用户名: 密码: 验证码:
星机双基地SAR成像机理与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与单基地SAR相比,双基地SAR可以获取目标的丰富信息,提高系统的抗摧毁性,抗隐身性等优点。在地形测绘、战场监视、地面运动目标侦查等领域具有广阔的应用前景。双基地SAR的收发装置位于不同的载体上;例如,飞机、卫星以及固定的高塔。星载-机载混合BiSAR(SA-BiSAR)是由卫星作为发射机,飞机作为接收机所组成的系统。
     卫星按照用途可分为通信、气象、侦察、导航、测地、地球资源和多用途卫星等。与导航卫星相比,由合成孔径雷达卫星组成的SA-BiSAR系统具有以下的优点:信号处理过程相对简单、易于实现、可获得高分辨率图像。虽然,其应用领域和使用范围受到卫星过境时间和照射区域的限制。但是,SA-BiSAR利用现有的卫星资源(本国的或者国外的);可实现低成本、高可靠性、高稳定性的高分辨率成像。
     由于卫星和飞机在速度上存在着巨大的差异;与机载/星载BiSAR相比,SA-BiSAR的距离历程呈现出不同的特点,导致了SA-BiSAR具有明显的二维移变特性(距离向和方位向)。因此,对于SA-BiSAR系统而言,在成像机理、运动误差分析、成像算法以及运动补偿等方面还需要进一步的研究。本文的主要研究内容和创新点为:
     1.在成像机理与回波信号模拟方面,提出了用收发平台运动轨迹在地面投影的方法来表征双基地几何的差异程度;在此基础上,推导出了BiSAR技术指标(基线距离、双基地角和距离/方位分辨率)与双基地几何之间的解析表达式。在考虑地球自转的情况下,提出了用坐标变换的方法,解决了近地空间与外太空之间距离的计算问题;实现了任意几何模型下更为精确的SA-BiSAR回波模拟。同时,利用此方法,也可获得直达波信号。
     2.在方位向移变特性与多普勒特性方面,研究了平飞非等速BiSAR方位向移变的问题,运用Taylor多项式展开的分析方法,推导出了方位向移变量的解析表达式,仿真结果与理论分析相吻合。同时,研究了SA-BiSAR多普勒特性。提出了用矢量法来计算多普勒中心频率和多普勒调频率的方法;通过分析收发平台波束的运动轨迹,推导出了合成孔径时间和方位向分辨率的计算公式。文中给出相应的仿真并对结果进行了分析。
     3.在BiSAR成像算法方面,当双基地几何为非平飞模式情况下,研究了BP成像算法的聚焦效果;当双基地几何为平飞模式,提出了一种适合于SA-BiSAR改进的RD成像算法;在PPS参数估计方面,本文提出了用HAF方法来确定初始值,并且用NM单纯形算法作为搜索方法的极大似然参数估计方法。在较低SNR的情况下,改进了算法的估计性能。
     4.在运动误差分析与补偿方面,提出了可以同时描述速度误差和姿态误差的几何模型。在此基础上,推导出了距离误差方程的表达式;归纳出了三种误差类型并且分析了各类误差的来源及其特点。同时,利用仿真的回波数据,进行成像处理后,表明了误差分析结果的正确性。
     5.在相位噪声对SA-BiSAR成像的影响方面,研究了机载SAR在静态条件和振动条件下相位噪声的变化情况。基于两个独立非同分布的振荡器模型,推导了振荡器的单边带谱密度和SA-BiSAR积分旁瓣比的计算公式。文中给出相应的仿真并对结果进行了分析。
Compared to mono-static SAR, bistatic SAR propose many advantages, for example, improving object scattering factor, increasing system survival, and enhancing anti-stealth etc. It can be widely applied to terrain mapping, battlefield surveillance, and detecting moving targets. Transmitter/receiver of BiSAR can be carried by different platforms such as satellite, aircraft and even the stationary on the high tower. SA-BiSAR is a subclass of bistatic SAR, which consists of a spaceborne transmitter and an airborne receiver.
     According to its application fields, satellite can be divided into communicate, weather, scout, navigation mapping, earth resource and multi-useful satellites etc. Compared to navigation satellite, spaceborne SAR possesses the potential ability of forming high-resolution images, and its signal processing is relatively easy. Although its application is limited by the satellite illuminating time and region, high resolution imaging can be implemented with low cost, high reliability and stability using native or foreign satellite resources at present.
     Due to the great discrepancy of satellite and aircraft speed, the configuration SA-BiSAR implies an essential asymmetry, which has different range history and obvious two-dimension spatial variant properties. Hence, some aspects of SA-BiSAR are deeply studied such as imaging mechanism, image formation algorithm and motion error and compensation. The contents in this paper are as follows:
     1. Imaging mechanism and echo simulation are investigated. General bistatic geometry model are presented by the projection of transmitter/receiver trajectory. The variation of technology parameters with bistatic geometry is exhibited by formulae and simulations including baseline range, bistatic angle and range/ azimuth resolution. Considering with earth rotation, we solved the range problem between near earth and out space by coordinate transform method, implemented the more accurate echo simulation at SA-BiSAR arbitrary geometry model. The direct path signal can also be simulated.
     2. Azimuth space-variant and Doppler properties are studied. Aiming at the parallel mode, the formulae of azimuth space-variant are derived with Taylor second order expansion. Theory analysis is coincided with simulations. At the same time, we put forward to compute Doppler centric frequency and Doppler frequency rate by vector method. From footprint trajectory of transmitter and receiver, we derived the formulae of integrated time and azimuth resolution. Simulations are given and results are analyzed in this chapter.
     3. Imaging formation algorithms of BiSAR are investigated. Under the non-parallel mode, we evaluated the focus performance of BP algorithm. Under the parallel mode, we presented the improved RD algorithm which is adapted to the SA-BiSAR system; on the estimation of polynomial phase signal, we formulate the maximum likelihood method which is to choose the initial value by HAF method and search the loacal minimum by NM simplex method. Under the lower SNR, it improved the estimated properties.
     4. Motion error and compensation of SA-BiSAR are demonstrated. We formulated the geometry model including velocity and attitude errors, derived range error equation, induced the three kind errors, and analyzed these properties. With simulating echo data, the results are coincided with theoretical analysis after imaging formation algorithms.
     5. Oscillator phase noise impacts on SA-BiSAR image quality. We studied phase noise change when airborne SAR is at static and vibration conditions. Based on independent and non-identical distribution oscillators, the formula of integration side lobe ratio of SA-BiSAR is derived when airborne SAR is at static conditions or perturbing by random vibration. Simulations are given and results are analyzed in this chapter.
引文
[1]皮亦鸣,杨建宇.合成孔径雷达成像原理.成都:电子科技大学出版社,2007,1-16
    [2]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003,1-31
    [3]X.He,T.Zeng,M.Cherniakov.Signal detectability in SS-BSAR with GNSS non-cooperative transmitter.IEE Proceedings Radar,Sonar and Navigation,2005,152(3):124-132
    [4]L.M.H.Ulander,H.Hellsten,G.Stenstrom.Synthetic-aperture radar processing using fast factorized back-projection.IEEE Transactions on Aerospace and electronic systems,2003,39(3):760-776
    [5]Xiao Shu,D.C.Munson,S.Basu,et al..An N~2logN back-projection algorithm for SAR image formation.Proceedings of Signals,Systems and Computers,2000,3-7
    [6]G.Shippey,S.Banks,J.Pihl.SAS image reconstruction using fast polar back projection:comparisons with fast factored back projection and fourier-domain imaging.Oceans-Europe,2005,96-101
    [7]P.O.Frolind,L.M.H.Ulander.Evaluation of angular interpolation kernels in fast back-projection SAR processing.IEE Proceedings Radar,sonar and navigation,2006,153(3):243-249
    [8]Yibo Na,Yilong Lu,Hongbo Sun.A comparison of back-projection and range migration algorithms for ultra-wideband SAR imaging.Proceedings of Sensor array and multichannel signal processing,2006,320-324
    [9]Wentai Lei,Chunlin Huang,Yi Su.A real-time back projection imaging algorithm for impulse surface penetrating radar.IEEE International conference on geoscience and remote sensing symposium,2005,1734-1737
    [10]S.Foo,S.Kashyap.Cross-correlated back projection for UWB radar imaging.Proceedings of Antennas and propagation society international symposium,2004,1275-1278
    [11]C.Wu,K.Y.Liu,M.Jin.Modeling and a correlation algorithm for spaceborne SAR signals.IEEE Transactions on Aerospace and electronic systems,1982,18(5):563-575
    [12]M.Jin,C.Wu.A SAR correlation algorithm which accommodates large range migration.IEEE Transactions on Geosciences and remote sensing,1984,22(6):592-597
    [13]R.K.Raney,H.Runge,R.Bamler,et al..Precision SAR processing using chirp scaling.IEEE Transactions on Geosciences and remote sensing,1994,32(4):786-799
    [14] A. Moreira, J. Mittermayer, R. Scheiber. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Transactions on Aerospace and electronic systems, 1996,34(5): 1123 - 1136
    [15] G.W. Davidson, F. Wong, I. dimming. The effect of pulse phase errors on the chirp scaling SAR processing algorithm. IEEE Transactions on Aerospace and electronic systems, 1996, 34(2): 471-478
    [16] G.W. Davidson, I.G. dimming, M.R. Ito. A chirp scaling approach for processing squint mode SAR data. IEEE Transactions on Aerospace and electronic systems, 1996, 32(1): 121 -133
    [17] A. Moreira, Yonghong Huang. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geoscience and remote sensing, 1994, 32(5): 1029 - 1040
    [18] R. Bamler. A comparison of range-doppler and wavenumber domain SAR focusing algorithms. IEEE Transactions on Geosciences and remote sensing, 1992, 30(4): 706-713
    [19] C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migration techniques. IEEE Transactions on Aerospace and electronic systems, 1991, 27(2): 194- 207
    [20] J. Gazdag, P. Sguazzero. Migration of seismic data. Proceedings IEEE, 1984, 72(10): 1302-1315
    
    [21] R.H. Stolt. Migration by transform. Geophysics, 1978,43, (1): 23-48
    [22] S. Guillaso, A. Reigber, L. Ferro-Famil, et al.. Range resolution improvement of airborne SAR images. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 135-139
    [23] H.J. Callow, M.P. Hayes, P.T. Gough. Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple/receiver geometry. IEE Electronics Letters, 2002, 38(7): 336-338
    [24] H.S. Shin, J.T. Lim. Range migration algorithm for airborne squint mode spotlight SAR imaging. IET Proceedings Radar, sonar & navigation, 2007,1(1): 77-82
    [25] T. Chung, C.R. Carter. Basic concepts in the processing of SARSAT signals. IEEE Transactions on Aerospace and electronic systems, 1987,23(2): 175-198
    [26] B.D. Rigling, R.L. Moses. Taylor expansion of the differential range for monostatic SAR. IEEE Transactions on Aerospace and electronic systems, 2005,41(1): 60-64
    [27] F. Rocca, C. Cafforio, C. Prati. Synthetic aperture radar: a new application for wave equation techniques. Geophysical Prospecting, 1989,37:809-830
    [28] Yiping Sun, S. Hodgart, P. Sweeney, et al. Physical explanation of SAR phase function in two dimensional wavenumber domain. IEEE International conference on geoscience and remote sensing symposium, 1999, 559-560
    [29] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings IEEE, 1969, 57(8): 1408-1418
    [30] F.H. Wong, T.S. Yeo. A novel technique for the processing of short-dwell spotlight SAR data. IEEE Transactions on Geoscience and remote sensing, 2003,41(5): 953 - 963
    [31] C.F. Castillo-Rubio, S. Llorente-Romano, et al.. Spatially variant apodization for squinted synthetic aperture radar images. IEEE Transactions on Image processing, 2007, 16(8): 2023 - 2027
    [32] K. Wang, X. Liu. Quartic-phase algorithm for highly squinted SAR data processing. IEEE Geoscience and remote sensing letters, 2007,4(2): 246 - 250
    [33] T.S. Yeo, N.L. Tan, C.B. Zhang, et al. A new subaperture approach to high squint SAR processing. IEEE Transactions on Geoscience and remote sensing, 2001, 39(5): 954 - 968
    [34] X. Sun, T.S. Yeo, C.B. Zhang, et al. Time-varying step-transform algorithm for high squint SAR imaging. IEEE Transactions on Geoscience and remote sensing, 1999, 37(6): 2668 - 2677
    [35] G.W. Davidson, I.Cumming. Signal properties of spaceborne squint-mode SAR. IEEE Transactions on Geoscience and remote sensing, 1997, 35(3): 611 - 617
    [36] G.A. Lampropoulos. A new two-dimensional squint mode SAR processor. IEEE Transactions on Aerospace and electronic systems, 1996,32(2): 854 - 863
    [37] C. Cafforio, P. Guccione, A.M. Guarnieri. Doppler centroid estimation for scanSAR data. IEEE Transactions on Geoscience and remote sensing, 2004,42(1): 14 - 23
    [38] A. Abubakar, P.M. van den Berg, S.Y. Semenov. A robust iterative method for born inversion. IEEE Transactions on Geoscience and remote sensing, 2004,42(2): 342 - 354
    [39] D.P. Belcher, C.J. Baker. High resolution processing of hybrid strip-map/spotlight mode SAR. IEE Proceedings Radar, Sonar and Navigation, 1996,143(6): 366-374
    [40] Y. Yuan, J. Sun, S. Mao. PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proceedings Radar, Sonar and Navigation, 2002,149(4): 174-182
    [41] Daiyin Zhu, Zhaoda Zhu. Range resampling in the polar format algorithm for spotlight SAR image formation using the chirp z-transform. IEEE Transactions on Signal Processing, 2007, 55(3): 1011-1023
    [42]Zhaoqiang Bi,Jian Li,Zheng-She Liu.Super resolution SAR imaging via parametric spectral estimation methods.IEEE Transactions on Aerospace and electronic systems,1999,35(1):267-281
    [43]Renbiao Wu,Jian Li,Zhaoqiang Bi,et al..SAR image formation via semiparametric spectral estimation.IEEE Transactions on Aerospace and electronic systems,1999,35(4):1318-1333
    [44]M.Rodriguez-Cassola,G.Krieger,M.Wendler.Azimuth-invariant,bistatic airborne SAR processing strategies based on monostatic algorithms.IEEE International conference on geoscience and remote sensing symposium,2005,1047-1050
    [45]M.Soumekh.Bistatic synthetic aperture radar inversion with application in dynamic object imaging.IEEE Transactions on Signal processing,1991,39(9):2044-2055
    [46]M.Soumekh.Bistatic synthetic aperture radar imaging using wide-bandwidth continuous-wave sources.SPIE,1998,99-109
    [47]Y.Ding,D.C.Munson.A fast back-projection algorithm for bistatie SAR imaging.IEEE international conference on image processing,2002,22-25
    [48]F.H.Wong,T.S.Yeo.New applications of nonlinear chirp scaling in SAR data processing.IEEE Transactions on Geosciences and remote sensing,2001,39(5):946-952
    [49]L.Neo,F.H.Wong,I.G.Cumming.Bistatic SAR processing using non-linear chirp scaling.Proceedings CEOS SAR Calibration Workshop,2004
    [50]J.Ender,I.Walterscheid,A.R.Brenner.Bistatie SAR-translational invariant processing and experimental results.IEE Proceedings Radar sonar Navigation,2006,153(3):177-182
    [51]V.Giroux,H.Cantalloube,F.Daout.An omega-k algorithm for SAR bistatic systems.IEEE International conference on geoscience and remote sensing symposium,2005,1060-1063
    [52]I.Walterscheid,J.Ender,A.Brenner,et al..Bistatic SAR processing using an omega-k type algorithm.IEEE International conference on geoscience and remote sensing symposium,2005,1064-1067
    [53]V.Giroux,H.Cantalloube,F.Daout.An Omega-K algorithm for SAR bistatic systems.IEEE International conference on geoscience and remote sensing symposium,2005,1060-1063
    [54]D D'Aria,A.M.Guarnieri,F.Rocea.Focusing bistatic synthetic aperture radar using dip move out.IEEE Transactions on Geosciences and remote sensing,2004,42(7):1362-1376
    [55]O.Loffeld,H.Nies,et al..Models and useful relations for Bistatic SAR Processing.IEEE Transactions on Geosciences and remote sensing,2004,42(10):2031-2038
    [56]O.Loffeld,H.Nies,U.Gebhardt.Bistatic SAR-some reflections on Rocca's smile.Proceedings of European conference on synthetic aperture radar.2004,379-384
    [57]Y.L.Neo,F.Wong,I.G.Cumming.A two-dimensional spectrum for bistatic SAR processing using series reversion.IEEE Transactions on Geosciences and remote sensing letters,2007,4(1):93-96
    [58]I.Walterscheid,A.Brenner,J.Ender.Geometry and system aspects for a bistatic airborne SAR-experiment.Proceedings of European conference on synthetic aperture radar,2004,567-570
    [59]K.Natroshvili,O.Loffeld.Comparison of bistatic SAR focusing approaches.Proceedings of European conference on synthetic aperture radar,2006
    [60]J Willis Nicholas.Bistatic Radar.Artech House,1991
    [61]J.Ender.A step to bistatic SAR processing.Proceedings of European conference on synthetic aperture radar,2004,359-363
    [62]D.D'Aria,A.M.Guarnieri,F.Rocca.Precision bistatic processing with a standard SAR rocessor.Proceedings of European conference on synthetic aperture radar,2004,385-388
    [63]G.Yates,A.M.Horne,A.P.Blake,et al..Bistatic SAR image formation.Proceedings of European conference on synthetic aperture radar,2004,581-584
    [64]J.Sanz-Marcos,P.Prats,J.J.Mallorqni.Bistatic fixed-receiver parasitic SAR processor based on the back-propagation algorithm.IEEE International conference on geoscience and remote sensing symposium,2005,1056-1059
    [65]R.Bamler,E.Boerner.On the use of numerically computed transfer functions for processing of data from bistatie SARs and high squint orbital SARs.IEEE International conference on geoscience and remote sensing symposium,2005,1051-1055
    [66]A.M.Ortiz,O.Loffeld,S.Knedlik,et al..Comparison of doppler centroid estimators in bistatic airborne SAR.IEEE International conference on geoscience and remote sensing symposium,2005,1963-1966
    [67]K.Natroshvili,O.Loffeld,H.Nies,et al..Focusing of general bistatic SAR configuration data with 2-D iInverse sealed FFT.IEEE Transactions on Geoscience and remote sensing,2006,44(10):2718-2727
    [68]B.D.Rigling,R.L.Moses.Polar format algorithm for bistatic SAR.IEEE Transactions on Aerospace and electronic systems,2004,40(4):1147-1158
    [69]R.Bamler,F.Meyer,W.Liebhart.Processing of bistatic SAR data from quasi-stationary configurations.IEEE Transactions on Geoscience and remote sensing,2007,45(11):3350-3358
    [70]H.Nies,O.Loffeld,K.Natroshvili.Analysis and focusing of bistatic airborne SAR data.IEEE Transactions on Geoscience and remote sensing,2007,45(11):3342-3349
    [71]M.Antoniou,R.Saini,M.Cherniakov.Results of a space-surface bistatic SAR image formation algorithm.IEEE Transactions on Geoscience and remote sensing,2007,45(11):3359-3371
    [72]H.Nies,O.Loffeld,K.Natroshvili,et al..Parameter estimation for bistatie constellations.IEEE International conference on geoscience and remote sensing symposium,2005,1038-1042
    [73]G.Franceschetti,S.Perna.Motion compensation errors:effects on the accuracy of airborne SAR images.IEEE Transactions on Aerospace and electronic systems,,2005,41(4):1338-1352
    [74]G.Fornaro.Trajectory deviations in airborne SAR:analysis and compensation.IEEE Transactions on Aerospace and electronic systems,1999,35(3):997-1009
    [75]F.K.Li,D.N.Held,J.C.Curlander,et al..Doppler parameter estimation for spaceborne synthetic aperture radar.IEEE Transactions.on Geosciences and remote sensing,1985,23(1):47-55
    [76]J.R.Moreira.A new method of aircraft motion error extraction from radar raw data for real time motion compensation.IEEE Transactions on Geosciences and remote sensing,1990,28(4):620-626
    [77]A.Reigber,E.Alivizatos,A.Potsis,et al..Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation.IEE Proceedings Radar,sonar and navigation,2006,153(3):301-310
    [78]A.Reigber,A.Potsis,E.Alivizatos,et al..Wavenumber domain SAR focusing with integrated motion compensation.IEEE International conference on geoscience and remote sensing symposium,2003,1465-1467
    [79]H.C.Chen,C.D.McGillem.Target motion compensation by spectrum shifting in synthetic aperture radar.IEEE Transactions on Aerospace and electronic systems,1992,28(3):895-901
    [80]J.C.Kirk.Motion Compensation for Synthetic Aperture Radar.IEEE Transactions on Aerospace and electronic systems,1975,11(3):338-348
    [81] P. Dubois-Fernandez, H. Cantalloube, B. Vaizan, et al.. ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets. IEE Proceedings-Radar, Sonar and Navigation, 2006,153(3): 214-223
    [82] P.H. Eichel, D.C. Ghiglia, C.V. Jakowatz. Speckle processing method for synthetic aperture radar phase correction. Optics letters, 1989,14(1): 1-5
    [83] D.E. Wahl, P.H. Eichel, D.C. Ghiglia. Phase gradient autofocus—A robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and electronic systems, 1994, 30(3): 827-835
    [84] C.V. Jakowatz, Jr., D.E. Wahl. Eigenvector method for maximum-likelihood estimation of phase errors in synthetic aperture radar imagery. Journal of the optical society of America, A, 1993,10(12):2539-2546
    [85] X. Li, G. Liu, J. Ni. Autofocusing of ISAR images based on entropy minimization. IEEE Transactions on Aerospace and electronic systems, 1999,35(4): 1240-1251
    [86] J.R. Fienup, J.J. Miller. Aberration correction by maximizing generalized sharpness metrics. Journal of the optical society of America A, 2003,20(4): 609-620
    [87] W. Ye, T.S. Yeo, Z. Bao. Weighted least-squares estimation of phase errors of SAR/ISAR autofocus. IEEE Transactions on Geosciences and remote sensing, 1999,37(5):2487-2494
    [88] J. Wang, X. Liu. SAR Minimum-Entropy autofocus using an adaptive-order polynomial model. IEEE Geosciences and remote sensing letters, 2006, 3(4): 512-516
    [89] J.C. Kirk. Bistatic SAR motion compensation. IEEE international radar conference, 1985: 360-365
    [90] H. Nies, O. Loffeld, K. Natroshvili, et al. A solution for bistatic motion compensation. IEEE International conference on geoscience and remote sensing symposium, 2006,1204-1207
    [91] B.D. Rigling, R.L. Moses, Motion measurement errors and autofocus in bistatic SAR. IEEE Transactions on image processing, 2006,15(4): 1008-1015
    [92] M. Wei β. Synchronisation of bistatic radar systems. IEEE International conference on geoscience and remote sensing symposium, 2004:1750-1752
    [93] J.L. Auterman. Phase stability requirements for bistatic SAR. IEEE national radar conference. 1984:48-52
    [94] G. Krieger, M. Younis. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Transactions on Geosciences and remote sensing letters, 2006,3(3): 424-428
    [95]G.Krieger,M.R.Cassola,M.Younis,et al..Impact of oscillator noise in bistatic and multistatic SAR.IEEE International conference on geoscience and remote sensing symposium,2005,1043-1046
    [96]M.Younis,R.Metzig,G.Krieger.Performance prediction of a phase synchronization link for bistatic SAR,IEEE Transactions on Geosciences and remote sensing letters,2006,3(3):429-433
    [97]A.Moccia,G.Rufino,M.D'Errico,et al.BISSAT:a bistatic SAR for earth observation.IEEE International conference on geoscience and remote sensing symposium,2002:2628-2630
    [98]M.D'Errico,A.Moccia.The BISSAT mission-A bistatic SAR operating in formation with COSMO/SkyMed X-band radar.IEEE Aerospace conference proceedings,2002,809-818
    [99]A.Moccia,N.Chiacchio,A.Capone.Spaceborne bistatic synthetic aperture radar for remote sensing applications,International journal of remote sensing,2000,21(18):3395-3414
    [100]A.Moccia,G.Salzillo,M.D'Errico,et al..Performance of spaceborne bistatic synthetic aperture radar,IEEE Transactions on Aerospace and electronic systems,2005,41(4):1383-1393
    [101]M.D'errico,A.Moccia.Attitude and antenna pointing design of bistatic radar formations.IEEE Transactions on Aerospace and electronic systems,2003,39(3):949-959
    [102]G.Krieger,A.Moreira.Spaceborne bi-and multistatic SAR:potential and challenges.IEE Proceedings Radar sonar navigation,2006,153(3):184-197
    [103]G.Krieger,H.Fiedler,J.Mittermayer,et al..Analysis of multistatic configurations for spaceborne SAR interferometry.IEE Proceedings Radar,Sonar,Navigation.150(3):87-96
    [104]N.Gebert,G.Krieger,A.Moreira,et al..Digital beamforming for HRWS-SAR imaging:system design,performance and optimization strategies.IEEE International conference on geoscience and remote sensing symposium,2006,1836-1839
    [105]G.Krieger,A.Moreira.Multistatic sar satellite formations:potentials and challenges.IEEE International conference on geoscience and remote sensing symposium,2005,2680-2684
    [106]M.Eineder,G.Krieger.Interferometric digital elevation model reconstruction-experiences from SRTM and multi channel approaches for future missions.IEEE International conference on geoscience and remote sensing symposium,2005,2664-2667
    [107]S.R.Cloude,G.Krieger,K.P.Papathanassiou.A framework for investigating space-borne polarimetric interferometry using the ALOS-PALSAR sensor.IEEE International conference on geoscience and remote sensing symposium,2005,3361-3364
    [108]G.Krieger,H.Fiedler,I.Hajnsek.TanDEM-X:mission concept and performance analysis.IEEE International conference on geoscience and remote sensing symposium,2005,4890-4893
    [109]A.Moreira,G.Krieger,I.Hajnsek,et al..TanDEM-X:a TerraSAR-X add-on satellite for single-pass SAR interferometry.IEEE International conference on geoscience and remote sensing symposium,2004,1000-1003
    [110]G.Krieger,A.Moreira.Potential of digital beamforming in bi- and multistatic SAR.IEEE International conference on geoscience and remote sensing symposium,2003,527-529
    [111]G.Krieger,H.Fiedler,D.Houman.Analysis of system concepts for bi- and multi-static SAR missions.IEEE International conference on geoscience and remote sensing symposium,2003,770-772
    [112]A.Moreira,G.Krieger.Spacebome synthetic aperture radar(SAR) systems:state of the art and future developments.Microwave Conference,2003,101-104
    [113]G.Krieger,M.Wendler,H.Fiedler,et al..Performance analysis for bistatic interferometric SAR configurations.IEEE International conference on geoscience and remote sensing symposium,2002,650-652
    [114]J.Mittermayer,G.Krieger,A.Moreira,et al..Interferometric performance estimation for the interferometric Cartwheel in combination with a transmitting SAR-satellite.IEEE International conference on geoscience and remote sensing symposium,2003,9-13
    [115]M.Zink,H.Fiedler,I.Hajnsek,et al..The TanDEM-X mission concept.IEEE International conference on geoscience and remote sensing symposium,2006,1938-1941
    [116]D.Hounam,S.Baumgartner,K.H.Bethke,et al..An autonomous,non-cooperative,wide-area traffic monitoring system using space-based radar(TRAMRAD).IEEE International conference on geoscience and remote sensing symposium,2005,2917-2920
    [117]A.Brenner,J.Ender.Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR.IEE Proceedings Radar,Sonar,Navigation.2006,153:152-162
    [118]U.Gebhardt,O.Loffeld,H.Nies,et al..Bistatic airborne/spaceborne hybrid experiment:basic considerations,Proceedings SPIE.2005,5978(21)
    [119]U.Gebhardt,O.Loffeld,H.Nies,et al..Bistatic airborne/spaceborne hybrid experiment:simulation and analysis.Proceedings of European conference on synthetic aperture radar,2006
    [120]I.Walterscheid,J.Klare,A.R.Brenner,et al.,Challenges of a bistatic spaceborne/airborne SAR experiment.Proceedings of European conference on synthetic aperture radar,2006
    [121]A.M.Horne,G.Yates.Bistatic synthetic aperture radar.IEE conference Radar,2002,6-10
    [122]G.Yates,A.M.Horne,R.Middleton,et al..Bistatic SAR image formation.Proceedings of European conference on synthetic aperture radar,2004,581-584
    [123]I.Walterscheid,A.Brenner,J.Ender.Results on bistatic synthetic aperture radar.IEE Electronics letters,2004,40(9):1224-1225
    [124]J.Klare,I.Walterscheid,A.Brenner.Evaluation and optimization of configurations of a hybrid bistatic SAR experiment between TerraSAR-X and PAMIR.IEEE International conference on geoscience and remote sensing symposium,2006,1208-1211
    [125]M.Denise,G.R.Jet,Bistatic radar experiment.Proceedings of European conference on synthetic aperture radar,1998:31-33
    [126]Techsat21-space missions using satellite clusters.Air force research laboratory factsheet,Sept.1998,Available on the world wide web at http://www.vs.afrl.af.mil/factsheets/techsat21.html
    [127]H.Fiedler,G.Krigeger,F.Jochimet et al..Analysis of bistatic configurations for spaceborne SAR interferometry.Proceedings of European conference on synthetic aperture radar,2002,29-32
    [128]D.Massonnet.The interferometric cartwheel:a constellation of passive satellites to produce radar images to be coherently combined.International journal of remote sensing,2001,22(12):2413-2430
    [129]D.Massonnet.Capabilities and limitations of the interferometric cartwheel.IEEE Transactions on Geosciences and remote sensing,2001,39(3):506-520v[130]M.D'Errico,A.Moccia.The BISSAT mission-A bistatic SAR operating in formation with COSMO/SkyMed X-band radar.IEEE Aerospace conference proceedings,2002,809-818
    [131]汤子跃,张守融.双站合成孔径雷达系统原理.北京:国防工业出版社,2003,1-119
    [132]T.Zeng,M.Cherniakov,T.Long.Generalized approach to resolution analysis in BSAR.IEEE Transactions on Aerospace and electronic systems,2005,41(2):461-473.
    [133]M.Cherniakov,T.Zeng,E.Plakidis.Ambiguity function for bistatic SAR and its application in SS-BSAR performance analysis.International conference RADAR,2003:343-348
    [134]Wenqin Wang.Approach of adaptive synchronization for bistatic SAR real-time imaging.IEEE Transactions on Geoscience and remote sensing,2007,45(9):2695-2700
    [135]何峰,梁甸农,刘建平.星载双基地SAR空间几何关系和信号模型.系统工程与电子技术,2004,26(10):1327-1331
    [136]何峰,梁甸农,董臻.适于大斜视角的星载双基地SAR波数域成像算法.电子学报,2005,33(6):1011-1014
    [137]何峰,梁甸农.用星载寄生式SAR提高空间二维分辨率的信号处理.电子学报,2005,33(6):1128-1131
    [138]黄海风,董臻,梁甸农.星载双站SAR“停走停”假设误差分析.电波科学学报,2006,21(6):863-867
    [139]黄海风,梁甸农.非合作式星载双站雷达波束同步设计.宇航学报,2005,26(5):606-611
    [140]李真芳,邢孟道,王彤等.分布式小卫星SAR实现全孔径分辨率的信号处理.电子学报,2003,3112):1800-1803
    [141]王彤,保铮,廖桂生等.分布式小卫星雷达平台沿航向排列研究.宇航学报,2005,26(5):663-667
    [142]井伟,邢孟道,保铮.双星同中心频率多发多收的方位解模糊.电子与信息学报,2007,29(5):1077-1082
    [143]张振华,保铮,邢孟道等.同航线双基合成孔径雷达成像的频域分析.自然科学进展,2007,17(6):809-816
    [144]张振华,保铮,邢孟道等.小卫星分布式SAR系统的信噪比研究.电子与信息学报,2007,29(1):15-18
    [145]李燕平,张振华,邢孟道等.星机双基地SAR的目标二维频谱计算.自然科学进展,2007,17(12):1699-1706
    [146]Zhenhua Zhang,Mengdao Xing,Jinshan Ding,et al..Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain.IEEE Transactions on Geoscience and remote sensing,2007,45(11):3633-3645
    [147]Yanping Li,Zhenhua Zhang,Mengdao Xing,et al..Focusing general bistatic SAR using analytically computed point target spectrum.Asian and pacific conference on synthetic aperture radar.2007,638-641
    [148]Jinshan Ding,Mengdao Xing,Zheng Bao.Modified phase history model for high resolution spaceborne bistatic SAR.Asian and pacific conference on synthetic aperture radar.2007,646-649
    [149]Zhenfang Li,Hongyang Wang,Tao Su,et al..Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems.IEEE Geoscience and remote sensing letters,2005,2(1):82-86
    [150]Zhenfang Li,Zheng Bao,Hongyang Wang,et al..Performance improvement for constellation SAR using signal processing techniques.IEEE Transactions on Aerospace and electronic systems,2006,42(2):436-452
    [151]邢孟道,李真芳,保铮.分布式小卫星雷达空时频成像方法研究.宇航学报(增刊),2005,26(10):70-82
    [152]Zhenfang Li,Zheng Bao,Zhiyong Suo.A joint image coregistration,phase noise suppression,and phase unwrapping method based on subspace projection for multibaseline InSAR Systems.IEEE Transactions on Geoscience and remote sensing,2007,45(3):584-591
    [153]邓彦,张晓玲,李红波.双站合成孔径雷达若干关键技术研究.压电与声光.2005,27(3):312-315
    [154]Xiaoling Zhang,Hongbo Li,Jianguo Wang.The analysis of time synchronization error in bistatic SAR system.IEEE International conference on geoscience and remote sensing symposium,2005,4619-4622
    [155]Bin Zeng,Xiaoling Zhang,Shunji Huang.Study of along track interferometric technology for the bistatic SAR.IEEE International conference on geoscience and remote sensing symposium,2005,4615-4618
    [156]Yulin Huang,Jianyu Yang,Li Xian,et al..Vehicleborne bistatie synthetic aperture radar imaging.IEEE International conference on geoscience and remote sensing symposium,2007,2164-2166
    [157]Jun Shi,Xiaoling Zhang,Jianyu Yang.Translational variant bistatie SAR signal space-time feature and processing method.IEEE International conference on geoscience and remote sensing symposium,2007,2140-2143
    [158]Zhe Liu,Jianyu Yang,Xiaoling Zhang,et al..Frequency domain imaging algorithm for spaceborne/airborne hybrid bistatie SAR.IEEE International conference on geoscience and remote sensing symposium,2007,842-845
    [159]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,1-334
    [160]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1-390
    [161]G.P.Cardillo.On the use of the gradient to determine bistatic SAR resolution,AP-S International Symposium.1990,2:1032-1035
    [162]M.D.Desai,W.K.Jenkins.Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar.IEEE Transactions on Image processing,1992,1(4):505-517
    [163]S.Shamsunder,G.B.Giannakis,B.Friedlander.Estimating random amplitude polynomial phase signals:a cyclosationary approach.IEEE Transactions on Signal processing,1995,43(2):492-505
    [164]G.T.Zhou,G.B.Giannakis,A.Swami.On polynomial phase signals with time-varying amplitudes.IEEE Transactions on Signal processing,1996,44(4):848-861
    [165]J.Angeby.Estimating signal parameters using the nonlinear instantaneous least squares approach.IEEE Transactions on Signal processing,2000,48(10):2721-2732
    [166]W.J.Fitzgerald.Markov chain Monte Carlo methods with applications to signal processing.Signal processing.2001,81(1):3-18
    [167]P.M.Djuric.Bayesian methods for signal processing.IEEE signal processing magazine,1998,15(5):26-28
    [168]L.Dou,R.J.Hodgson.Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation:I.Inverse problems.1995,11:1069-1085
    [169]L.Dou,R.J.Hodgson.Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation:Ⅱ.Inverse problems.1996,12:121-137
    [170]C.Theys,A.Ferrari,M.Vieira.Marginal Bayesian analysis of polynomial-phase signals.Signal Processing.2001,81:69-82
    [171]S.Saha,S.M.Kay.Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling.IEEE Transactions on Signal processing,2002,50(2):224-230.
    [172]D.S.Pham,A.M.Zoubir.Analysis of multicomponent polynomial phase signals.IEEE Transactions on Signal processing,2007,55(1):56-64
    [173]J.M.Francos,B.J.Friedlander.Bounds for estimation of multicomponent signals with random amplitude and deterministic phase.IEEE Transactions on Signal processing,1995,43(5):1161-1172
    [174]B.Porat,B.Friedlander.Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial phase signals.IEEE Transactions on Information theory,1996,42(3):995-1001
    [175]J.A.Legg,D.A.Gray.Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes.IEEE Transactions on Signal processing,2000,48(2):331-337
    [176]B.Friedlander,J.M.Francos.Estimation of amplitudes and phase parameters of multieomponent signals.IEEE Transactions on Signal processing,1995,43(4):917-926
    [177]A.Scaglione,S.Barbarossa.On the spectral properties of polynomial-phase signals.IEEE Signal processing letters,1998,5(9):237-240
    [178]M.Ghogho,A.K.Nandi,A.Swami.Cramer-Rao bounds and maximum likelihood estimation for random amplitude phased-modulated signals.IEEE Transactions on Signal processing,1999,47(11):2905-2916
    [179]S.Barbarossa.Analysis of multicomponent LFM signals by a combined Wigner-Hough transform.IEEE Transactions on Signal processing,1995,43(6):1511-1515
    [180]S.Barbarossa,V.Petrone.Analysis of polynomial-phase signals by the integrated generalised ambiguity function.IEEE Transactions on Signal processing,1997,45(2):316-327
    [181]S.Barbarossa,A.Scaglione,G.B.Criannakis.Product high-order ambiguity function for multicomponent polynomial-phase signal modeling.IEEE Transactions on Signal processing,1998,46(3):691-708
    [182]P.Tichavsky,P.Handel.Multicomponent polynomial phase signal analysis using a tracking algorithm.IEEE Transactions on Signal processing,1999,47(5):1390-1395
    [183]Liping Zhang,Yingning Peng.Outlier probability of generalized chirpogram-based estimators for multicomponent polynomial-phase signals.IEEE Transactions on Signal processing,2005,53(2):576-588
    [184]P.O'Shea.A fast algorithm for estimating the parameters of a quadratic FM signal.IEEE Transactions on Signal processing,2004,52(2):385-393
    [185]S.Peleg,B.Porat.The Cramer-rao lower bound for signals with constant amplitude and polynomial phase.IEEE Transactions on Signal processing,1998,39(3):749-752
    [186]J.C.Lagarias,J.A Reeds,et al..Convergence properties of the Nelder-Mead simplex method in low dimensions.SIAM Journal of Optimization,1998,9(1):112-147.
    [187]J.A.Nelder,R.Mead.A simplex method for function minimization.Computer Journal,1965,7(1):308-313
    [188]B.Ristic,B.Boashash.Comments on "the Crameo-rao lower bounds for signals with constant amplitude and polynomial phase".IEEE Transactions on Signal processing,1998,46(6):1708-1709
    [189] C. Gierull, C. Pike, F. Paquet. Mitigation of phase noise in bistatic SAR systems with extremely large synthetic apertures. Proceedings of European conference on synthetic aperture radar, 2006
    [190] R.L. Filler. The acceleration sensitivity of quartz crystal oscillators: a review. IEEE Transactions on Ultrasonics ferroelectrics and frequency control. 1988,35(3): 297-305.
    [191] J. Rutman. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proceedings IEEE. 1978, 66(9): 1048-1074.
    [192] J. Rutman, F.L. Walls. Characterization of frequency stability in precision frequency sources. Proceedings IEEE, 1991,79(7): 952-960.
    [193] C. Szekely, F.L. Walls, L.P. Lowe, et al. Reducing local oscillator phase noise limitations on the frequency stability of passive frequency standards: tests of a new concept. IEEE Transactions on Ultrasonics, ferroelectrics and frequency control, 1994,41(4): 518-521
    [194] N. Barillet, F. Hamouda, D. Venot, et al. Limitation of the frequency stability by local oscillator phase noise: new investigations and natural improvements. IEEE Transactions on Ultrasonics, ferroelectrics and frequency control, 2000,47(5): 1152 - 1158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700