用户名: 密码: 验证码:
星载多通道高分辨宽测绘带合成孔径雷达成像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载合成孔径雷达(Synthetic Aperture Radar, SAR)因其全天时、全天候的全球观测能力,受到了越来越多国家和地区的重视,在军事侦察、国民经济建设和科学研究中得到了广泛的应用。但是,传统星载单通道SAR存在最小天线面积限制,无法同时满足高分辨宽测绘带(High Resolution Wide Swath, HRWS)成像的要求:方位高分辨要求较高的脉冲重复频率(Pulse Repetition Frequency, PRF),而宽距离测绘带则要求较低的PRF。多通道结合数字波束形成(DigitalBeam-Forming, DBF)技术可克服这一限制,从而实现高分辨宽测绘带SAR成像。
     本文针对星载多通道HRWS SAR系统,重点研究了成像处理的几个关键技术。全文总体上分为两个部分:第一部分主要研究了星载方位多通道高分辨宽测绘带SAR成像处理技术,方位多通道SAR是目前高分辨宽测绘带成像实现最多的体制,在保证距离测绘带宽和距离模糊度要求的前提下,通过多通道DBF处理实现多普勒模糊抑制从而得到HRWS SAR图像。随着分辨率和测绘带宽的提高,回波数据量也大大增加了,对星上存储设备和传输链路等也提出了更高的要求,第二部分针对此问题,研究了星载距离多波束HRWS SAR成像技术,该技术在保证其它性能参数的前提下,可大大降低回波采样数据量,为未来星载HRWS SAR的实现提供了新的方案。
     本文的主要工作可概括如下:
     1.星载方位多通道HRWS SAR成像处理技术
     本文第二章和第三章首先分析了星载方位多通道HRWS SAR回波信号模型,给出了两种典型的成像处理方法,并针对星载方位多通道HRWS SAR成像的特点,开展了以下研究工作:
     针对星载方位多通道HRWS SAR系统,推导了三维坐标系下接收通道的等效相位中心相位补偿公式。现有的方位多通道HRWS SAR成像算法均假设各通道接收回波补偿一常数相位后可等效为参考接收通道的延时,但并未给出具体的补偿公式,或只给出了两维坐标系下的补偿值,也未考虑发射通道和接收通道间的垂直航向基线。本文所提方法充分考虑了发射通道与接收通道间的三维空间位置关系,同时补偿了由沿航向基线和垂直航向基线引起的等效相位中心相位值,并对残余相位误差进行了分析,指出当接收通道与参考接收通道间存在垂直航向基线时,相位补偿值存在一定的空变性。当空变引起的相位误差不可忽略时,可在距离压缩后利用先验数字高程模型(Digital Elevation Model, DEM)辅助分块补偿。计算机仿真实验验证了本文所提方法的精确性。
     针对方位多通道HRWS SAR系统,对空时自适应处理(Space TimeAdaptive Processing, STAP)法的处理性能进行了分析。传递函数法和空时自适应处理法是目前两种典型的多普勒模糊抑制算法,前者已有大量文献对其处理性能进行了分析,并利用地基、机载和星载实测数据对其进行了验证,却鲜有文献对STAP法的处理性能进行分析。基于此,本文首先从理论上分析了利用STAP进行多普勒模糊抑制后的成像等效相位中心位置,验证了STAP的保相性和保幅性,经多普勒模糊抑制后输出回波可看作参考接收通道增加脉冲重复频率后得到的无模糊回波,且各个方位时刻回波所对应的卫星轨道位置由参考接收通道的位置决定,这为后续的干涉处理和目标定位奠定了基础。除此之外,本文还从不同于现有文献且更利于理解的角度分析了STAP解多普勒模糊后的信噪比损失和方位模糊信号比,并利用仿真实验对其进行了验证。实验表明,当PRF偏离均匀采样时,相比其它模糊抑制算法,STAP的处理性能更优,能更好地保留回波信号能量,抑制多普勒模糊。
     针对方位多通道SAR系统,分析了通道误差因素及其影响。利用DBF技术进行多普勒模糊抑制要求各通道间的特性一致,但在实际情况中,由于加工工艺、运行环境等的影响,通道间不可避免地存在误差,此外,受测量仪器精度的限制,通道位置也存在测量误差。基于此,我们首先对通道误差因素进行了分析,根据各误差因素对DBF的影响将其归结为通道幅度误差、通道相位误差和通道沿航向位置误差,然后推导分析了通道误差对HRWS SAR成像的影响,并利用计算机仿真实验对其进行了验证。实验表明,通道相位误差对DBF的影响最大,而通道沿航向位置误差的影响相对较小,但也应控制在厘米量级,通道幅度误差可通过简单的通道均衡予以消除。与其它算法相比,STAP法具有更高的误差容忍度。
     提出了两种方位多通道HRWS SAR系统通道误差估计和补偿方法。在实际情况中,通道误差不可避免,为了提高HRWS SAR成像性能,必须对其进行补偿,特别是通道相位误差。针对方位多通道SAR系统,我们提出了两种通道相位误差估计方法:信号子空间法(Signal Subspace Comparison Method, SSCM)和天线方向图法(Antenna Pattern Method, APM)。信号子空间法基于信号特征向量张成的空间(即信号子空间)与真实导向矢量张成的空间相同这一特性对通道误差进行估计。首先对利用回波信号估计得到的协方差矩阵进行特征分解得到信号子空间,然后与利用系统参数得到理想的信号子空间相比较,从而得到通道相位误差,与其它算法相比,该方法运算量更小,且适用范围广。天线方向图法假设观测场景均匀分布,在此条件下,利用发射和接收天线方向图对理想信号导向矢量进行加权,然后与回波信号协方差矩阵对比,得到各通道间的相对相位误差。天线方向图法无须特征分解,运算量小,但适用范围受限。最后利用地基实测数据对两种方法的有效性进行了验证。
     2.星载距离多通道HRWS SAR成像处理技术
     本文第四章给出了一种新的高分辨宽测绘带SAR成像技术。随着分辨率和测绘带宽的提高,回波信号的数据量大大增加,对星上存储设备和传输链路的要求也随之提高。基于此,我们针对距离多波束分时发射技术,给出了详细的系统实施方案和处理方法,并对其距离模糊度(Range Ambiguity to Signal Ratio, RASR)等系统性能进行了分析。通过由远及近分时发射信号,各子波束回波将重叠在一起,这样可大大缩短接收窗长度,减小回波采样数据量。然后利用DBF技术进行子波束分离,最后采用传统SAR成像方法即可得到高分辨宽测绘带SAR图像。当观测场景存在地形起伏时,可借助先验DEM进行子波束分离。实验表明,现有的DEM精度(例如SRTM DEM的精度约为17m)所引起的误差可忽略。最后利用计算机仿真实验验证了本文方法的有效性。
Spaceborne synthetic aperture radar (SAR) has been receiving more and moreattention because of its cloud-penetrating and day and night operational capabilities.Nowadays, SAR is widely used in fields of military reconnaissance, civil constructionand science research. However, traditional spaceborne single channel SAR systemsuffers from a tradeoff between the achievable resolution and swath width, i.e. theminimum antenna constraint. Fine azimuth resolution requires high pulse repetitionfrequency (PRF), while low PRF is utilized for wide swath. Fortunately, incorporatedwith digital beam-forming (DBF) processing, multi-channel spaceborne SAR systemsare able to overcome this limitation and yield high resolution and wide swath (HRWS)images.
     In this dissertation, some of key techniques for multi-channel spaceborne HRWSSAR system have been studied. The whole dissertation is composed of two main parts.In the first part, multi-channel spaceborne SAR system in azimuth is studied, which isone of the most typical systems for high resolution and wide swath SAR imaging. Insuch SAR systems, the low PRF, usually much lower than the instantaneous Dopplerbandwidth, is employed to avoid the range ambiguities and implement wide swath,which results in the ambiguous Doppler spectrum, and DBF is utilized to suppressDoppler ambiguity yielding HRWS SAR images. With the improvement of bothresolution and swath, the amount of raw data is increased greatly, imposing higherrequirement for satellite storage and transimission link. For such problems, multipleelevation beam technique for HRWS spaceborne SAR systems is studied. Thistechnique can substantially reduce the amount of data to be recorded and stored on thesatellite without deteriorating other performances, and provide a probable scheme forfuture spaceborne HRWS SAR imaging.
     The main work of the dissertation is summarized as follows:
     1. Azimuth multi-channel spaceborne HRWS SAR imaging techniques
     In Chapter2and Chapter3, the signal model of multi-channel spaceborne HRWSSAR in azimuth is analyzed, followed by two typical imaging methods. For the specialcharacteristics of azimuth multi-channel spaceborne HRWS SAR system, the followingworks have been done.
     A common echo model based on three dimensional coordinates for spacebornemulti-channel SAR systems is built with the consideration of both along-track and across-track baselines between transmitter and receivers, as well as the effective phasecenter (EPC) phase compensation equation. Almost all the methods for the azimuthmulti-channel SAR imaging assume that the echoes received by each channel can beregarded as that received by the reference channel with an along-trackbaseline-dependent time delay after certain phase compensation. The phasecompensation, however, has not been given in a general case. Besides, neither theacross-track baseline between transmitter and receivers is considered, which is of greatsignificance to distributed high resolution InSAR systems, nor the sensor orbitinformation after focusing is given, which is the basis for the interferometry and targetlocation. In this dissertation, a common EPC phase compensation method based onthree dimensional coordinates of transimitter and receivers is given, considering thephase terms arising from both the along-track and across-track baselines are given, andthe residual phase error is analyzed too. The experiements show that when cross-trackbaseline between the reference channel and other receivers exists, the compensatedphase is varied with range swath and target elevation. If the phase error caused by spacevariance cannot be ignored, the data can be compensated with the assistance of coarsedigital elevation model (DEM) after range compression. The computer simulationconfirms the accuracy of the method.
     Regarding the multi-channel spaceborne SAR system in azimuth, theperformance of the space time adaptive processing (STAP) approach applied to HRWSSAR imaging is investigated. The multi-channel transfer function method and theSTAP-based approaches are two typical algorithms for suppressing Doppler ambiguities.The performance of the reconstruction algorithm has been well analyzed in variousliteratures, and demonstrated by the ground-based, airborne and spaceborne campaigns.While, there is no literature discussing the performance of STAP-based approach indetail. In this dissertation, the phase preservation of STAP is confirmed by analyzingthe position of imaging EPC of output data after Doppler suppression. It shows thatafter Doppler ambiguity suppression, the echo can be regarded as unambiguity ones thatobtained by the reference channel with higher PRF, and the radar positioncorresponding to each azimuth sample time is determined by the reference receiver. Thephase preservation of SAR imaging guarantees the following interferometry processingand target locating etc. Besides, two important parameters, signal to noise ratio (SNR)scaling and azimuth ambiguity to signal ratio (AASR), are evaluated, and comparedwith the multi-channel reconstruction method. The derivations of SNR scaling andAASR here are more legible and comprehensible than those introduced in other literatures. The numerical analysis is confirmed by the simulated results, which showsthat the STAP-based method has a better performance than other methods when PRFdeviates from the uniform sampling.
     The channel errors and their effects are analyzed for multi-channel SAR systems inazimuth. Adopting DBF technique to suppress Doppler ambiguity requires that thecharacteristics of each channel are identical. In practice, however, for someenvironmental factors, the channel errors are unavoidable. The mismatch amongchannels will degrade the performance of DBF. In addition, the limited precision of themeasurement will also cause errors. The channel error factors are analyzed in thisdissertation and then decomposed into channel gain, phase and along-track positionerrors according to their effects on DBF. The influence of channel errors on HRWSimaging is analyzed in detail and confirmed by computer simulation experiments. Theresults show that the effect of channel phase error is great, the effect of the channel gainerrors can be compensated by simple channel balancing, and the influence of thealong-track position errors is little. The STAP-based method has a better ambiguitysuppression performance than the reconstruction approach because of its capability ofplacing nulls in the directions of the interferences.
     Two novel methods are proposed to estimate channel errors for multi-channelHRWS SAR systems in azimuth. In practice, the channel errors are inevitable andshould be compensated in order to improve the performace of HRWS SAR imaging.Therefore, two channel error estimation methods for azimuth multi-channel SARsystem are presented: the Signal Subspace Comparison Method (SSCM) and AntennaPattern Method (APM). SSCM is based on the fact that the space spanned by the signaleigenvectors is equal to that by the practical steering vectors. The signal subspace isobtained by eigen-decomposing the echo covariance matrix, and then compared with thetheoretical signal subspace that derived from the system parameters to obtain the phaseerror. This method has great advantages of light computational load and high accuracy.Furthermore, it has no requirement that the SAR systems must operate in rightside-looking mode. The APM incorporates with the antenna patterns to estimate thechannel errors directly without matrix decomposition and inversion processing, which isvery efficient, but only suitable for uniform distributed scenes. Both the theoreticalanalysis and experiments demonstrate the effectiveness and efficiency of these twomethods.
     2. Elevation multi-channel spaceborne HRWS SAR imaging techniques
     In Chapter4, the novel HRWS SAR imaging technique is proposed. With theimprovement of resolution and range swath, the amount of data is increased greatly andsubsequently impose strict requirement on satellite storage and transmission link. Inorder to solve such problem, the detailed system design scheme and processing methodbased on multiple elevation beam technique for HRWS imaging is presented as well asits system performance such as range ambiguity to signal ratio (RASR). The wideimage swath is illuminated by a sequence of narrow and high-gain antenna beams. Thewhole antenna plane transmits a narrow beam to illuminate a far-range and subsequentlyproceed to the near range, and all the channels receive the radar echoes simultaneously.As a result, the echoes from different subswaths will overlap in the receivers, therebythe amount of data to be recorded and stored on the satellite will be reduced. All theechoes from different subswaths can be separated from each other by DBF and yieldingthe wide swath SAR image. For terrain with strong topographic variance, the subbeamscan be separated with the assistance of coarse DEM. The experiment shows that theerror caused by DEM accuracy is neglectable. Finally, the simulation data confirms thevalidity of the method.
引文
[1] Wiley C. A. Synthetic aperture radars. IEEE Transactions on Aerospace andElectronic Systems,1985,21(3):440-443.
    [2] NASA, Jet Propulsion Laboratory (JPL), SEASAT1978, http://southport.jpl.nasa.gov/scienceapps/seasat.html
    [3] Cumming I. and Bennett J. Digital processing of SEASAT SAR data. IEEEInternational Acoustics, Speech and Signal Processing (ICASSP),1979:710-718.
    [4] Vass P. and Battrick B. ERS-1system. ESA Publications Division,1992.
    [5] Recchia A., Monti A. and D’Aria D. et al. An innovative Doppler centroidestimator for ERS-2wave mode data acquired under zero gyro mode.8thEuropean Conference on Synthetic Aperture Radar (EUSAR),2010:9-12.
    [6] Desnos Y., Buck C. and Guijarro J. et al. The ENVISAT advanced syntheticaperture radar system. Proceedings of IEEE International Geoscience and RemoteSensing Symposium (IGARSS),2000:1171-1173.
    [7] Nemoto Y., Nishino H. and Ono M. et al. Japanese earth resources satellite-1synthetic aperture radar. Proceedings of the IEEE,1991,79(6):800-809.
    [8] Hounam D. and Werner M. The shuttle radar topography mission (SRTM).Proceedings of ISPRS workshop-Sensors and Mapping from Space,1999:1-4.
    [9] Patten L., Burger G. and Voumard P. RADARSAT-1mission planning: meetingcustomer needs over5years of evolving operations. Canadian Journal of RemoteSensing,2002,28(2):109-113.
    [10] Morena L. C., James K. V. and Beck J. An introduction to the RADARSAT-2mission. Canadian Journal of Remote Sensing,2004,30(3):221-234.
    [11] Radarsat-2, http://www.radarsat2.info/
    [12] Rosenqvist A., Shimada M. and Ito N. et al. ALOS PALSAR: A pathfindermission for global-scale monitoring of the environment. IEEE Transactions onGeoscience and Remote Sensing,2007,45(11):3307-3316.
    [13] Japan Space Systems. PALSAR user’s guide, Second Edition.2012.
    [14] Japanese Aerospace Exploration Agency (JAXA), Earth Observation ResearchCenter (EORC), ALOS, http://www.eorc.jaxa.jp/ALOS/
    [15] Telespazio, COSMO-Skymed, http://www.telespazio.it/cosmo.html
    [16] Caltagirone F., Spera P. and Vigliotti R. et al. SkyMed/COSMO mission overview.Proceedings of IEEE International Geoscience and Remote Sensing Symposium(IGARSS),1998:683-685.
    [17] German Aerospace Center (DLR), TerraSAR-X, http://www.dlr.de/TerraSAR-X/
    [18] Werninghaus R. TerraSAR-X mission. Remote Sensing,2004:9-16.
    [19] Hajnsek I. and Weber M., TanDEM-X user requirements document. TechnicalNote TDX-RD-DLR-1201,2005.
    [20] Krieger G., Moreira A. and Fiedler H. et al. TanDEM-X: A satellite formation forhigh-resolution SAR interferometry. IEEE Transactions on Geoscience andRemote Sensing,2007,45(11):3317-3341.
    [21] Kraus T., Bachmann M. and Rizzoli P. et al. TanDEM-X performance: impact onacquisition planning optimization. Proceedings International Radar Symposium,Warsaw, Poland,2012:371-375.
    [22] Wessel B., Gruber A. and Gonzalez J. H. et al. TanDEM-X: DEM calibrationconcept. Proceedings of IEEE International Geoscience and Remote SensingSymposium (IGARSS),2008:111-114.
    [23] Gonzalez J. H., Bachmann M. and Scheiber R. et al. TanDEM-X DEM calibrationand processing experiments with E-SAR. Proceedings of IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS),2008:115-118.
    [24] Zink M., Krieger G. and Fiedler H. et al. The TanDEM-X mission concept.7thEuropean Conference on Synthetic Aperture Radar (EUSAR),2008:1-4.
    [25] Tridon D. B., Bachmann M. and Schulze D. et al. TanDEM-X: DEM acquisitionin the third year era..
    [26] Werninghaus R. and Buckreuss S. The TerraSAR-X mission and system design.IEEE Transactions on Geoscience and Remote Sensing,2010,48(2):606-614.
    [27] Breit H., Fritz T. and Balss U. et al. TerraSAR-X SAR processing and products.IEEE Transactions on Geoscience and Remote Sensing,2010,48(2):727-740.
    [28] Yague-Martinez N., Eineder M. and Brcic R. et al. TanDEM-X mission: SARimage coregistration aspects.8th European Conference on Synthetic ApertureRadar (EUSAR),2010:1-4.
    [29] Rossi C., Eineder M. and Fritz T. et al. TanDEM-X mission: Raw DEMgeneration.8th European Conference on Synthetic Aperture Radar (EUSAR),2010:1-4.
    [30] González J. H., Bachmann M. and Krieger G. et al. Development of theTanDEM-X calibration concept: Analysis of systematic errors. IEEE Transactionson Geoscience and Remote Sensing,2010,48(2):716-726.
    [31] Meta A., Mittermayer J. and Prats P. et al. TOPS imaging with TerraSAR-X:Mode design and performance analysis. IEEE Transactions on Geoscience andRemote Sensing,2010,48(2):759-769.
    [32] Prats P., Marotti L. and Wollstadt S. et al. TOPS interferometry with TerraSAR-X.8th European Conference on Synthetic Aperture Radar (EUSAR),2010:1-4.
    [33] Zink M., Bartusch M. and Miller D. TanDEM-X mission status. Proceedings ofIEEE International Geoscience and Remote Sensing Symposium (IGARSS),2011:2290-2293.
    [34] Fritz T., Rossi C. and Yague-Martinez N. et al. Interferometric processing ofTanDEM-X data. Proceedings of IEEE International Geoscience and RemoteSensing Symposium (IGARSS),2011:2428-2431.
    [35] Rossi C., Rodriguez Gonzalez F. and Fritz T. et al. TanDEM-X calibrated RawDEM generation. ISPRS Journal of Photogrammetry and Remote Sensing,2012.
    [36] Bachmann M., Schulze D. and Ortega-Miguez C. et al. TanDEM-X acquisitionstatus and calibration of the interferometric system. Proceedings of IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS),2012:1900-1903.
    [37] Kraus T., Bachmann M. and Rizzoli P. et al. TanDEM-X performance: Impact onacquisition planning optimization.13th International Radar Symposium (IRS),2012:371-375.
    [38] Prats P., Scheiber R. and Mittermayer J. et al. TanDEM-X experiments in pursuitmonostatic configuration.9th European Conference on Synthetic Aperture Radar(EUSAR),2012:159-162.
    [39] Wendleder A., Wessel B. and Roth A. et al. TanDEM-X water indication mask:Generation and first evaluation results. IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing,2013,1(6):171-179.
    [40] Martone M., Rizzoli P. and Br utigam B. et al. First2years of TanDEM‐Xmission: Interferometric performance overview. Radio Science,2013.
    [41] Moreira A. Digital beamforming: A paradigm shift for spaceborne SAR.14thInternational Radar Symposium (IRS),2013:23-26.
    [42] Soumekh M. Synthetic aperture radar signal processing. New York: Wiley,1999.
    [43] Curlander J. C. and McDonough R. N. Synthetic aperture radar: systems andsignal processing. New York: Wiley,1991.
    [44] Carrara W., Goodman R. and Majewski R. Spotlight synthetic aperture radarsignal processing algorithms. Boston: Artech House,2005.
    [45] Cumming I. G. and Wong F. H. Digital processing of synthetic aperture radar data:algorithms and implementation. Boston: Artech House Inc,2005.
    [46] Lee J. and Pottier E. Polarimetric radar imaging: from basics to applications. LLC:Taylor&Francis Group,2009.
    [47]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [48]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [49]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [50]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001.
    [51] Gabriel A. K., Goldstein R. M. and Zebker H. A. Mapping small elevationchanges over large areas: Differential radar interferometry. Journal of GeophysicalRes.,1989,94(B97):9183-9191.
    [52] Ferretti A, Prati C. and Rocca F. Permanent scatterers in SAR interferometry,IEEE Transaction on Geoscience and Remote Sensing,2000,39(1):8-19.
    [53] Ferretti A. Prati C. and Rocca F. Nonlinear subsidence rate estimation usingpermanent scatters in differential SAR interferometry. IEEE Transaction onGeoscience and Remote Sensing,2000,38(5):2202-2212.
    [54] Guarnieri A., Tebaldini S. Hybrid Cramér–Rao bounds for crustal displacementfield estimators in SAR interferometry. IEEE Signal Processing Letters,2007,14(12):1012-1015.
    [55] Wegmüller U., Walter D. and Spreckels V. Nonuniform ground motionmonitoring with TerraSAR-X Persistent Scatterer Interferometry. IEEETransaction on Geoscience and Remote Sensing,2010,48(2):895-904.
    [56]王超,刘智,张红.张北-尚义地震同震形变场雷达差分干涉测量.科学通报,2000,45(23):2550-2554.
    [57]李德仁,廖明生,王艳.永久散射体雷达干涉测量技术.武汉大学学报,2004,29(8):664-668.
    [58]马超,单建新.星载合成孔径雷达差分干涉测量(D-InSAR)技术在形变监测中的应用概述.中国地震,2004,20(4):410-418.
    [59]王艳.利用相干目标分析方法的长时间地表形变研究.武汉大学博士论文,2006.
    [60]范景辉.基于相干目标的DInSAR技术地表形变检测研究与应用.中国科学院遥感应用研究所博士论文,2007.
    [61]李东霖.基于差分InSAR的地表形变检测实验研究.西安电子科技大学硕士论文,2012.
    [62] Graham L. C. Synthetic interferometer radar for topographic mapping.Proceedings of the IEEE,1974,62(6):763-768.
    [63] Zebker H. A. and Goldstein R. M. Topographic mapping from interferometricsynthetic aperture radar observations. Journal of Geophysical Research: SolidEarth,1986,91(B5):4993-4999.
    [64] Bamler R. and Hartl P. Synthetic aperture radar interferometry. Inverse Problem,1998,14: R1-R54.
    [65] Rosen P. A., Hensley S. and Joughin I. R. et al. Synthethic aperture radarinterferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [66]胡鹏,杨传勇,吴艳兰等.新数字高程模型理论、方法、标准和应用.北京:测绘出版社,2007.
    [67]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究.西安电子科技大学博士论文,2008.
    [68]李海.干涉合成孔径雷达信号处理若干关键问题研究.西安电子科技大学博士论文,2008.
    [69]郭交.分布式卫星干涉合成孔径雷达信号处理关键技术研究.西安电子科技大学博士论文,2011.
    [70]王青松.星载干涉合成孔径雷达高效高精度处理技术研究.国防科学技术大学博士论文,2011.
    [71]刘艳阳.分布式卫星高分辨率宽测绘带SAR/InSAR信号处理关键技术研究.西安电子科技大学博士论文,2013.
    [72] Li F. and Johnson W. T. K. Ambiguities in spaceborne synthetic apertureradarsystems. IEEE Transaction on Aerospace and Electronic System,1983,19(3):389-397.
    [73] Freeman A., Johnson W. T. K., and Huneycutt B. et al. The myth of the minimumSAR antenna area constraint. IEEE Transaction on Geoscience and RemoteSensing.2000,38(1):320-324.
    [74] Moore R.K., Claassen J.P. and Lin Y H. Scanning spaceborne synthetic apertureradar with integrated radiometer. IEEE Transaction on Aerospace and ElectronicSystem,1981, AES-17:410-421.
    [75] Bamler R. Adapting precision standard SAR processors to ScanSAR. Proceedingsof IEEE International Geoscience and Remote Sensing Symposium (IGARSS),1995:2051-2053.
    [76] Bamler R. and Eineder. M. ScanSAR processing using standard high precisionSAR algorithms. IEEE Transactions on Geoscience and Remote Sensing,1996,34(1):212-218.
    [77] Prats P, Scheiber R. and Mittermayer J. et al. Processing of sliding spotlight andTOPS SAR data using baseband azimuth scaling. IEEE Transactions onGeoscience and Remote Sensing,2010,48(2):770-780.
    [78] Mittermayer J., Moreira A., Loffeld O. Spotlight SAR data processing using thefrequency scaling algorithm. IEEE Transactions on Geoscience and RemoteSensing,1999,37(5):2198-2214.
    [79] Lanari R., Tesauro M. and Sansosti E. et al. Spotlight SAR data focusing based ona two-step processing approach. IEEE Transactions on Geoscience and RemoteSensing,2001,39(9):1993-2004.
    [80] Mittermayer J, Lord R. and Borner E. Sliding spotlight SAR processing forTerraSAR-X using a new formulation of the extended chirp scaling algorithm.Proceedings of IEEE International Geoscience and Remote Sensing Symposium(IGARSS), Toulouse, France,2003,1462-1464.
    [81] Francesco D. Z. and Andrea M. G. TOPSAR: Terrain observation by progressivescans. IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2352-2360.
    [82] Ury N. and Ronit L. Overview of the TECSAR satellite hardware and mosaicmode. IEEE Geoscience and Remote Sensing Letters,2008,5(3):423-426.
    [83] Gebert N. Multi-channel azimuth processing for high-resolution wide-swath. Ph.D.dissertation Universit t (TH), DLR-Forschungsbericht, Wessling, Germany,2009.
    [84]张磊.高分辨SAR/ISAR成像及误差补偿技术研究.西安电子科技大学博士论文,2012.
    [85] Claassen J. P. and Eckerman J. A system concept for wide swath constant incidentangle coverage. Proceedings of Synthetic Aperture Radar Technology Conference,New Mexico, USA,1978.
    [86] Jain A. Multibeam synthetic aperture radar for global oceanography. IEEETransactions on Antennas and Propagation,1979,27(4):535-538.
    [87] Jean B. R. and Rouse J. W. A multiple beam synthetic aperture radar designconcept for geoscience applications. IEEE Transactions on Geoscience andRemote Sensing,1983,21(2):201-207.
    [88] Griffiths H. and Mancini P. Ambiguity suppression in SARs using adaptive arraytechniques. Proceedings of the IEEE International Geoscience and RemoteSensing Symposium (IGARSS), Espoo, Finland,1991:1015-1018.
    [89] Currie A. and Brown M. A. Wide-swath SAR. IEEE Proceedings-F,1992,139(2):122-135.
    [90] Callaghan G. D. and Longstaff I. D. Wide-swath space-borne SAR using aquad-element array. IEE Proc. Radar Sonar Navig.,1999,146(3):159-165.
    [91] Goodman N., Rajakrishna D. and Stiles J. Wide swath, high resolution SAR usingmultiple receive apertures. Proceedings of the IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Hamburg, Germany,1999:1767-1769.
    [92] Younis M. and Wiesbeck W. SAR with digital beamforming on receive only,Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Hamburg, Germany,1999:1773-1775.
    [93] Stiles J., Goodman N. and SiChung L. Performance and processing of SARsatellite clusters. Proceedings of the IEEE International Geoscience and RemoteSensing Symposium (IGARSS), Honolulu, Hawaii, USA,2000:883-885.
    [94] Suess M., Grafmüller B. and Zahn R. A novel high resolution, wide swath SARsystem, Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Sydney, Australia,2001:1013-1015.
    [95] Suess M., Zubler M. and Zahn R. Performanc investigation on the high resolution,wide swath SAR system. EUSAR,2002:187-191
    [96] Wiesbeck W. SDRS: software-defined radar sensors. Proceedings of the IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS), Sydney,Australia,2001:3259-3261.
    [97] Suess M., Zubler M. and Zahn R. Performance investigation on the highresolution, wide swath SAR system, Proceedings of European Conference onSynthetic Aperture Radar (EUSAR), Cologne, Germany,2002:187-191.
    [98] Goodman N., Lin S. and Rajakrishna D. et al. Processing of multiple-receiverspaceborne arrays for wide-area SAR. IEEE Transactions on Geoscience andRemote Sensing,2002,40(4):841-852.
    [99] Aguttes J.P. The SAR train: Along track orientated formations of SAR satellites,Proceedings of International Symposium on Formation Flying Missions&Technologies, Toulouse, France,2002.
    [100] Krieger G., Fiedler H. and Rodriguez-Cassola M. et al. System concepts for bi-and multistatic SAR missions. Proceedings of the ASAR Workshop2003,Saint-Hubert, Quebec, Canada.
    [101] Krieger G. and Moreira A. Potentials of digital beamforming in bi-and multistaticSAR. Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Toulouse, France,2003:527-529.
    [102] Heer C., Soualle F. and Zahn R. et al. Investigations on a new high resolutionwide swath SAR concept. Proceedings of IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Toulouse, France,2003:521-523.
    [103] Younis M., Fischer C. and Wiesbeck W. Digital beamforming in SAR systems.IEEE Transactions on Geoscience and Remote Sensing,2003,41(7):1735-1739.
    [104]Younis M., Venot Y. and Wiesbeck W. A simulator for digital beam forming SAR.Proceedings of International Radar Symposium,(IRS), Dresden, Germany,2003.
    [105] Aguttes J.P. The SAR train concept: required antenna area distributed over Nsmaller satellites, increase of performance by N. Proceedings of the IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS), Toulouse,France,2003.
    [106] Krieger G., Gebert N. and Moreira A. Unambiguous SAR signal reconstructionfrom nonuniform displaced phase center sampling. IEEE Geoscience and RemoteSensing Letters,2004,1(4):260-264.
    [107] Krieger G., Gebert N. and Moreira A. SAR signal reconstruction fromnon-uniform displaced phase center sampling, Proceedings of the IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS), Anchorage,Alaska, USA,2004.
    [108] Krieger G., Gebert N. and Moreira A., Digital Beamforming and Non-UniformDisplaced Phase Centre Sampling in Bi-and Multistatic SAR, Proceedings ofEuropean Conference on Synthetic Aperture Radar (EUSAR), Ulm, Germany,2004.
    [109] Gebert N., Krieger G. and Moreira A. SAR signal reconstruction fromnon-uniform displaced phase centre sampling in the presence of perturbations,Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Seoul, South-Korea,2005.
    [110] Gebert N., Krieger G. and Moreira A. High resolution wide swath SARimaging–system performance and influence of perturbations. Proceedings ofInternational Radar Symposium (IRS), Berlin, Germany,2005.
    [111] Li Z., Wang H. and Su T. et al. Generation of wide-swath and high-resolutionSAR images from multichannel small spaceborne SAR systems. IEEE Geoscienceand Remote Sensing Letters,2005,2(1):82-86.
    [112] Li Z., Wang H. and Bao Z. et al. Performance improvement for constellation SARusing signal processing techniques. IEEE Transactions on Aerospace andElectronic Systems,2006,42(2):436-452.
    [113] Li Z., and Bao Z. A novel approach for wide-swath and high-resolution SARimage generation from distributed small spaceborne SAR systems. InternationalJournal of Remote Sensing,2006,27(5):1015-1033.
    [114]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.西安电子科技大学博士论文,2006.
    [115] Fischer C., Heer C. and Krieger G. et al. A high resolution wide swath SAR,Proceedings of European Conference on Synthetic Aperture Radar (EUSAR),Dresden, Germany,2006.
    [116] Gebert N., Krieger G. and Moreira A. High resolution wide swath SAR imagingwith digital beamforming–performance analysis, optimization and system design,Proceedings of European Conference on Synthetic Aperture Radar (EUSAR),Dresden, Germany,2006.
    [117] Gebert N., Krieger G. and Moreira A. Digital beamforming for HRWS-SARimaging, Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Denver, Colorado, USA,2006.
    [118] Krieger G. and Moreira A. Spaceborne bi-and multistatic SAR: potential andchallenges, IEE Proceedings–Radar, Sonar and Navigation,2006,153(3):184-198.
    [119] Gebert N., Krieger G. and A. Moreira. Multi-Channel ScanSAR forhigh-resolution ultra-wide-swath imaging. Proceedings of the EuropeanConference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany2008.
    [120] Gebert N., Krieger G. and Younis M. et al. Ultra wide swath imaging withmulti-channel ScanSAR. Proceedings of the IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Boston, Massachusetts, USA,2008.
    [121] Gebert N, Krieger G, Moreira A. Digital beamforming on receive: techniques andoptimization strategies for high-resolution wide-swath SAR imaging. IEEETransaction on Aerospace and Electronic Systems,2009,45(2):564-592.
    [122]左艳军.分布式小卫星合成孔径雷达高分辨率成像算法研究,中国科学院研究生院,博士论文,2007.
    [123]井伟.星载SAR宽场景高分辨成像技术研究,西安电子科技大学博士论文,2008.
    [124]马喜乐.偏置相位中心多子带HRWS SAR技术研究,国防科学技术大学硕士论文,2010.
    [125]赖涛.星载多通道SAR高分辨宽测绘带成像方法研究,国防科学技术大学博士论文,2010.
    [126]孙光才.多通道波束指向高分辨SAR和动目标成像技术,西安电子科技大学博士论文,2012.
    [127] Skolnik M.南京电子技术研究所译.雷达手册,第三版.北京:电子工业出版社,2010.
    [128] Prati C, Rocca F. Improving slant-range resolution with multiple SAR surveys.IEEE Transaction on Aerospace and Electronic Systems,1993,29(1):135-143
    [129] F. Gatelli, et al. The wavenumber shift in SAR interferometry. IEEE Transactionon Geoscienceand Remote Sensing,1994,32(9):855-865
    [130] Wehner D. R. High-Resolution Radar, Second Edition, London: Artech House,1995.
    [131] Wilkinson A. J., Lord R. T. and Inggs M. R. Stepped frequency processing byreconstruction of target reflectivity spectrum. in Proc. South African Symp.Commun. Signal Process., Rondebosch, South Africa,1998:101–104.
    [132] Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEETransaction on Geoscience and Remote Sensing,2001,39(3):506-520.
    [133] Liu Y., Li Z. and Suo Z. et al. Azimuth resolution improvement of spaceborneSAR images with nearly non-overlapped Doppler bandwidth. IET InternationalRadar Conference,2013:1-4.
    [134]徐华平,周荫清等.基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法.电子学报,2003,31(12):1790-1794.
    [135]李俐,王岩飞,张冰尘,闰鸿慧.基于编队卫星的SAR方位向高分辨率成像.系统工程与电子技术,2005,27(8):1354-1356+1439.
    [136]闰鸿慧,王岩飞,张冰尘.利用频谱合成实现分布式SAR高分辨力成像.电子与信息学报,2006,28(2):345-349.
    [137]黄海风.分布式星载SAR干涉测高系统技术研究.国防科技大学博士论文,2005.
    [138]王文钦.多天线合成孔径雷达成像理论与方法.北京:国防工业出版社,2010.
    [139]李世强.杨汝良.单相位中心多波束合成孔径雷达信号处理研究.电子与信息学报,2005,27(7):1073-1076.
    [140] Li F. K. and Johnson W. T. K. Ambiguities in spaceborne synthetic aperture radardata, IEEE Transaction on Aerospace and Electronic System,1983, AES-19:389-397.
    [141]王小青,郭琨毅,盛新庆等.基于距离向多孔径接收的宽测绘带SAR成像方法的研究.电子与信息学报,2004,26(5):739-745.
    [142] Krieger G. Gebert N. and Younis M. et al. Advanced synthetic aperture radarbased on digital beamforming and waveform diversity. Proceedings of IEEERadar Conference, Rome, Italy,2008:767-772.
    [143] Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a newdigital beamforming technique for synthetic aperture radar remote sensing. IEEETransactions on Geoscience and Remote Sensing,2008,46(1):31-46.
    [144] Feng F, Li S and Yu W, et.al. Study on the processing scheme for space-timewaveform encoding SAR system based on two-dimensional digital beforming.IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):910-932.
    [145] Kim J. Multipe-Input Multiple-Output synthetic aperture radar for multimodaloperation. Zugl.: Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss.,2011.
    [146]武其松,邢孟道,刘保昌等.面阵MIMO-SAR大测绘带成像.电子学报,2010,38(4):817-824.
    [147]武其松,井伟,邢孟道,刘保昌等. MIMO-SAR大测绘带成像.电子与信息学报,2009,31(4):772-775.
    [148] OHB. SAR-Lupe.2012.
    [149] Schr der R., Puls J. and Hajnsek I. et al. The MAPSAR mission: objectives,design and status. Anais XII Simpósio Brasileiro de Sensoriamento Remoto,Goiania, Brasil,2005:4481-4488.
    [150] Wikipedia. TecSAR. From Wikipedia, the free encyclopedia.
    [151] Huber S., Younis M. and Patyuchenko A. et al. Spaceborne reflector SAR systemswith digital beamforming. IEEE Transactions on Aerospace and ElectronicSystems,2012,48(4):3473-3493.
    [152] Krieger G., Gebert N. and Younis M. Advanced concepts for ultra-wide-swathSAR imaging with high azimuth resolution. Proceedings of European Conferenceon Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany,2008.
    [153] Huber S., Younis M. and Patyuchenko A. et al. A novel digital beam-formingconcept for spaceborne reflector SAR systems. Proceedings of EuropeanConference on Synthetic Aperture Radar (EUSAR),2009:238-241.
    [154] Xu W. and Deng Y. Multichannel SAR with reflector antenna for high-resolutionwide-swath imaging. IEEE Antenna and Wireless Propagation Letter,2010,9:1123-1126.
    [155] Freeman A., Krieger G. and Rosen P. et al. SweepSAR: beam-forming on receiveusing a reflector-phased array feed combination for spaceborne SAR. Proceedingsof IEEE Radar Conference, Pasadena, CA,2009:1-9.
    [156] Younis M., Huber S. and Patyuchenko A. et al. Performance comparison ofreflector-and planar-antenna based on digital beam-forming SAR. InternationalJournal of Antenna Propagation,2009:1-13.
    [157] Krieger G., Hajnsek I. and Panagiotis K. et al. Interferometric synthetic apertureradar (SAR) missions employing formation flying. Proceedings of the IEEE,2010,98(5):816-843.
    [158] Das A., Cobb R. and Stallard M. TechSat21: a revolutionary concept indistributed space based sensing. in Proc. AIAA Defense and Civil Space ProgramsConference Exhibit, Huntsville, AL,1998, AIAA98-5255.
    [159] Martin M. and Stallard M. Distributed satellite missions and technologies-theTechSat21program. in Proc. AIAA Space Technology Conf. Exposition,Albuquerque, NM,1999, AIAA99-4479.
    [160] Martin M., Klupar P. and Kilberg S. et al. Techsat21and revolutionizing spacemissions using microsatellites. in Proc.15th AIAA Conference on Small Satellites,Utah, USA,2001.
    [161] Steyskal H., Schindler J. K. and Franchi P. et al. Pattern synthesis for TechSat21-A distributed space-based radar system. IEEE Antennas and PropagationMagazine,2003,45(4):19-25.
    [162] Massonnet D. The interferometric cartwheel: a constellation of passive satellitesto produce radar images to be coherently combined. International Journal ofRemote Sensing,2001,22(12):2413-2430.
    [163] Ramongasie S., Phalippou L. and Thouvenot E. et al. Preliminary design of thepayload for the interferometric CartWheel. in Proc. IGARSS2000, Honolulu,2000:24-28.
    [164] Mittermayer J., Krieger G. and Moreira A. et al. Interferometric performanceestimation for the interferometric cartwheel in combination with a transmittingSAR-satellite. Proceedings of Geoscience and Remote Sensing Symposium(IGARSS).2001:2955-2957.
    [165] Amiot T., Douchin F. and Thouvenot E. et al. The interferometric CartWheel: Amulti-purpose formation of passive radar microsatellites. Proceedings ofGeoscience and Remote Sensing Symposium (IGARSS), Toronto, Canada,2002:435-437.
    [166] Nies H., Loffeld O. and Gebhardt U. et al. Orbit estimation of the interferometricCartWheel using an extended linearized kalman filter. IGARSS,2003:3616-3619.
    [167] Gebhardt U., Loffeld O. and Nies H. et al. Orbit modeling related to CartWheelgeometry. IEEE Transaction on Geoscience and Remote Sensing,2003,42(4):3604-3606.
    [168] Fiedler H., Krieger G. and Jochim F. et al. Analysis of bistatic configurations forspaceborne SAR interferometry. European Conference on Synthetic ApertureRadar (EUSAR), Cologne, Germany,2002:29-33.
    [169] Krieger G. and Wendler M. Comparison of the interferometric performance forspaceborne parasitic SAR configurations. European Conference on SyntheticAperture Radar (EUSAR),2002:467-470.
    [170] D'Errico M., Grassi M. and Vetrella S. Bistatic SAR mission for earth observationbased on a small satellite. Acta Astronautica,1996,39(9-12):837-846.
    [171] Moccia A., Chiacchio N. and Capone A. Spaceborne bistatic synthetic apertureradar for remote sensing. Int. J. Remote Sensing,2000,21(18):1153-1162
    [172] Moccia A., Vetrella S. and Bertoni R. Mission analysis and design of a bistaticsynthetic aperture radar on board a small satellite. Acta Astronautica,2000,47(11):819-829.
    [173] D'Errico M. and Moccia A. The BISSAT mission: A bistatic SAR operating information with COSMO/SkyMed X-band radar. IEEE Aerospace ConferenceProceedings,2002:2-809-2-818.
    [174] Evans N., Lee P. and Girard R. The RADARSAT-2&3topographic mission.European Conference on Synthetic Aperture Radar (EUSAR),2002:37-40
    [175] Staples G. C. and Hornsby J. Turning the scientifically possible into theoperationally practical: RadarSat-2polarimetry applications. Proceedings of theIEEE International Geoscience and Remote Sensing Symposium (IGARSS),Toronto, Canada,2002:24-28.
    [176] Lee P. F. and James K. The RadarSat-2/3topographic mission. Proceedings of theIEEE International Geoscience and Remote Sensing Symposium (IGARSS),2001:499-501.
    [177] Kim J., Younis M., and Wiesbeck W. Experimental performance investigation ofdigital beamforming on synthetic aperture radar. Proceedings of the IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS), Boston,MA,2008,4:176-179.
    [178] Kim J, Younis M, Prats P, et al. First spaceborne demonstration of digitalbeamforming for azimuth ambiguity suppression. IEEE Transaction onGeoscience and Remote Sensing,2013,51(1):579-590.
    [179] Mittermayer J. and Runge H. Conceptual studies of exploiting the TerraSAR-Xdual receive antenna. Proceedings of the IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Toulouse, France,2003:2140-2142.
    [180] Janoth J., Gantert S. and Schrage T. et al. TerraSAR next generation-missioncapabilities. Proceedings of the IEEE International Geoscience and RemoteSensing Symposium (IGARSS), Melbourne, Australia,2013:2297-2300.
    [181] German Aerospace Center (DLR). TerraSAR-X Mission Homepage.http://www.dlr.de/terrasar-x
    [182] Kankaku Y., Suzuki S. and Osawa Y. ALOS-2mission and development status.Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Melbourne, Australia,2013:2396-2399.
    [183] Suzuki S., Kankaku Y. and Shimada M. ALOS-2acquisition strategy.Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS), Melbourne, Australia,2013:2412-2415.
    [184] Shimada M. ALOS-2Science program. Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia,2013:2400-2403.
    [185] Okada Y., Nakamura S. and Iribe K. et al. System design of wide swath, highresolution, full polarimietroric L-band SAR onboard ALOS-2. Proceedings of theIEEE International Geoscience and Remote Sensing Symposium (IGARSS),Melbourne, Australia,2013:2408-2411.
    [186] Yamamoto T., Kawano I. and Iwata T. et al. Autonomous precision orbit controlof ALOS-2for repeat-pass SAR interferometry. Proceedings of the IEEEInternational Geoscience and Remote Sensing Symposium (IGARSS), Melbourne,Australia,2013:2404-2407.
    [187] Tsuchida M., Suwa K. and Yamamoto K. et al. An experiment of azimuthambiguity suppression by multiple receiver apertures with airborne Ku-bandsynthetic aperture radar. Proceedings of the IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Melbourne, Australia,2013:1661-1664.
    [188] Gebert N. Almeida F. and Krieger G. Airborne demonstration of multichannelSAR imaging. IEEE Geoscience and Remote Sensing Letters,2011,8(5):963-967.
    [189] Kim J, Younis M, Becker D, et al. Experimental performance analysis of digitalbeamforming on synthetic aperture radar,7th European Conference on SyntheticAperture Radar (EUSAR),2008: V176-V179.
    [190] Krieger G., Hajnsek I. and Papathanassiou K. et al. The Tandem-L missionproposal: monitoring earth’s dynamics with high resolution SAR interferometry.Proceedings of the IEEE Radar Conference, Pasadena,2009:4-8.
    [191] Moreira A., Krieger G. and Younis M. et al. Tandem-L: a mission proposal formonitoring dynamic earth processes. Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS),2011:1385-1388.
    [192]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005
    [193] Zebker H. A., Farr T. G. and Salazar R. P. et al. Mapping the world’s topographyusing radar interferometry: The TOPSAT mission. Proc. IEEE,1994,82(12):1774-1786.
    [194] Lai T, Dong Z, Liang D N, Achieving HRWS images with space-borne bistaticSAR with multiple phase centers, Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS),2008: V180-V183.
    [195]杨桃丽,李真芳,刘艳阳等.星载多站方位多通道高分辨宽测绘带SAR成像,电子与信息学报,2012,34(9):2103-2109.
    [196] Yang T., Li Z. and Liu Y. et al. Channel error estimation methods formultichannel SAR systems in azimuth, IEEE Geoscience and Remote SensingLetters,10(3), pp548-552,2013.
    [197] Liu Y., Li Z. and Yang T. et al. An adaptively weighted least square estimationmethod of channel mismatches in phase for multi-channel SAR systems inazimuth, IEEE Geoscience and Remote Sensing Letter,11(2):439-444,2014.
    [198]杨桃丽,李真芳,刘艳阳,保铮,两种星载高分辨宽测绘带SAR系统通道相位误差估计方法,电子学报,41(5):931-935,2013.
    [199] Yang T, Li Z. and Liu Y. et al. Channel error estimation methods formulti-channel HRWS SAR systems, Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia,2013:4507-4510.
    [200]张磊,全英汇,邢孟道,保铮.一种子空间投影的高分辨宽测绘带SAR成像通道均衡方法[J].电子与信息学报,2010,32(1):1-6.
    [201] Zhang L., Xing M. D. and Qiu C. W. et al. Adaptive two-step calibration forhigh-resolution and wide-swath SAR imaging. IET Radar Sonar Navigation,2010,4(4):548-559.
    [202] Liu A F, Liao G, Ma L, and Xu Q. An Array Error Estimation Method forConstellation SAR Systems. IEEE Geoscience and Remote Sensing Letters,2010,7(4):731-735.
    [203]刘艳阳,李真芳,杨桃丽,保铮.一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法.电子与信息学报,34(12):2913-2919,2012.
    [204] Liu Y, Li Z, Suo Z, Bao Z. A novel channel phase bias estimation method forspaceborne along-track multi-channel HRWS SAR in time-domain. IETInternation Radar Conference, Xi’an, China,2013:1-4.
    [205] Laskowski P., Bordoni F. and Younis M. Error analysis and calibration techniquesfor multichannel SAR instruments. Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia,2013:4503-4506.
    [206] Gierull C. Digital channel balancing of along-track interferometric SAR data.Technical Memorandum DRDC Ottawa TM2003-024.
    [207] Papoulis A. Generalized sampling expansion. IEEE Transactions on Circuits andSystems,1977,24(11):652-654.
    [208] Brown J. Multi-channel sampling of low-pass signals, IEEE Transactions onCircuits and Systems,1981,28(2):101-106.
    [209]程云鹏.矩阵论(第2版),西安:西北工业大学出版社,1998.
    [210]张贤达.矩阵分析与应用,北京:清华大学出版社,2004.
    [211]王永良,陈辉,彭应宁等,空间谱估计理论与算法,北京:清华大学出版社,2004.
    [212] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEETransactions on Antennas and Propagation,1986, AP-34(3):276-280.
    [213]王永良,丁前军,李荣锋等,自适应阵列处理,北京:清华大学出版社,2009.
    [214] Van Trees H. Optimum array processing part IV of detection, estimation, andmodulation theory, New York: Wiley,2002.
    [215] Yang T, Li Z, Suo Z, et.al., Performance analysis for multi-channel HRWS SARsystems based on STAP approach, IEEE Geoscience and Remote Sensing Letter,2013,10(6):1409-1413.
    [216] Ma L., Li Z., Liao G., System error analysis and calibration methods formulti-channel SAR, Progress In Electromagnetics Research,2011,112:309-327.
    [217] Suess M., Grafmuller B. and Zahn R. A novel high resolution, wide swath SARsystem. Proceedings of the IEEE International Geoscience and Remote SensingSymposium (IGARSS),2001,1013-1015.
    [218]杨桃丽,李真芳,陈刚,刘艳阳.一种新的距离多波束高分辨宽测绘带SAR系统,第二届高分辨率对地观测学术年会,中国,北京,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700