids and Structures, 42 (2005) : 4058–4076.
    [11] D.J.Sutcliffe, H.S.Yu and A.W.Page, Lower bound limit analysis of unreinforced masonry shear walls[J], Cumputers and Structures, 79(2001): 1295-1312.
    [12] D.J. Sutcliffe, H.S. Yu and S.W. Sloan, Lower bound solutions for bearing capacity of jointed rock[J], Computers and Geotechnics, 31 (2004): 23–36.
    [13] H. X. Li,H. S. Yu. Shakedown Analysis of Composite Materials Based on Non-linear Mathematical Programming [J]. 2009,(4):253-270.
    [14] J. Chakrabarty. Theory of Plasticity [M]. Oxford:Elsevier Butterworth-Heinemann,2006.
    [15] The C. I. and Houlsby G. T., An analytical study of the cone penetration test in clay[J], Geotechnique, 1991, 41(1): 17-34.
    [16] Hill, R., The Mathematical Theory of Plasticity[M], Oxford, London, 1950.
    [17] P. chadwick, The quasi-static expansion of a spherical cabity in metals and ideal soils[J], TheQuarterly Journal of Mechanics and Applied Mathematics 1959 12(1):52-71
    [18] A. S. Vesic, Expansion of cavity in infinite soil mass, Journal of the soil mechanics and foundations division[J], Proceedings of the American society of civil engineers, 1972, 3, 265-291.
    [19] Bigoni D. and Laudiero E, The quasi-static finite cavity expansion in a non-standard elasto-Plastic medium[J], The J, Mech. Sci. 1989, 31(11): 825-837.
    [20] Bums, S. E. and Mayne, P. W., Analytical cavity expansion critical state model for piezocone dissipation in fine-grained soils[J], Soil and foundations, 2002, 42(2): 131-137.
    [21] Collins F. and Stimpson J. R., Similarity solution for drained and undrained cavity expansions in soils[J], Geotechnique, 44(1): 21-34.
    [22] Collins, I., Pender, M., and WangYan, Cavity expansion in critical state soils[J], International Journal of numerical and analytical methods in Geomechanics, 1996, 20: 489-516.
    [23] Mantaras F. M. and F. Schnaid, Cylindrical cavity expansion in dilatant cohesive-frictional materials[J], Geotechnique, 2002, 52(5): 337-345.
    [24] Palmer A. C., Undrained plan strain expansion of a cylindrical cavity in clays[J]. Geotechnique, 1972, 22: 451-457.
    [25] Palmer A. C., Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test[J], Geotechnique 1972, 22(3): 451-457.
    [26]周国庆.深厚表土层立井井壁受力模拟研究[D].徐州:中国矿业大学,1989.
    [27]周国庆,崔广心.含水层加固后井壁与围岩相互作用的数值分析[J].中国矿业大学学报,1998 27(2):135-139.
    [28]周国庆,刘雨忠等.围土注浆缓释和抑制井壁附加力效应及应用[J].岩土工程学报,2005,27(7):742-745.
    [29]崔广心,杨维好,吕恒林.深厚表土层的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [30]周国庆,程锡禄.特殊地层中的井壁应力计算问题[J].中国矿业大学学报,1995,24(4):24-30
    [31]杨维好.深厚表土层中井壁垂直附加力变化规律的研究[D].中国矿业大学,1994.
    [32]周扬等.考虑治理荷载作用时井壁严格轴对称变形分析[J].岩土工程学报,2008(4):170-174.
    [33] Zhou Guoqing,Cui Guangxin,LüHenglin et al. Simulation study on reinforcing overburden to prevent and cure the ruptureof shaft lining[J].Journal of China University of Mining & Technology,1999,9(1):1-7.
    [34]蒋斌松.复合井壁的弹性分析[J].煤炭学报,1997,22(4):397-401.
    [35]蒋斌松.有限长复合井壁的轴对称变形分析[J].工程力学,1998,15(4):89-95.
    [36]蒋斌松.考虑端面荷载作用时井壁轴对称变形分析[J].岩石力学与工程学报,1999,1(2):184-187.
    [37] Collins, I. F. and Yu, H. S., Undrained cavity expansions in critical state soils[J], International Journal of numerical and analytical methods in Geomechanics, 1996, 20:489-516.
    [38] Carter J.P., Cavity expansion in cohesive frictional soils[J], Geotechnique, 1986, 36(3): 349-358.
    [39] Cao L, F, The C. I., Undrained cavity expansion in modified Cam clay I: Theoretical analysis[J], Geotechniqus, 2001, 51(4): 323-334.
    [40] Davis, R. O., Scott, R. F. and Mullenger, G., Rapid expansion of a cylindrical cavity in a rate-type soil[J], Int. J. Analyst. Mech. Geomech. 1984, 8(2): 25-140.
    [41] Gupta, R. C., Finite strain analysis for expansion of cavities in granular soils[J], Soils and Foundations, 2002, 42(6): 105-115.
    [42] Sayed S. M., Cylindrical cavity expansion in nonlinear dilatant media[J], Mechanics research communications, 1987, 14(4): 219-227.
    [43] Schnaid F. and Mantaras F. M., Cavity expansion in cemented materials: Structure degradation effects[J], Geotechnique, 2003, 53(9): 797-807.
    [44] Sikhanda Satapathy, Calculation of Penetration resistance of brittle materials using spherical cavity expansion analysis[J], Mechanics of Materials, 1996, 23: 323-330.
    [45]蒋明镜,沈珠江,考虑剪胀的弹脆塑性软化柱形孔扩张问题[J],河海大学学报,1996,24(4): 65-72.
    [46]蒋明镜,沈珠江,考虑剪胀的线性软化柱形孔扩张问题[J],岩石力学与工程学报,1997,16(6): 550-557.
    [47]龚晓南,土塑性力学[M],浙江大学出版社,1999.
    [48]李向红,软土地基静力压桩挤土效应问题研究[D],浙江大学,2000.
    [49]李月健,土体内球形孔扩张及挤土桩沉桩机理研究[D],浙江大学,2001.
    [50]梁发云,陈龙珠,应变软化Tresca材料中扩孔问题解答及其应用[J],岩土力学,2004,25(2): 261-265.
    [51]鲁祖统,软乳土地基中静力压桩挤土效应的数值模拟[D],浙江大学,1998。
    [52]罗战友,杨晓军,龚晓南,考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题[J],工程力学,2004,21(2)。
    [53]罗战友,静压桩挤土效应及施工措施研究[D],浙江大学,2004.
    [54]沈珠江,岩土破损力学:理想脆弹塑性模型,岩土工程学报,2003,25(3):253-257.
    [55]汪鹏程,软化剪胀中孔扩张理论及沉桩挤土性状研究[D],浙江大学,2005.
    [56] Rosenberg Z. and Dekel E., A numerical study of the cavity expansion process and its application to long-rod penetration mechanics[J], International Journal of Impact Engineering , 2008, 35 : 147-154.
    [57] Forrestal M. J. and Tzou D. Y., A spherical cavity-expansion penetration model for concretetargets[J], Int. J. Solids Structures, 1997, 34: 4127-4146,
    [58] Tumrong Puttapitukporn, A study of Cavitation Instabilities in Solids[D], Oregon State University, 2003.
    [59] Ben-Dor G., Dubinsky A. and Elperin T., Analytical solution for penetration by rigid conical impactors using cavity expansion models[J], Mechanics research communications, 2000, 27(2): 185-189.
    [60] Rosenberg Z. and Dekel E., Analytical solution of the spherical cavity expansion process, International Journal of Impact Engineering, 2008, 35:355-361.
    [61] Sikhanda Satapathy, Stephan Bless, Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis[J], Mechanics of Materials, 1996, 23: 323-330.
    [62] Hyung Je Woo, Cavity expansion analysis of non-circular cross-sectional penetration problems[D], The University of Texas at Unstin, 1997.
    [63] Sikhanda Sekhar Satapathy, Application of cavity expansion analysis to penetration problems[D], The University of Taxas at Unstin, 1997.
    [64] Jie Zhang, Cavity expansion in lightly cemented sands[D], Purdue University, 2005.
    [65] Jidong Zhao, Daichao Sheng and Scott W. Sloan, Cavity expansion of a gradient-dependent solid cylinder[J], Internatoional Journal of Solids and Structures, 2007, 44: 4342-4368.
    [66] V. V.Kartuzov,, B. A. Galanov and S. M. Ivanov, Concept of ultimate fracture velocity in the analysis of spherical cavity expansion in brittle materials: application to penetration problems[J], International Journal of Impact Engineering, 1999, 23: 431-442.
    [67] Rami Masri and David Durban, Cylindrical cavity expansion in compressible Mises and Tresca solids[J], European Journal of Mechanics A/Solids, 2007, 26 : 712–727.
    [68] Sanda Cleja-Tigoiu, Oana Cazacu and Victor Tigoiu, Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material[J], International Journal of Plasticity, 2008, 24: 775–803.
    [69] David Durban and Rami Masri, Dynamic spherical cavity expansion in a pressure sensitive elasto-plastic medium[J], International Journal of Solids and Structures, 2004, 41: 5697–5716.
    [70] Sikhanda Satapathy, Dynamic spherical cavity expansion in brittle ceremics[J], International Journal of Solids and Structures, 2001, 38: 5833-5845.
    [71] Richard W. Macek and Thomas A. Duffey, Finite cavity expansion method for near-surface elects and layering during earth penetration[J], International Journal of Impact Engineering, 2000, 24: 239-258.
    [72] Sreten Mastilovic and Dusan Krajcinovic, High-velocity expansion of a cavity within a brittle material[J], Journal of the Mechanics and Physics of Solids, 1999, 47: 577-610.
    [73] B.A. Galanov, V.V. Kartuzov and S.M. Ivanov, New analytical model of expansion of spherical cavity in brittle material based on the concepts of mechanics of compressible porous and powder materials[J], International Journal of Impact Engineering, 2008, 35: 188-194.
    [74] Tseng, Dar-Jen, Prediction of cone penetration resistance and its application to liquefaction assessment[D], University of California, Berkeley, 1989.
    [75] Norman K. T., Pressuremeter and cone penetrometer testing in a calibration chamber with unsaturated minco silt[D], University of Oklahoma Graduatte College, 2005.
    [76] Rami Masri and David Durban, Quasi-static cylindrical cavity expansion in an elastoplastic compressible Mises solid[J], International Journal of Solids and Structures, 2006, 43: 7518–7533.
    [77] C. Sagaseta, G.T. Houlsby and H.J. Burd, Quasi-Static undrained expansion of a cylindrical cavity in clay in the presence of shaft friction and anisotropic initial stresses[J], Second MIT Conference on Computational Fluid and Solid Mechanics,2003,35: 619-620.
    [78] Y.Z. Chen, Stress analysis of a cylindrical bar with a spherical cavity or rigid inclusion by the eigenfunction expansion variational method[J], International Journal of Engineering Science, 2004, 42: 325-338.
    [79] M. Mata, O. Casals and J. Alcala, The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity[J], International Journal of Solids and Structures, 2006, 43: 5994–6013.
    [80] Sherif A. Elfass, A new approach for estimating the axial capacity of driven piles in sand up to true soil failure[D], Univisity of Nevada, Reno, 2001.
    [81] Andranik Tsakanian, Analytical calculation ofwake fields in conical cavity[J], Nuclear Instruments and Methods in Physics Research A, 548 (2005): 298–305.
    [82] G. Ben-Dor, A. Dubinsky and T. Elperin, Analytical solution for penetration by rigid conical impactors using cavity expansion models[J], Mechanics Research Communications, vol 27(2000), 2: 185-189.
    [83] Sikahanda Sekhar Satapathy, Application of cavity expansion analysis to penetration problems[D], University of Texas at Austin, 1997.
    [84] Sikhanda Satapathy and Stephan Bless, Calculation of penetration resistance of bittle materials using spherical cavity expansion analysis[J], Mechanics of Material, 23(1996): 323-330.
    [85] Hyung Je Woo, Cavity expansion analysis of non-circular cross-sectional penetration problems[D], University of Texas at Austin, 1997.
    [86] Michael Lersow, Deep soil compaction as a method of ground improvement and to stabilization of wastes and slopes with danger of liquefaction[J], determining the modulus of deformation and shear strength parameters of loose rock, Waste Management 21 (2001): 161-174.
    [87] David Viet Dang Tran, Processes of coupling between geomechanics deformation and reservoir flow in porous media[D], Univerisity of Calgary, 2002.
    [88] Jing Wan, Stabilized finite element methods for coupled geomechanics and multiphase flow[D], University of Stanford, 2002.
    [89] Hsii-Sheng Hsieh, A non-associative cam-clay plasticity model for the stress-strain-time behavior of soft clays[D], University of Stanford, 1987.
    [90] Samer Gamal Sadek, Soil structure interaction in transparent synthetic soils using digital image correlation[D], University of Polytechnic, 2002.
    [91] Max Oddie, Developing a method for prediciting rockmass deformations surrounding the perseverance sub-level cave[D], University of Toronto, 2002.
    [92] Dezhang Song, Advanced development of finite element method for practical application of plasticity[D], State University of New York at Buffalo, 1997.
    [93] Kalyani Naga Devabhaktuni, Assessment of potential heave induced infrastructure distress hazard in expansive soil environments using GIS technology[D], University of Texas at Arlington , 2002.
    [94] Renato Viana Clementino, Feasibility of cone penetration test applied to horizontal directional drilling in continuous boreholes[D], University of Alberta, 2002.
    [95] Ali R. Sharif, Critical shear stress and erosion of cohesive soils[D], State University of New York at Buffalo, 2003.
    [96] Attila Michael Zsaki, Innovative techniques in large-scale stress analysis of underground excavations[D], University of Toronto, 2003.
    [97] Michael Cullen, Geotechnical studies of tetreat pillar coal mining at shallow depth[D], University of British Columbia, 2002.
    [98] David Durban and Rami Masri, Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium[J], International Journal of Solids and Structures, 41 (2004) : 5697–5716.
    [99] Sikhanda Satapathy, Dynamic spherical cavity expansion in brittle ceramics[J], International Journal of Solids and Structures, 38(2001): 5833-5845.
    [100] Christopher Emmett Hunt, Effect of pile installation on static and dynamic soil properties[D], University of California Berkely, 2000.
    [101] Richard W. Macek and Thomas A. Duffey, Finite cavity expansion method for near-surface e!ects and layering during Earth penetration[J], International Journal of Impact Engineering, 24 (2000) : 239-258.
    [102] W. Huang, D. Sheng, S.W. Sloan and H.S. Yu, Finite element analysis of cone penetration in cohesionless soil[J], Computers and Geotechnics, 31 (2004): 517–528.
    [103] Sreten Mastilovic and Dusan Krajcinovic, High!velocity expansion of a cavity within a brittle material[J], Journal of the Mechanics and Physics of Solids, 47(1999): 577-610.
    [104] V.V.Kartuzov, B.A.Galanov and S.M.Ivanov, Concept of ultimate fracture velocity in the analysis of spherical cavity expansion in brittle materials: application to penetration problems[J], International Journal of Impact Engineering, 23(1999): 431-442.
    [105] Wolfgang Fellin, Heimo Lessmann, Michael Oberguggenberger and Robert Vieider, Analyzing Uncertainty in Civil Engineering[M], Springer-Verlag Berlin Heidelberg, Germany, 2005.
    [106] Z. Rosenberg and E. Dekel, A numerical study of the cavity expansion process and its application to long-rod penetration mechanics[J], International Journal of Impact Engineering, 35 (2008) : 147–154.
    [107] Rami Masri and David Durban, Quasi-static cylindrical cavity expansion in an elastoplastic compressible Mises solid[J], International Journal of Solids and Structures, 43 (2006): 7518–7533.
    [108] Richard W. Macek and Thomas A. Du!ey, Finite cavity expansion method for near-surface e!ects and layering during Earth penetration[J], International Journal of Impact Engineering, 24 (2000) : 239-258.
    [109] A. Bezuijen and A.M. Talmon, Grout pressures around a tunnel lining, influence of grout consolidation and loading on lining[J], Tunnelling and Underground Space Technology, 19 (2004): 443–444.
    [110] H.X. Li and H.S. Yu, Kinematic limit analysis of frictional materials using nonlinear programming[J], International Journal of Solids and Structures, 42 (2005): 4058–4076.
    [111] G.C.Kokkorakis and J.A.Roumeliotis, Acoustic eigenfrequencies in concentric spheroidal-spherical cavities: calculation by shape perturbation[J], Journal of Sound and Vibration, 212(1998), 2: 337-355
    [112]刘志强,周国庆等.立井井筒表土层注浆加固过程的控制方法及应用[J].煤炭学报,2005,30(4):472-475.
    [113]徐栓强,俞茂宏.厚壁圆筒安定问题的统一解析解[J].机械工程学报,2004,40(9):23-27.
    [114]吴爱华,邱晓来.采用椭圆孔降低压力容器筒体的应力集中[J].压力容器,1987, 4:35-41.
    [115]张伟,王志群,张圣坤,崔维成.残余应力下厚壁筒表面裂纹的应力强度因子计算[J].计算力学学报,2000,17(3):360-364.
    [116]郭俊宏,刘官厅.带双裂纹的椭圆孔口问题的应力分析[J].力学学报,2007, 39(5):699-703.
    [117]汤任基,王银邦.带有椭圆孔的裂纹系问题[J].力学学报,1984,16(6):570-579.
    [118]许希武,樊蔚勋.多椭圆孔正交异性板的热应力集中[J].固体力学学报,1993,14(3):213-227.
    [119]盛宏玉,范家让.非平面应变状态下的叠层厚壁筒[J].应用力学学报,1997,14(2):64-71.
    [120]刘又文,肖春.含椭圆孔弹性平面基本解[J].力学与实践,2004,26(4):82-83.
    [121]姜金铭.含椭圆孔有限宽板受轴向力时的应力集中系数[J].华东工学院学报,1990,(4):74-78.
    [122]高存法,岳伯谦.含有椭圆孔的各项异性体平面问题的通解[J].石油大学学报.自然科学版,1992,16(2):54-62.
    [123]张雅琴,王冰,刘建生.厚壁筒翻孔成形的理论与实验研究[J].太原理工大学学报,2006,37(4):437-439.
    [124]陈抡元,黄兆芝,丁圣果.厚壁筒内表面裂缝压力强度因子的实验研究[J].大庆石油学院学报,1984(4):118-136.
    [125]王子昆,张葵.幂强化材料平板拉伸变形时椭圆孔口的应力集中[J].西安交通大学学报,1992,26(2):89-94.
    [126]宁建国,刘海燕,黄筑平.理想塑性材料中椭圆孔附近的塑性滑移线场解[J].北京理工大学学报,1999,19(S1):5-8,16.
    [127]阮澍铭.拉压性能不同材料全量型本构关系及厚壁筒的压力分析[J].力学季刊,2003,24(3):423-427.
    [128]阮澍铭,牟宗花,孙逢鸿,宋雪娟.拉压屈服强度不同材料的厚壁筒的极限分析[J].应用力学学报,1997,14(1):141-143.
    [129]陈浩峰,宋军.考虑应变率影响的厚壁筒残余应力场分析[J].工程力学,1996,13(1):125-131.
    [130]黄小平,崔维成.考虑材料应变硬化和包辛格效应的厚壁筒自增强理论模型[J].上海交通大学学报,2005,39(7):1172-1177.
    [131]王文安,陈维新,于天祺.在扭转时局部应力的研究[J].华东化工学院学报,1986,12(5):593-603.
    [132]颜玉定,尹祥础,廖远群,吴景浓,石勇.具有孔边裂纹的岩石厚壁筒试件的破裂特征[J].华南地震,1990,10(3):9-17.
    [133]高存法,岳伯谦.集中载荷作用下各项异性平面内的椭圆孔或裂纹问题[J].应用力学学报,1993,10(3):49-57.
    [134]程玲.混凝土厚壁筒梯度依赖损伤模型解析解[D].洛阳:洛阳工业大学,2007.
    [135]王维娟,黄乘规,周芝英,马希文.厚壁筒中的温度分布[J].北京大学学报,1958(4):417-423.
    [136]单锐,刘助柏,刘文.厚壁筒受正弦分布压力之解及圆筒无限长时的极限[J].机械工程学报,2004,40(1):73-77.
    [137]刘助柏,单锐,刘文,倪利勇.厚壁筒受任意二次函数分布压力之解及圆筒无限长时的极限[J].中国科学E辑技术科学2004,34(3):298-304.
    [138]查子初,王志群,何金泉.自增强厚壁筒残余应力和温度应力下应力强度因子的计算[J].工程力学,1991,8(4):88-95.
    [139]张伟,孙波,查子初,崔维成.自紧厚壁筒表面裂纹的应力强度因子研究[J].船舶力学,2000,4(4):43-47.
    [140]高存法,岳伯谦.无限板内椭圆孔周的应力分析[J].工程力学,1994,11(4):78-82.
    [141]肖小亭,廖宏奕.椭圆孔扩张性能的实验研究[J].广东机械学院学报,1995,13(1):24-27.
    [142]丁金粟,孙亚平.水力劈裂试验中击实土厚壁筒应力分析[J].水利学报,1987,(3):16-23.
    [143]李纬民,刘助柏.受内压厚壁筒塑性变形时lode应力参数的确定[J].锻压技术,1991,(6): 2-4.
    [144]陈爱军,曾文骥.权函数法研究高速旋转厚壁筒的应力强度因子[J].应用数学和力学,2006,27(1):28-34.
    [145]张伟,李雪玲,梁斌,谢镭.内压厚壁筒结构的可靠性分析和可靠性优化设计[J].船舶力学,2005,9(2):90-98.
    [146]王瑞刚,刘智,何同瑞.内压厚壁筒的弹塑性位移分析[J].压力容器,1990,7(1):43-46.
    [147] R.贝尔,K.J.开尔克霍普.内压厚壁筒单个裂纹和多个裂纹的应力强度因子公式[J].湖北化工,1992,(4):43-46.
    [148] H.ALEHOSSEIN,M.HOOD. A Dynamic Cavity Expansion Model for Rocks[J]. Int. J. Rock Mech. Min. Sci.,1998,35(9):431-433.
    [149] Adrian R. Russell,Nasser Khalili. On the problem of cavity expansion in unsaturated soils[J]. Comput Mech,2006,37:311-330.
    [150] P. Fuschi,A. A. Pisano,O. Barrera. Limit Analysis of Orthotropic Laminates by Linear Matching Method [J]. 2003,33(5):197-220.
    [151] V. A. OSINOV. Large-strain dynamic cavity expansion in a granular material [J]. Journal of Engineering Mathematics,2005,52:185-198.
    [152] W. Huang,D. Sheng,S. W. Sloan,H. S. Yu. Finite element analysis of cone penetration in cohesionless soil [J]. Computers and Geotechnics,2004,31:517-528.
    [153] R. Masri,D. Durban,Haifa,Israel. Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium [J]. Acta Mechanica,2006,181:105-123.
    [154] O. S. Kolkov,A. M. Tikhomirov,A. F. Shatsukevich. Development of Explosion Cavities in Sandy Soils[J]. Fizika Goreniya i Vzryva,,1967,3(4):349-351.
    [155] R. Salgado,M. F. Randolph. Analysis of Cavity Expansion in Sand[J]. The International Journal of Geomechanics,2001,1(2):175-192.
    [156] Z. Rosenberg,E. Dekel. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics [J]. International Journal of Impact Engineering,2008,35:147-154.
    [157] Tumrong Puttapitukporn. A Study of Cavitation Instabilities in Solids[D]. Oregon State University:2003.
    [158] R. O. Davis,A. P. S. Selvadurai. Plasticity and Geomechanics[M]. New York:Cambridge University Press,2002.
    [159] J. Chakrabarty. Theory of Plasticity [M]. Oxford:Elsevier Butterworth-Heinemann,2006.
    [160] Ward Chesworth. Encyclopedia of Soil Science [M]. Netherlands: Springer,2008.
    [161] George Z. Voyiadjis,Pawel Woelke. Elasto-Plastic and Damage Analysis of Plates and Shells [M]. Heidelberg: Springer,2008.
    [162] Gabi Ben-Dor,Anatoly Dubinsky,Elperintov. Applied High-Speed Plate Penetration Dynamics [M]. Netherlands: Springer,2006.
    [163]陈曦,周德源.矩形钢管混凝土轴压短柱中采用不同混凝土材料模型的性能比较分析[J].建筑结构学报,2009,30(3):120-125.
    [164]栾茂田,王飞,朱菊芬.非关联流动的安定性理论及在土力学中的应用[J].力学学报,2003,35(1):50-56.
    [165] Dongxue Hao,Maotian Luan,Rong Chen. Rigorous Numerical Analysis of Cylindrical Cavity Expansion in Sands Based on SMP Criterion [J]. 2004,13(2):175-192..
    [166]庄茁等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [167]王博伟.圆柱壳在均布内压下的大变形弹塑性失稳[D].哈尔滨:哈尔滨工程大学,2006.
    [168]高红.岩土材料屈服破坏准则研究[D].武汉:中科院研究生院,2007.
    [169]张永生.土体稳定性弹塑性大变形有限元分析[D].哈尔滨:哈尔滨工程大学,2005.
    [170]朱兆祥.论非线性应变[J].力学进展,1983,13(3):259-272.
    [171]周成.结构性土的本构描述与数值模拟[D].南京:南京水利科学研究院,2002.
    [172]王亮.基于统一强度理论的桩基扩孔问题弹塑性分析[D].西安:长安大学,2007.
    [173]秦理曼.基于能量耗散的土的本构关系研究[D].大连:大连理工大学,2006.
    [174]石长.基于ANSYS的岩土参数优化反分析和边坡稳定性分析[D].南京:南京航空航天大学,2006.
    [175]胡伟,刘明振.非饱和土中球形孔扩张的弹塑性分析[J].岩土工程学报,2006,28(10):1292-1297.
    [176]程莉.大变形弹塑性理论----关于本构理论的若干问题[D].北京:清华大学,1988.
    [177] (苏)萨文朱,卢鼐霍译.孔附近的应力集中[M].北京:科学出版社,1958.
    [178] (英)希尔(Hill,R.)著,王仁等译.塑性数学理论[M].北京:科学出版社,1966

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700