用户名: 密码: 验证码:
直升机载旋转式SAR与双基SAR大斜视成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)成像是一种全天时、全天候的微波遥感技术;在地球观测、环境监测、军事侦察及飞行器安全飞行和降落等方面具有重要意义。为提高SAR系统性能,扩展其应用平台,国内外开展了新型SAR技术研究。直升机载旋转式SAR利用雷达天线的旋转来合成方位向孔径,从而得到高分辨二维SAR图像。它具有高时空分辨率、短重访周期、前视成像能力、结构简单硬件成本低等优点,且二维成像时不需要直升机平台做任何运动。另外,结合直升机平台运动和天线旋转可合成虚拟二维面阵天线,同时融合距离脉冲压缩技术可实现对观测区域的三维成像。双基SAR是指发射机和接收机位于不同平台上的新型SAR模式。与单基SAR相比,双基SAR具有可获得目标非后向散射特征、系统设计灵活及便于接收机隐身设计等优点。特别地,大斜视双基SAR可以不需要飞越某一地区而能对该区域的目标进行探测;即也具有对前方目标成像能力。因此,作为对具有前方目标成像能力的新型SAR模式,直升机载旋转式SAR和双基SAR具有广泛的军事和民用前景。
     本文在国家自然科学基金和国家973项目支撑下,围绕直升机载旋转式SAR和双基SAR原理和成像算法展开研究,主要创新点如下:
     1、针对直升机载旋转式SAR方位分辨率依赖于方位重构角的大小,传统的划分子孔径的方法使得方位分辨率低的问题。在详细分析其成像几何模型基础上,使用高阶逼近原理近似构造直升机载旋转式SAR的回波信号模型,然后借助级数反演法求得其精确的二维频谱表达式。在此基础上,提出了一种高分辨直升机载旋转式SAR成像算法,给出算法的完整推导过程和各补偿因子的表达式;并详细分析了系统参数选择对直升机载旋转式SAR分辨率的影响。
     2、针对直升机载旋转式SAR雷达天线旋转成像时平台存在运动的问题。提出一种融合直升机平台运动补偿的改进Chirp Scaling算法。该算法首先建立了存在平台运动时直升机载旋转式SAR成像的几何模型。在此基础上,详细分析平台运动引起的目标斜距误差在单个孔径时间内随目标位置的变化关系,得到了平台运动误差的空变性大小并给出误差补偿方法。然后,分析了直升机载旋转式SAR几何构型带来的速度随目标位置变化特性对成像质量的影响,并把其影响补偿融入到Chirp Scaling算法的距离徙动空变性校正和方位压缩中。整个算法只包含快速傅立叶变换和复数乘操作,不涉及插值,易于工程实现。最后,计算机仿真结果表明,该算法能够对直升机平台运动时大场景进行成像并具有良好的成像效果。
     3、提出了一种基于调频连续波(Frequency Modulated Continuous Wave, FMCW)的直升机载旋转式SAR新的成像模式并给出了相应的成像算法。该方法首先利用等效相位中心原理,将收发分置天线系统的回波信号等效为“自发自收”单基系统。在此基础上,求得了其精确的二维频谱同时分析了雷达天线连续运动的影响--产生多普勒频移,并给出补偿方法;然后运用高效的逆Chirp-Z变换校正了距离徙动空变性。详细分析了速度近似误差对成像区域大小的影响,并把其影响补偿融合到成像算法中。整个算法只包含快速傅立叶变换和复乘操作,不涉及插值,易于工程实现。最后,仿真结果验证了分析结论的正确性和算法的有效性。
     4、结合直升机平台的运动和安装在旋翼末端的雷达天线的旋转,直升机旋转式SAR能实现对载机前方目标的三维成像。本文根据直升机载旋转式SAR几何构型和回波信号特性,提出一种新的直升机载旋转式SAR前视三维成像算法。该算法首先将雷达天线旋转得到回波数据采用改进Chirp Scaling算法处理获得单幅SAR图像;然后把沿每个方位向对应的斜距-沿航向平面的切片数据看成前下视成像模式的回波数据,利用融合子场景划分技术的Omega-k成像算法沿方位依次进行成像处理,最后获得直升机平台前方目标的三维图像。仿真结果验证了该算法的有效性和正确性。该模式仅仅利用了一根天线就能获得载机平台前方目标的三维SAR图像,具有结构简单、成本低等优势。
     5、在大斜视方位时变双基SAR模式下,一方面,距离走动校正引入的距离偏移外,方位时变的几何构型也引入一个距离偏移。尤其是在接收和发射平台航线夹角较大时,几何构型引入的空变性变得更剧烈。另一方面,随着斜视角的增大,方位调频率高次项和三次相位的空变性已经不能忽略。针对该问题,提出一种改进的方位非线性调频变标算法。该方法首先在距离频率-方位时域完成距离走动和多普勒中心校正,然后在二维频域通过一致二次距离压缩校正剩余的距离单元徙动和距离-方位高次耦合。在分析方位时变双基SAR几何构型引入的方位空变性、方位调频率高次项和三次相位空变特性的基础上,推导出变标函数的系数。相比传统的非线性调频变标算法,该算法没有增加任何多余处理步骤。该算法可以有效的提高双基SAR成像性能,极大的扩展方位向聚焦深度。
With the ability of day&night and all weather condition imaging on observing areas,synthetic aperture radar (SAR) plays an important role in earth observation,environment monitoring, military reconnaissance and safety fighting and landing foraircrafts. To improve its system capability and extend its application platform,researches on the novel SAR systems have been carried out in the SAR community.Azimuth synthetic aperture can be obtained based on the the radar antenna rotating.Thus, helicopter-borne rotating synthetic aperture radar (ROSAR) can achieve twodimensional imaging. It has more advantages such as high spatial and temporalresolution, short revisit period, forward-looking imaging capacity, simple structure andlow cost, and two dimensional images can be obtained without the necessity of anymovement of the helicopter platform. The observation scene’s three dimensional imagescan be acquired by combining the forward movement of the helicopter platform and therange pulse compression technique. Bistatic SAR is a kind of synthetic aperture radarwhose transmitter and receiver are mounted on difference platforms. Compared withmonostatic SAR, bistatic SAR can obtain the targets’ non-backscattering features,making the design of the transmitter and receiver more flexible and beneficial for thereceiver platform’s stealth design. Specifically, highly squinted bistatic SAR canobserve the targets of.certain areas without flying through it. That is, highly squintedbistatic SAR has the capability of imaging on the front target. Therefore, as a newimaging configureation for the front targets, helicopter-borne ROSAR and bistatic SARcould be widely used in both military and civilian fields.
     Sponsored by the National Natural Science Foundation of China and China’s BasicScientific Research Project (973), this dissertation researches the principles and imagingalgorithms of the helicopter-borne ROSAR and bistatic SAR. The key innovations inthis thesis are as follows:
     1. Considering the dependence of the azimuth resolution of the helicopter-borneROSAR on the azimuth reconstruction angle, and trational subaperture processingazimuth resolution suffers from low resolution problem, a novel echo signal model isestablished using a higher order range model by analyzing in detail the helicopter-borneROSAR geometric configuration. Then the accurate two-dimensional spectrum isderived by series reversion. Based on which, a new high-resolution imaging algorithmis proposed for Helicopter-borne ROSAR, detailed imaging procedure and the expression of the compensation factor are also presented. Moreover, the impacts ofsystem parameters selection on azimuth resolution are also analyzed.
     2. An improved Chirp Scaling algorithm incorporating motion compensation forhelicopter-borne ROSAR is proposed to accommodate the helicopter platformmovement during radar antenna rotating imaging. Firstly, the geometric model ofhelicopter-borne ROSAR with platform movement is established. Based on which, therelationship of the slant range error introduced by platform movement variation with thetarget position within the synthetic aperture time is analyzed in detail. Then, the slantrange error’s range spatial characteristics can be obtained and correspondingcompensation method is given. Next, the impact of the range-dependent velocity causedby the helicopter-borne ROSAR inherent geometric configuration on imaging quality isanalyzed and the compensation methods are incorporated into the range cell migrationspatial variance correction and azimuth compression. With only FFT and complexmultiplication and no interpolations, the proposed method can be efficientlyimplemented. Finally, simulation results demonstrate that well-focused SAR image canbe obtained for wide swath scenarios and existing platform movements using theproposed method.
     3. A novel helicopter-borne ROSAR imaging model and algorithm based onfrequency modulated continue wave (FMCW) are proposed. Firstly, using the principleof equivalent phase center, the separated transmitting and receiving system is turned tobe a monostatic one. Based on which, precise two-dimensional spectrum is deduced,besides Doppler offset caused by the continuous motion of the antenna during thetransmitting and receiving is analyzed and compensated. Then efficient inverse Chirp-Ztransform scaling is applied to correct the range-dependent range cell migration, besidesthe effects of range-dependent velocity approximation errors on the imaging algorithmare analyzed and corresponding compensation method is also given. With only FFT andcomplex multiplication and no interpolations, the proposed method can be efficientlyimplemented. Finally, correctness of the analysis and effectiveness of the proposedalgorithm are demonstrated through simulation results.
     4. Combining the helicopter platform movement and the radar antenna mounted onat the tip of the rotator blades rotating movement, the helicopter-borne ROSAR canachieve three dimensional images for the platform’s front objects. In this thesis, a novelforward-looking three-dimensional imaging algorithm is proposed for helicopter-borneROSAR based on the special imaging geometric configuration and the characteristics ofthe echo signal. Firstly, the azimuth and range well-focused SAR image relative to the same area can be obtained by using the improved chirp scaling algorithm, and thenevery along-track and slant-range slice data is regarded as a collection from thedownward-looking imaging mode. Based on that, an improved omega-k algorithmincorporating subscene processing technique is developed to obtain accurate along-trackand slant-range focusing images. Then, the three-dimensional SAR image can beobtained by processing all the slices with the same procedure. The validation of theproposed method is done by exploiting simulated data. Since one only antenna is usedto get the targets’ three-dimensional image, the helicopter-borne ROSAR has low costand simple structure characteristics.
     5. Apart from the range shift caused by the linear range walk correction, for thehighly squinted azimuth-variant bistatic SAR, another severe range offset is introducedby the inherent azimuth-variant geometric configuration and the impacts becomesignificant with the increase of the azimuth resolution and the difference between thetwo unparalleled tracks. On the other hand, the azimuth–dependent higher orderquadratic FM rate terms and cubic phase term become important with the increase of thesquint angle. To accommodate for this problem, an extended azimuth nonlinear chirpscaling algorithm (EANLCSA) is investigated in this thesis. Firstly, range-azimuthcoupling is mitigated through a linear range walk correction operation, and then bulksecondary range compression (BSRC) is implemented to compensate the residual rangecell migration and cross coupling terms. Following which, the characteristics of theazimuth-dependent quadratic and cubic phase terms are analyzed, and modified scalingcoefficients are derived by adopting higher order approximation and incorporating theazimuth-dependent range offset caused by the inherent bistatic geometric configuration.Compared with traditional nonlinear chirp scaling method, large azimuth depth offocusing can be realized without changing the overall procedure.
引文
[1] L. Sadovonik, V. Manasson, Naruto Yonemoto, et al. Helicopter obstacle detectionradar system[C] Proceedings of SPIE,2000:1-12.
    [2] Ian G. Cumming, Frank H. Wong. Digital processing of synthetic aperture radardata: algorithm and implementation[M]. Beijing: Publishing house of electronicsindustry,2005.
    [3]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [4]皮亦鸣,杨建宇,付锍生,杨晓波.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2007.
    [5] Shunichi Futatsumori, Akiko Kohmura, Naruto Yonemoto, et al.. Smalltransmitting power and high sensitivity76GHz millimeter-wave radar for obstacledetection and collision avoidance of helicopter[C]. Proceedings of the9thEuropean Radar Conference, Amsterdam, the Netherlands,2012:178-182.
    [6] Sebastian Scherer, Lyle Chamberlain, Sanjiv Singh. First results in autonomouslanding and obstacle avoidance by a full-scale helicopter[C]. IEEE InternationalConference on Robotics and Automation, Minnesota, USA,2012:14-18.
    [7] Sutor T, Witte F, and Moreira A. A new sector imaging radar for enhancedvision-SIREV[C]. Proceedings of SPIE,1999:39-47.
    [8]刘高高.单/双基SAR成像算法研究[D].博士,西安电子科技大学,2012.
    [9] Xiaolan Qiu, Donghui Hu, Chibiao Ding. Some reflections on bistatic SAR offorward-looking configuration[J]. IEEE Geosci. Remote Sens. lett.,2008,5(4):735-739.
    [10] J. Balke. Field test of bistatic forward-looking synthetic aperture radar[C]. IEEEInt. Radar Conf. Germany,2005:424-429.
    [11] Helmut Klausing, Wolfgang Keydel. Feasibility of synthetic aperture radar withrotating antenna[C]. IEEE International Radar Conference, America,1999:51-56.
    [12] Kreitmair-Steck, A.P. Wolframm. HeliRadar-A rotating antenna synthetic apertureradar for helicopter all weather operations[C]. Proceedings of the AGARD59thGuidance and Control Panel, Italy,1994:56-62.
    [13]仇晓兰,丁赤飚,胡东辉.双站SAR成像处理技术[M].北京:科学出版社,2010.
    [14]张光斌.双/多基地雷达参数估计算法研究[D].博士,西安电子科技大学,2006.
    [15]张振华.双/多基SAR成像算法研究[D].博士,西安电子科技大学,2007.
    [16] Schaber, GG; Mccauley, J.F; Breed, C.S. Shuttle Imaging Radar: Physical controlson signal penetration and subsurface scattenng in the eastern sahara[J]. IEEETrans. Geosci. Remote Sens.,1986,24(4):603-623.
    [17] Mccauley, J.F; Breed, C.S.; Schaber, G.G. Paleodrainages of the easternsahara-The radar rivers revisited(SIR-A/B Implications for a Mid-TertiaryTrans-Afiarcan Drainage System)[J]. IEEE Trans. Geosci. Remote Sens.,1986,24(4):624-648.
    [18] Http://esapub.esrin.esa.it/eoq/eoq44/lichten.htm.
    [19] Mahmood, A. RADARSAT-I Background Mission for a global SAR coverage,Geoscience and Remote Sensing[C]. IGARSS'97. Remote Sensing-A ScientificVision for Sustainable Development.1997:1217-1219.
    [20] Nemoto, Y.; Nishino, H.; Ono, M.; Mizutamari, H. Japanese Earth ResourcesSamllite-I synthetic aportugo radar[C]. Proceedings of the IEEE,1991:800-809.
    [21] Steffen Gantert, Gertrud Riegler, Frank Teufel, Oliver Lang, Lutz Petrat,Wolfgang Koppe, J rg Herrmann. TERRASAR-X, TANDEM-X,TERRASAR-X2and their applications[C]. APSAR, Soul, Korea,2011:18-21.
    [22] Konstantinos Papathanassiou, Florian Kugler, Irena Hajnsek. Exploring thepotential of POL-INSAR techniques at X-Band first results and experiments fromTANDEM-X[C]. APSAR, Soul, Korea,2011:24-25.
    [23] Wolfgang Martin Boerner. On Polarimetric, Interferometric, PolarimetricInterferometric&RP-Differential-POLIn-SAR sensing&imaging of theterrestrial covers[C]. APSAR, Soul, Korea,2011:26-27.
    [24] M. Ludwig, R. Torres, A. stergaard, F. Rostan, C. Schaefer. The Sentinel-1SARinstrument[C]. APSAR, Soul, Korea,2011:1-4.
    [25] Andres Solana González, Massimo Labriola, Josep Closa Soteras, et al..Instrument design and performance[C]. APSAR, Soul, Korea.2005:23-29.
    [26] http://www.fas.org/irp/program/collect/global_hawk.htm.
    [27] http://www.sandia.gov/radar/sar.htm.
    [28] http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776read5679/.
    [29] Joachim H. G. Ender, Andreas R. Brenner, Helmut Essen, et al.. Advances in radarimaging at Fraunhofer-FHR[C]. APSAR, Soul, Korea,2011:84-85.
    [30] Scott Hensley, Bruce Chapman, Maxim Neumann, et al.. Polarimetricinterferometric studies of the harvard forest using L-band UAVSAR data repeatpass data[C]. APSAR, Soul, Korea,2011:22-23.
    [31] Wolfgang, Kreitmair-Steck and Stefan Haisch. All-weather capability for rescuehelicopters[C]. Proceedings of SPIE,2001:43-50.
    [32] Bemd Korn, Hans-Ullrich Doehler, and Peter Hecker, Institute of flight guidanceweather independent flight guidance: analysis MMW radar images approach andlanding[C]. Proceedings of IEEE Radar2002.2000:350-353.
    [33] K. Yamamoto, K. Yamada, N. Yonemoto, H. Yasui, H. Millimeter wave radar forthe obstacle detection and warning system for helicopters[C]. Proceedings ofIEEE Radar2002,2002:94-98.
    [34] Kreitmair-Steck, A.P. Wolframm. Heliradar2000: helicopter all weatheroperations for the next millennium[C]. EUSAR2002.2002:51-58.
    [35]孙兵,周荫清,陈杰,李春升.广域观测圆轨迹环扫SAR成像模式研究[J].电子与信息学报,2008,30(12):2805-2808.
    [36] Min Jeon and Young Soo Kim. Migration technique for rotor synthetic apertureradar [J]. Eleclronics Letters,1997,33(7):630-631.
    [37] B. C. Barber. Imaging the rotor blades of hovering helicopters with SAR[C].Proceedings of SPIE,2008:21-28.
    [38] J.H.G. Ender, I. Walterscheid, A.R. Brenner. Bistatic SAR-translational invariantprocessing and experimental results[C]. IET Proc.-Radar Sonar Navig.,2006,153(3):177-183.
    [39] Shichao Chen, Qisong Wu, Peng Zhou, Mengdao Xing, Zheng Bao. A New Lookat Loffeld's Bistatic Formula in Tandem Configuration[J]. IEEE Geosci. RemoteSens. lett.,2012,9(4):710-714.
    [40] Q. Wu, M. Xing, H. Shi, X. Hu, Z. Bao. Exact analytical two-dimensionalspectrum for bistatic synthetic aperture radar in tandem configuration[J]. IETRadar Sonar Navig.,2011,5(3):349-360.
    [41] Feng Li, Shu Li, Yigong Zhao. Focusing azimuth-invariant bistatic SAR data withchirp scaling[J]. IEEE Geosci. Remote Sens. lett.,2008,5(3):484-486.
    [42] Yew Lam Neo, Frank H. Wong, Ian G. Cumming. Processing of azimuth-invariantbistatic SAR data using the range doppler algorithm[J]. IEEE Trans. Geosci.Remote Sens.,2008,46(1):14-21.
    [43] Hee-Sub Shin, Jong-Tae Lim. Omega-k algorithm for airborne spatial invariantbistatic spotlight SAR imaging[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(1):238-250.
    [44] Zhenhua Zhang, Mengdao Xing, Jinshan Ding, Zheng Bao. Focusing parallelbistatic SAR data using the analytic transfer function in the wavenumberdomain[J]. IEEE Trans. Geosci. Remote Sens.,2007,45(11):3633-3645.
    [45] Yanping Li, Zhenhua Zhang, Mengdao Xing, Zheng Bao. Bistatic spotlight SARprocessing using the frequency-scaling algorithm[J]. IEEE Geosci. Remote Sens.lett.,2008,5(1):48-52.
    [46] Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Joachim H. G. Ender.Chirp-scaling algorithm for bistatic SAR data in the constant-offsetconfiguration[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(3):952-964.
    [47] Xiaolan Qiu, Donghui Hu, Chibiao Ding. An improved NLCS algorithm withcapability analysis for one-stationary BiSAR[J]. IEEE Trans. Geosci. RemoteSens.,2008,46(10):3179-3186.
    [48] F. H.Wong, T. S. Yeo. New applications of non-linear chirp scaling in SAR dataprocessing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946–953.
    [49] Robert Wang, Otmar Loffeld, Yew Lam Neo, Holger Nies, Ingo Walterscheid,Thomas Espeter, Jens Klare, Joachim H. G. Ender. Focusing bistatic SAR data inairborne/stationary configuration[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(1):452-465.
    [50] A.S. Goh, M. Preiss, N.J.S. Stacy, et al.. Bistatic SAR experiment with the Ingaraimaging radar[J]. IET Radar Sonar Navig.,2010,4(3):426-437.
    [51] Koba Natroshvili, Otmar Loffeld, Holger Nies, Amaya Medrano Ortiz, StefanKnedlik. Focusing of general bistatic SAR configuration data with2-D inversescaled FFT[J]. IEEE Trans. Geosci. Remote Sens.,2006,44(10):2718-2727.
    [52] Yew Lam Neo, Frank H. Wong, Ian G. Cumming. A comparison of point targetspectra derived for bistatic SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2481-2492.
    [53] Robert Wang, Yun Kai Deng, Otmar Loffeld, Holger Nies, Ingo Walterscheid,Thomas Espeter, Jens Klare, Joachim H. G. Ender. Processing the azimuth-variantbistatic SAR data by using monostatic imaging algorithms based ontwo-dimensional principle of stationary phase[J]. IEEE Trans. Geosci. RemoteSens.,2011,49(10):3504-3520.
    [54] R. Wang, O. Loffeld, Y.L. Neo, H. Nies, Z. Dai. Extending Loffeld’s bistaticformula for the general bistatic SAR configuration[J]. IET Radar Sonar Navig.,2010,4(1):74–84.
    [55] Robert Wang, Otmar Loffeld, Holger Nies,et al.. Focusing spaceborne/airbornehybrid bistatic SAR data using wavenumber-domain algorithm[J]. IEEE Trans.Geosci. Remote Sens.,2009,47(7):2275-2283.
    [56] Frank H. Wong, Ian G. Cumming, Yew Lam Neo. Focusing bistatic SAR datausing the nonlinear chirp scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2493-2505.
    [57] Can Evren Yarman, Birsen Yaz c, Margaret Cheney. Bistatic synthetic apertureradar imaging for arbitrary flight trajectories[J]. IEEE Trans. Geosci. RemoteSens.,2008,17(1):84-93.
    [58] I. Walterscheid, A. Brenner, J. Ender. Geometry and system aspects for a bistaticairborne SAR-experiment[C]. Proc. EUSAR, Ulm, Germany,2004:567-570.
    [59] T. Espeter, I. Walterscheid, J. Klare, C. Gierull, A. R. Brenner, J. Ender, O. Loffeld.Progress of hybrid bistatic SAR: Synchronization experiments and first imagingresults[C]. Proc. EUSAR, Friedrichshafen, Germany,2008:217-220.
    [60] D. Martinsek, R. Goldstein. Bistatic radar experiment[C]. Proc. EUSAR,Friedrichshafen, Germany,1998.
    [61] Ingo Walterscheid, Thomas Espeter, Andreas R. Brenner, et al.. Bistatic SARexperiments with PAMIR and TerraSAR-X—setup, processing, and imageResults[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(8):3268-3279.
    [62] Marc Rodriguez-Cassola, Pau Prats,Daniel Schulze, Nuria Tous-Ramon, et al..Spaceborne SAR experiments with TanDEM-X[J]. IEEE Geosci. Remote Sens.lett.,2012,9(1):33-37.
    [63]李燕平,邢孟道,井伟,等.一种双基SAR的SR-ECS成像算法[J].自然科学进展,2008,18(3):323-333.
    [64]闫鸿慧,王岩飞,于海锋,等.一种基于距离补偿的分布式小卫星双基SAR成像方法[J].电子与信息学报,2005,27(5):771-774.
    [65]何峰,梁甸农,董臻.适于大斜视角的星载双基SAR波数域成像算法[J].电子学报,2005,33(6):1011-1014.
    [66]史洪印,周荫清,陈杰.平飞模式机载双基SAR动目标检测方法[J].北京航空航天大学学报,2009,35(8):996-1000.
    [67]刘昉,王建国.双基SAR欺骗式干扰性能研究[J].电子与信息学报,2010,32(1):75-79.
    [68]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [69] Brian D. Rigling, Randolph L. Moses. Polar format algorithm for bistatic SAR[J].IEEE Trans. Aerosp. Electron. Syst.,2004,40(4):1147-1159.
    [70] Davide D’aria, Andrea Monti Guarnieri, Fabio Rocca. Focusing bistatic syntheticaperture radar using dip move out[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(7):1362-1375.
    [71] Otmar Loffeld, Holger Nies, Valerij Peters, Stefan Knedlik. Models and usefulrelations for bistatic SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(10):2031-2038.
    [72] Robert Wang, Otmar Loffeld, Qurat Ul-Ann, et al.. A bistatic point targetreference spectrum for general bistatic SAR processing[J]. IEEE Geosci. RemoteSens. lett.,2008,5(3):517-521.
    [73] R. Wang, O. Loffeld, H. Nies, et al.. Bistatic point target reference spectrum in thepresence of trajectory deviations[J]. IET Radar Sonar Navig.,2009,3(2):177-185.
    [74] Kefeng Yang, Feng He, Diannong Liang. A two-dimensional spectrum for generalbistatic SAR processing[J]. IEEE Geosci. Remote Sens. lett.,2010,7(1):108-112.
    [75] Yew Lam Neo, Frank Wong, Ian G. Cumming. A two-dimensional spectrum forbistatic SAR processing using series reversion[J]. IEEE Geosci. Remote Sens. lett.,2007,4(1):93-96.
    [76] Baochang Liu, Tong Wang, Qisong Wu, Zheng Bao. Bistatic SAR data focusingusing an omega-K algorithm based on method of series reversion[J]. IEEE Trans.Geosci. Remote Sens.,2009,47(8):2899-2912.
    [77] MARC RODRIGUEZ-CASSOLA PAU PRATS, GERHARD KRIEGER,ALBERO MOREIRA. Efficient Time-Domain Image Formation with PreciseTopography Accommodation for General Bistatic SAR Configurations[J]. IEEETrans. Aerosp. Electron. Syst.,2011,47(4):2949-2963.
    [78] A.M.Smith. A new approach to range Doppler SAR processing[C]. InternationalJournal of Remote Sensing,1991,12(2):235-251.
    [79] Richard Bamler. A comparison of Range-Doppler and wavenumber domain SARfocusing algorithms[J]. IEEE Trans. Geosci. Remote Sens.,1992,30(4):107-114.
    [80] Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR dataprocessing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. RemoteSens.,1999,37(5):2198-2214.
    [81] C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migrationtechniques[J]. IEEE Trans. Aerosp. Electron. Syst.,1991,27(2):194-207.
    [82] R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, Frank H. Wong.Precision SAR processing using chirp scaling[J]. IEEE Trans. Geosci. RemoteSens.,1994,32(4):786-799.
    [83] Wahl D E, Eichel P H, Chiglia D C, et al. Phase gradient autofocus-A robust toolfor high-resolution SAR phase correction[J]. IEEE Trans. Aerosp. Electron. Syst.,1999,30(2):827-834.
    [84] R. Lanari, M. Tesauro, E. Sansosti, and G. Fornaro. Spotlight SAR data focusingbased on a two-step processing approach[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(9):1993-2004.
    [85] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms[M]. New York: Wiley,1999.
    [86] Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and scanSARimaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136
    [87] G. W. Davidson, L. G. Cumming, M. R. Ito. A chirp scaling approach forprocessing squint mode SAR data[J]. IEEE Trans. Aerosp. Electron. Syst.,1996,32(1):121-133.
    [88]黄源宝,李真芳,保铮.大斜视角SAR成像的改进频率变标算法[J].系统工程与电子技术,2003,25(12):1542-1546.
    [89] Anthony Mangogno. Development of a Helicopter obstacle detection and air Data[C]. IEEE20th Digital Avionics Conference, Germany,2001:10-18.
    [90] Young Kwag. Obstacle awareness and collision avoidance radar sensor system forlow altitude flying vehicle[C]. Proceeding of IEEE the23rd DASC, Salt Lake City,2004:20-25.
    [91] J. Wu, J. Yang, Y. Huang, H. Yang, and H. Wang, Bistatic forward-looking SAR:Theory and challenges[C]. IEEE Radar Conf., Pasadena, USA,2009:1-4.
    [92] J. Wu, Y. Huang, J. Yang, W. Li, and H. Yang. First result of bistaticforward-looking SAR with stationary transmitter[C]. In Proc. IGARSS,Vancouver, Canada,2011:1223-1226.
    [93]陈琦,杨汝良.机载前视合成孔径雷达ChirpScaling成像算法研究[J].电子与信息学报,2008,30(1):228-232.
    [94] Mittermayer J and Wendler M. Data processing of an innovative forward lookingSAR system for enhanced vision[C]. Proceedings of EUSAR2000, Munich,Germany,2000:733-736.
    [95] Yi Yusheng, Zhang Linrang, Li Yan, Liu Nan, Liu Xin. Range Doppler algorithmfor bistatic missile-borne forward-looking SAR[C]. APSAR, Xi'an,2009:960-963.
    [96]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析及运动补偿[J].电子与信息学报,2008,30(6):1316-1320.
    [97]易予生,张林让,刘昕,刘楠,申东.基于级数反演俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术,2009,31(11):39-43.
    [98] Helmut Klausing, Wolfgang Keydel. Feasibility of a synthetic aperture radar withrotating antenna (ROSAR)[C]. IEEE International Radar Conference, America,1999:51-56.
    [99] Kreitmair-Steck, A.P. Wolframm. HeliRadar-A rotating antenna synthetic apertureradar for helicopter all weather operations[C]. Proceedings of the AGARD59thGuidance and Control Panel, Italy,1994:56-62.
    [100] G. C. Sun, X. W. Jiang, M. D. Xing, Z. J. Qiao, Y. R. Wu, Z. Bao. Focusimprovement of highly squinted data based on azimuth nonlinear scaling [J].IEEE Trans. Geosci. Remote Sens.,2011,49(6):2308-2322.
    [101] Yamaguchi Y Mitsumoto M,Sengoku M.Synthetic aperture FMCW radar appliedto the detection of objects buried in snowpack[J]. IEEE Trans. Geosci. RemoteSens.,1994, pp:11-18.
    [102] Yamaguchi Y Two-Dimensional and Full Plarimetric Imaging by a syntheticaperture FMCW radar[J].IEEE Trans. Geosci. Remote Sens.,1995,33(5):421-428.
    [103] A D Sweet,D F Dubbert,A WDoerry, et al.. A portfolio of fine resolutionKu-band miniSAR Images[C]. Proceedings of SPIE,2001:10-18.
    [104] A Meta, P Hoogeboorn. Development of signal processing algorithm for highresolution airborne millimeter wave FMCW SAR[C].2005IEEE InternationalRadar Conference,2005:326-331.
    [105]梁毅,郭亮,邢孟道,等.一种斜视FMCW SAR的等效正侧视处理方法[J].电子学报,2009,37(6):1160-1164.
    [106] Robert Wang, Otmar Loffeld, Holger Nies, et al. Focus FMCW SAR data usingthe wavenumber domain algorithm[J]. IEEE Trans. Geosci. Remote Sens,2010,48(4):2109-2117.
    [107] Jiang Zhihong, Huangfu Kan, Wan Jianwei, et al. Modified frequency scalingalgorithm for FMCW SAR data processing[J]. Chinese Journal of Aeronautics,2007,20(4):339-345.
    [108] Jiang Zhihong, Cheng Zhu, Wan Jianwei, et al. Improved nonlinear frequencyscaling algorithm for squint FMCW SAR[J]. Eleclronics Letters,2007,18(43):996-998.
    [109] J. Mittermayer, A. Moreira, and O. Loffeld. Spotlight SAR data processing usingthe frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [110] Yue Liu, Yun Kai Deng, Robert Wang. Focus squint FMCW SAR data usinginverse Chirp-Z transform based on an analytical point target referencespectrum[J]. IEEE Geosci. Remote Sens. Lett.,2012,9(5):866-871.
    [111] G. Franceschetti and G. Fornaro. Synthetic aperture radar interferometry[M]. InSynthetic Aperture Radar Processing. Boca Raton,1999.
    [112] R. Bamler and P. Hartl. Synthetic aperture radar interferometry[C] Inv. Probl.,1998: R1-R5.
    [113] G. Fornaro, F. Lombardini, and F. Serafino. Three-dimensional multipass SARfocusing: Experiments with long-term spaceborne data[J]. IEEE Trans. Geosci.Remote Sens.,2005,43(4):702-714.
    [114] Mittermayer J, Wendler M, Krieger G. Sector imaging radar for enhanced vision(SIREV): Simulation and processing techniques[C]. Enhanced and SyntheticVision2000, Proceeding of SPIE, Orlando, FL, USA,2000.4023:298-305.
    [115] Xiaozhen Ren, Jiantao Sun, and Ruliang Yang. A New Three-DimensionalImaging Algorithm for Airborne Forward-Looking SAR[J]. IEEE Geosci. RemoteSens. Lett.,2011,8(1):153-157.
    [116]任笑真,杨汝良.机载前视SAR三维成像算法研究[J].电子与信息学报,2010,32(6):1361-1365.
    [117] Krieger G, Mittermayer J, Wendler M. Sector imaging radar for enhancedvision[J]. Aerospace Sci Tech,2003,7:147-158.
    [118] Yi Yusheng, Zhang Linrang, Li Yan, Liu Nan, Liu Xin. Range Doppler algorithmfor bistatic missile-borne forward-looking SAR[C]. APSAR, Xi'an,2009:960-963.
    [119] T. S. Yeo, N. L. Tan, C. B. Zhang, and Y. H. Liu. A new subaperture approach tohigh squint SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,37(5):955-967.
    [120] Daoxiang An, Xiaotao Huang, Tian Jin and Zhimin Zhou. Extended Two-StepFocusing Approach for Squinted Spotlight SAR Imaging[J]. IEEE Trans. Geosci.Remote Sens.,1999,37(6):1505-1517
    [121] G. Krieger and A. Moreira. Spaceborne bi-and multistatic SAR: Potential andchallenges[C]. Proc. Inst. Elect. Eng.-Radar Sonar Navig.,2006,153(3):184-198.
    [122] Marc Rodriguez-Cassola, Stefan V. Baumgartner, Gerhard Krieger, and AlbertoMoreira. Bistatic TerraSAR-X/F-SAR Spaceborne-Airborne SAR Experiment:Description, Data Processing, and Results[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(2):781-794.
    [123] M. Y. Jin and C. Wu. A SAR correlation algorithm which accommodates largerange migration[J]. IEEE Trans. Geosci. Remote Sens.,1984,22(6):592-597.
    [124] A. Moreira and Y. H. Huang. Airborne SAR processing of highly squinted datausing a chirp scaling approach with integrated motion compensation[J]. IEEETrans. Geosci. Remote Sens.,1994,32(5):1029-1040.
    [125] Wei Wang, Guisheng Liao, Dong Li and Qing Xu. Focus improvement of squintbistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geosci. RemoteSens. Lett.,2013, to be published.
    [126] D. An, X. Huang, T. Jin, and Z. Zhou. Extended nonlinear chirp scaling algorithmfor high-resolution highly squint SAR data focusing[J]. IEEE Geosci. RemoteSens.,2012,50(9):3595-3609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700