用户名: 密码: 验证码:
旋转式合成孔径雷达三维成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转式合成孔径雷达(ROSAR)是一种新型的雷达成像模式,它既保留了传统合成孔径雷达(SAR)全天候、全天时、电磁穿透等优点,又具有重访周期短、全视域成像等卓越性能,广泛应用于自然灾难应急救援、地下资源勘探、公共场所无损安检、战场监视以及低空火力支援等领域。直升机等旋翼飞行器是ROSAR模式最为典型的应用平台,ROSAR天线固定在刚性支架上,并指向外围随机翼一起做匀速圆周运动,天线旋转一周即能完成周围场景一次探测。该技术巧妙地利用了机翼旋转特性,仅需要一个天线的旋转运动,就能形成方位向圆弧形合成孔径,从而实现周围场景二维成像,极大地提高了飞行器的飞行安全。但是面对低空飞行任务,周围场景通常非常复杂,而获取的二维图像将可能错误地反映潜在威胁物的空间信息,为此开展ROSAR三维成像研究显得尤为必要。
     本文以满足低空空域安全飞行为目的,针对ROSAR三维成像中的关键问题和技术难点,围绕973项目“复杂低空飞行的自主避险理论与方法研究”、国家自然科学基金“机载毫米波雷达旋转合成孔径成像处理方法研究”等项目的研究任务,从ROSAR三维成像模型和三维成像方法等方面展开研究。具体的工作和贡献如下:
     1.介绍了传统的二维ROSAR模型,为后续的三维成像理论奠定基础。针对现有的二维成像方法运算量大、大方位角散焦问题,提出了一种基于频谱重构的二维ROSAR成像方法。通过分析ROSAR回波信号形式,对其直接进行傅立叶变换,获取二维精确频谱表达式。由于精确频谱的形式过于复杂,导致后续处理无法进行,折中考虑频谱的精确性和可操作性,采用四阶频谱重构的方法,获取形式简洁、保留较多信息的高阶频谱,并基于该频谱提出ROSAR距离徙动算法(RMA)和调频变标算法(CSA)。仿真实验表明,在方位角不大于90度情况下,频谱重构方法都能实现高精度快速成像。
     2.建立了ROSAR干涉成像模型,并重点分析了非理想情况载机平台的轴偏移问题。通过ROSAR技术和干涉方法相结合,要求载机平台在不同高度上进行悬停,每悬停一次获取一组场景数据,对录取的数据进行成像和干涉处理,可实现周围场景全视域三维成像。针对平台运动非理想情况,讨论了轴偏移对方位带宽、图像位置和干涉相位的影响。轴偏移导致干涉相位中增加一项附加相位,通过推导和分析附加相位形式,构建了一个相位补偿函数,由于该函数需要场景高度这一未知信息,预先假设所有场景高度为零,然后通过构建相位加权因子来消除高度置零的影响。最后对轴偏移的影响进行仿真实验,并获取了仿真场景三维高程图。
     3.建立了旋转上升合成孔径雷达(SSAR)三维成像模型,并提出一种适用于该模型的三维成像算法。在现有的二维ROSAR技术的基础上,SSAR利用载机平台上升在高度向上形成第二个合成孔径,天线受水平旋转和匀速上升的共同作用,在空中形成一个圆柱形合成阵面,同时结合距离向发射的宽带信号,使得该模型具有三维成像能力。关于三维成像算法,为了降低成像处理难度,首先分析方位向采样和高度向上升对天线位置的影响,并构建位置偏移补偿函数,将“旋转上升”模式简化为沿高度向“一步一悬停”模式。然后分析了简化模式的相位历程,计算高度向中心频率偏移量,推导波数域三维匹配函数,构建波数域插值函数,进而实现简化模式的三维成像。最后对该模型进行了性能分析,并通过仿真实验验证成像算法的有效性。
     4.建立了前行ROSAR(FMROSAR)三维成像模型,并针对该模型提出了一种三维成像算法。在前行状态下,天线指向前方区域发射宽带信号,同时受到平台前行和机翼旋转的共同影响,在空中形成一个水平合成阵面,结合距离向高分辨能力以及二维阵面分辨能力,FMROSAR可实现三维前视成像。FMROSAR成像算法包括模式简化和简化模式三维成像两大步骤。首先通过方位向偏移补偿和顺轨向偏移补偿,将前行模式简化为沿顺轨向“一步一停”模式。针对“一步一停”模式,又细分为距离-方位成像和距离-顺轨成像两个子步骤。在后者的成像过程中,分析了平台运动对方位角变化的影响,并给出了顺轨向有效聚焦的约束条件。同时考虑顺轨向大斜视成像情况,提出了一种改进的距离多普勒算法(RDA)。最后分析了上述模型的性能,并验证了成像算法的有效性。
As a new kind of imaging mode, Rotor Synthetic Aperture Radar (ROSAR) hasbeen used widely for natural disasters rescue, mineral resources exploration,nondestructive testing, battlefield surveillance and low-altitude fire support due to suchadvantages as all-time, all-weather, electromagnetic penetration, short revisiting timeand omnidirectional imaging. Helicopters and other rotorcrafts are the most typicalplatforms for ROSAR technology. The antenna is fixed at the end of a rigid arm, pointsaround the platform and travels along the circular motion with the constant velocityrotor. In this way, an observation of the surrounding scene is completed while theantenna rotates a full circle. Using the blade rotation characteristic, ROSAR technologycan generate a circular synthetic aperture in the azimuth direction with one antenna, andrealize the two-dimensional (2-D) imaging of surrounding scene for guaranteeingrotorcraft safety. However, the acquired2-D image may show spatial information of thepotential hazards incorrectly in a low-altitude and complex environment, and thus it isabsolutely necessary to carry out research on the three-dimensional (3-D) imaging ofROSAR.
     To make low-altitude aircraft secure, and to solve the key problems in3-D imagingof ROSAR, we expand the work from signal models and imaging methods of3-DROSAR. The relevant work is supported by the National Basic Research Program ofChina (973Program) under Grant2011CB707000and the National Natural ScienceFoundation of China under Grant61101242. The main work and contributions of thisdissertation are presented as follows:
     1. The model of2-D ROSAR is introduced, which lays the foundation for thesubsequent research on3-D imaging. To improve the weakness of time-consuming andazimuth defocus in the existing algorithms, a new2-D ROSAR algorithm based onspectral reconstruction is presented. The expression of ROSAR echo signal is analyzed,and then the precise2-D spectrum is obtained by using of the Fourier transform directly.Due to the complex form of2-D spectrum, it is difficult to realize the later imagingprocess. Therefore, considering the accuracy and operability, an approximate andinformative spectral is acquired by the method of fourth-order spectral reconstruction,and based on which, the Range Migration Algorithm (RMA) and the Chirp ScalingAlgorithm (CSA) of ROSAR is proposed. Finally, simulation results show the accuracyand rapidity of the proposed method with the azimuth angle of less than90degrees.
     2. An interferometric imaging model of ROSAR is established, and the problem of axial deviation of platform is analyzed emphatically under non-ideal circumstance.By means of ROSAR technique and interference method, a set of surrounding data arecollected in a certain “hover” position, while another set of data in a new “hover”position. After imaging and interferometric processing, we can get the omnidirectional3-D imaging of the surrounding scene. As to the non-ideal motion of the platform, wediscuss the influence of axial deviation on azimuth bandwidth, image position andinterferometric phase. In particular, the deviation leads to an additional term in theinterferometric phase. To correct this additional phase, we derive its expression,construct the relevant compensation function, and define a weighted factor as a result ofheight information inadequate and nulling in the compensation function. In thesimulation experiment, the influence of axial deviation is analyzed and the digitalelevation model (DEM) of3-D scene is generated.
     3. A model of spiral synthetic aperture radar (SSAR) is established and acorresponding algorithm is proposed. Based on the existing2-D ROSAR technology,SSAR utilizes the ascent of platform to form a second synthetic aperture, and then itachieves the ability of3-D imaging due to the formation of cylindrical array, which isthe result from the interaction of horizontal rotation and uniform ascent, and thewide-band signal transmitted in the range direction. In Chapter four,3-D imagingalgorithm is presented for the SSAR model. Firstly, to reduce the difficulty of imagingprocess, we analyze the impacts of azimuth sampling and height ascent on antennaposition, construct the compensation function for spatial offset, and simplify the “spiral”mode into the “hover-and-go” mode in the height direction. Secondly, through thedetailed analysis of phase history of simplified model, the spectrum shift in the heightdirection is calculated, the bulk compression function and interpolation kernel in thewavenumber domain is derived, and thus the3-D imaging is implemented. Finally, theperformance analysis of SSAR model is performed, and the effectiveness of theproposed algorithm is validated through simulation results.
     4. A model of forward-moving ROSAR (FMROSAR) is established, and a3-Dimaging algorithm is proposed for this model. In the forward-moving state, the antennatransmits the wide-band signal to the front area; meanwhile, it can form a plane arrayunder the influence of platform movement and blade rotation. Therefore, FMROSARcan realize3-D forward-looking imaging owing to the high-resolution in the rangedirection and the2-D resolution of the plane array. The imaging algorithm forFMROSAR includes model simplification and3-D imaging for the simplified model.First of all, with the azimuth and along-track offset compensation, the “forward-moving” mode is simplified as “stop-and-go” mode in the along-trackdirection. In “stop-and-go” mode, the algorithm can be further divided as therange-azimuth imaging and the range-along-track imaging. As for the latter, the azimuthangle variation and its impacts on the matched filter are discussed, and an improvedRange Doppler Algorithm (RMA) is proposed to focus the data with high squint anglein the along-track direction. Finally, the performance of FMROSAR is analyzed, and thevalidity of this algorithm is verified.
引文
[1] http://china.findlaw.cn/fagui/p_4/160503.html
    [2] http://safety.caac.gov.cn/admin/news/outview.do?pk=100000091721610
    [3] http://www.aaib.gov.uk/cms_resources.cfm?file=/Annual%20Safety%20Report%202012. pdf
    [4]李德仁,周月琴,金为铣.摄影测量与遥感概论[M].北京:测绘出版社,2001
    [5] V. Venkateswar and R. Chellappa. Extraction of straight lines in aerial images [J].IEEE Trans. Patt. Anal. Machine Intell.,1992,14(11):1111-1114.
    [6] J. Candamo, R. Kasturi, D. Goldgof, et al. Detection of thin lines using low-qualityvideo from low-altitude aircraft in urban settings [J]. IEEE Trans. Aerosp. Electron.Syst.,2009,45(3):937-949.
    [7] B. Sridhar and A. V. Phatak. Analysis of image-based navigation system for rotocraftlow-altitude flight [J]. IEEE Trans. Syst., Man, Cybern.,1992,22(2):290-299.
    [8]王聪华.无人飞行器低空遥感影像数据处理方法[D].山东:山东科技大学,2006.
    [9] K. Q. Zhang, S. C. Chen, D. Whitman, et al. A progressive morphological filter forremoving nonground measurements from airborne LIDAR data [J]. IEEE Trans.Geosci. Remote Sens.,2003,41(4):872-882.
    [10] J. Hyyppa, O. Kelle, M. Lehikoinen, et al. A segmentation-based method to retrievestem volume estimates from3-D tree height models produced by laser scanners [J].IEEE Trans. Geosci. Remote Sens.,2001,39(5):969-975.
    [11] K. Q. Zhang, J. H. Yan, and S. C. Chen. Automatic construction of buildingfootprints from airborne LIDAR data [J]. IEEE Trans. Geosci. Remote Sens.,2006,44(9):2523-2533.
    [12] F. Rottensteiner. Automatic generation of high-quality building models fromLIDAR data [J]. IEEE Computer Graphics and Applications,2003,23(6):42-50.
    [13]李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报,2000,25(5):387-392.
    [14]曾齐红.机载激光雷达点云数据处理与建筑物三维重建[D].上海:上海大学,2009.
    [15]姚春静.机载LIDAR点云数据与遥感影像配准的方法研究[D].武汉:武汉大学,2010.
    [16] B. D. Nguyen, C. Migliaccio, Ch. Pichot, et al. W-Band fresnel zone plate reflectorfor helicopter collision avoidance radar [J]. IEEE Trans. Antennas Propag.,2007,55(5):1452-1456.
    [17] F. Sadjadi, M. Helgeson, J. Radke, et al. Radar synthetic vision system for adverseweather aircraft landing [J]. IEEE Trans. Aerosp. Electron. Syst.,1999,35(1):2-14.
    [18] C. Migliaccio, B. D. Nguyen, and C. Pichot. Millimeter-wave radar for rescuehelicopters [C]. International Conference on Control, Automation, Robotics andVision, Singapore,2006:1-6.
    [19] D.S. Goshi, K. Mai, Y. Liu, et al. A millimeter-wave sensor development system forsmall airborne platforms [C]. IEEE Radar Conference (RADAR), Atlanta, USA,2012:510-515.
    [20]王家秀.直升机载毫米波防撞系统技术研究[D].南京:南京理工大学,2011.
    [21] K. Sarabandi and M. Park. Extraction of power line maps from millimeter-wavepolarimetric SAR images [J]. IEEE Trans. Antennas Propagat.,2000,48(12):1802-1809.
    [22] Q. R. Ma, D. S. Goshi, Y. C. Shih, et al. An algorithm for power line detection andwarning based on a millimeter-wave radar video [J]. IEEE Trans. Image Processing,2011,20(12):3534-3543.
    [23] R. C. Thor. A large time-bandwidth product pulse-compression technique [J]. IRETrans. Military Electronics,1962,6(2):169-173.
    [24] I. N. Court. Microwave acoustic devices for pulse compression filters [J]. IEEETrans. Microwave Theory and Techniques,1969,17(11):968-986.
    [25]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社,2002.
    [26] C. A. Wiley. Synthetic aperture radar [J]. IEEE Trans. Aerosp. Electron. Syst.,1985,21(3):440-443.
    [27] C. A. Wiley. Pioneer Award acceptance remarks [J]. IEEE Trans. Aerosp. Electron.Syst.,1986,21(3):433-433.
    [28] C. W. Sherwin, J.E.Ruina, and R.D.Rawcliffe. Some early developments insynthetic aperture radar Systems [J]. IRE Trans. Military Electronics,1962,6(2):111-115.
    [29] J. Mittermayer, M. Wendler, and G. Krieger. Sector imaging radar for enhancedvision (SIREV): simulation and processing techniques [C]. Enhanced and SyntheticVision2000, Proceedings of SPIE, Orlando, USA,2000, Vol.4023:298-305.
    [30] G. Krieger, J. Mittermayer, M. Wendler, et al. SIREV-sector imaging radar forenhanced vision [C]. International Symposium on Image and Signal Processing andAnalysis, Pula, Croatia,2001:377-382.
    [31] T. Sutor, S. Buckreuss, and G. Krieger. Sector imaging radar for enhanced vision(SIREV): theory and applications [C]. Enhanced and Synthetic Vision2000,Proceedings of SPIE, Orlando, USA,2000, Vol.4023:292-297.
    [32] T. Sutor and F. Witte. A new sector imaging radar for enhanced vision [J]. Airborneradar,2001,(2):7-14.
    [33] T. Sutor, F. Witte, and A. Moreira. A new sector imaging radar for enhanced vision-SIREV [C]. Enhanced and Synthetic Vision1999, Proceedings of SPIE, Orlando,USA,1999, Vol.3691:39-47.
    [34] J. Mittermayer, M. Wendler, and G. Krieger. Data processing of an innovativeforward looking SAR system for enhanced vision [C]. European Conference onSynthetic Aperture Radar, Munich, Germany,2000:733-736.
    [35] G. Krieger, J. Mittermayer, and M. Wendler. Sector imaging radar for enhancedvision [J]. Aerospace Science and Technology, ELSEVIER,2003,7(2):147-158.
    [36] T. Espeter, I. Walterscheid, J. Klare, et al. Bistatic forward-looking SAR: results ofa spaceborne-airborne experiment [J]. IEEE Geosci. Remote Sens. Lett.,2011,8(4):765-768.
    [37] H. S. Shin and J. T. Lim. Omega-k algorithm for airborne forward-looking bistaticspotlight SAR imaging [J]. IEEE Geosci. Remote Sens. Lett.,2009,6(2):312-316.
    [38] W. C. Li, Y. L. Huang, J. Y. Yang, et al. An improved radon-transform-basedscheme of doppler centroid estimation for bistatic forward-looking SAR [J]. IEEEGeosci. Remote Sens. Lett.,2011,8(2):379-383.
    [39] W. C. Li, J. Y. Yang, Y. L.Huang, et al. A geometry-based doppler centroidestimator for bistatic forward-looking SAR [J]. IEEE Geosci. Remote Sens. Lett.,2012,9(3):388-392.
    [40] Z. Liu, J. Y. Yang, and X. L. Zhang. Nonlinear RCMC method forspaceborne/airborne forward-looking bistatic SAR [J]. Journal of SystemsEngineering and Electronics,2012,23(2):201-207.
    [41] X. Wang, D. Y. Zhu, and Z. D. Zhu. Research on the bistatic forward-looking SARimaging [J]. Journal of Electronics (China),2010,27(6):735-741.
    [42]李文超.双基地前视合成孔径雷达运动补偿[D].成都:电子科技大学,2012
    [43] H. Klausing and W. Keydel. Feasibility of a synthetic aperture radar with rotatingantennas (ROSAR)[C]. IEEE International Radar Conference, Arlington, USA,1990:51-56.
    [44] H. Klausing. Feasibility of a synthetic aperture radar with rotating antennas(ROSAR)[C].19th European Microwave Conference, London, UK,1989:287-299.
    [45] H. Klausing, N. Bartsch, and C. Boesswetter. A MM-wave SAR-design forhelicopter application (ROSAR)[C]. European Microwave Conference, Dublin,Ireland,1986:317-328.
    [46] H. Rudolf, D. Leva, D. Tarchi, et al. A parallelogram shaped arm for improvingcircular SARs [C]. International Geoscience and Remote Sensing Symposium,Hamburg, Germany,1999:553-555.
    [47] H. P. Tran, F. Gumbmann, J. Weinzierl, et al. A fast scanning W-band system foradvanced millimetre-wave short range imaging applications [C]. Proceedings of theEuropean Radar Conference, Manchester, UK,2006:146-149.
    [48] M. T. Ghasr, D. Pommerenke, J. T. Case, et al. Rapid rotary scanner and portablecoherent wideband Q-band transceiver for high-resolution millimeter-wave imagingapplications [J]. IEEE Trans. Instrum. Meas.,2011,60(1):186-197.
    [49] W. Kreitmair-Steck, H. Klausing, A. P. Wolframm, et al. HeliRadar-a syntheticaperture radar with rotating antennas [C]. Proceedings of the European MicrowaveConference, Madrid, Spain,1993:972-974.
    [50] W. Kreitmair-Steck and G. Braun. HeliRadar technology for helicopter allweatheroperations [C]. Proceedings of SPIE, Radar Sensor Technology II, Vol.3066,Orlando, USA,1997:28-38.
    [51] W. Kreitmair-Steck, A. P. Wolframm, and A. Schuster. HeliRadar-the pilot's eye forflights at adverse weather conditions [C]. Proceedings of SPIE, Enhanced andSynthetic Vision, Vol.2736, Orlando, USA,1996:35-41.
    [52] W. Kreitmair-Steck and A. P. Wolframm. HeliRadar-a rotating antenna syntheticaperture radar for helicopter allweather operations [C]. Proceedings of the AGARD-59th Guidance and Control Panel, Pratica di Mare, Italy,1995:1-8.
    [53] D. S. Garmatyuk and R. M. Narayanan. Ultra-wideband continuous-wave randomnoise arc-SAR [J]. IEEE Trans. on Geosci. Remote Sens.,2002,40(12):2543-2252.
    [54] F. Ali, A. Urban, and M. Vossiek. A short range synthetic aperture imaging radarwith rotating antenna [J]. International Journal of Electronics andTelecommunications,2011,57(1):97-102.
    [55] A. Broquetas, R. D. Porrata, L. Sagues, et al. Circular synthetic aperture radar(C-SAR) system for ground-based applications [J]. IEE Electronics Letters,1997,33(11):988-989.
    [56] M. Bara, L. Sagues, F. Paniagua, et al. High-speed focusing algorithm for circularsynthetic aperture radar (C-SAR)[J]. IEE Electronics Letters,2000,36(9):828-830.
    [57] H. Lee, J. H. Lee, K. E. Kim, et al. Development of a truck-mounted arc-scanningsynthetic aperture radar [J]. IEEE Trans. Geosci. Remote Sens., in press.
    [58] H. Lee, S. J. Cho, and K. E. Kim. A ground-based arc-scanning synthetic apertureradar (arcSAR) system and focusing algorithms [C]. International Geoscience andRemote Sensing Symposium, Hawaii, USA,2010:3490-3493.
    [59] J. Zhang. The static small object detection based on ground-based arc SAR [C].International Conference on Microwave and Millimeter Wave Technology,Shenzhen, China,2012:1-4.
    [60] A. P. Wolframm and H. Klausing. Arrangement for the interferometric radarmeasurement according to the ROSAR principle [P]. USA:6549159B1,2003.
    [61] A. P. Wolframm and H. Klausing. Method for interferometric radar measurement
    [P]. USA:7002508B2,2006.
    [62]孙兵,周荫清,陈杰,等.广域观测圆轨迹环扫SAR成像模式研究[J].电子与信息学报,2008,30(12):2805-2808.
    [63]廖轶,周松,邢孟道,等.一种基于级数反演的机载圆迹环扫SAR成像算法[J].电子与信息学报,2012,34(11):2587-2593.
    [64]廖轶,包敏,邢孟道,等.一种高分辨圆迹环扫合成孔径雷达成像方法[J].系统工程与电子技术,2013.
    [65]廖轶,杨泽民,邢孟道,等.斜视圆迹环扫SAR模式特性分析及成像方法研究[J].西安电子科技大学学报(自然科学版),2014,41(1):49-58.
    [66] F. Ali, A. Urban, and M. Vossiek. A high resolution2D omnidirectional syntheticaperture radar scanner at K band [C]. Proceedings of the European RadarConference, Paris, France,2010:503-506.
    [67] H. Klausing. Feasibility of a radar with synthetic aperture by rotating antennas [D].MBB publication,1989.
    [68] H. Klausing and A. Wolframm. Device for motion error compensation for a radarwith synthetic aperture based on rotating antennas (ROSAR) for helicopters [P].USA:5777573,1998.
    [69] I. Rhee, M. F. Abdel-Hafez, and J. L. Speyer. Observability of an integratedGPS/INS during maneuvers [J]. IEEE Trans. Aerosp. Electron. Syst.,2004,40(2):526-535.
    [70] S. Khanafseh and B. Pervan. Detection and mitigation of reference receiver faultsin differential carrier phase navigation systems [J]. IEEE Trans. Aerosp. Electron.Syst.,2011,47(4):2391-2404.
    [71]卢鸿谦. SINS/GPS组合导航性能增强技术研究[D].哈尔滨:哈尔滨工业大学,2006.
    [72]胡锐.惯性辅助GPS深组合导航系统研究与实现[D].南京:南京理工大学,2010.
    [73] H. Klausing and H. Kaltschmidt. Radar system having a synthetic aperture on thebasis of rotating antennas [P]. USA:5017922,1991.
    [74] I. G. Cumming and F. H. Wong. Digital processing of synthetic aperture radar data:algorithms and implementation [M]. Norwood, MA: Artech House,2005.
    [75] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing [M]. BocaRaton, FL: CRC Press,1993.
    [76] J. C. Curlander and R. N. McDonough. Synthetic aperture radar: system and signalprocessing [M]. Boston: Jone Wiley&Sons, INC,1991.
    [77] H. Klausing. Radar device comprising a synthetic aperture on the basis of rotatingantennas [P]. USA:5392047,1995.
    [78] H. Klausing. Synthetic aperture radar having rotating antennas [P]. USA:5379041,1995.
    [79] F. Gumbmann, H. P. Tran, J. Weinzierl, et al. Optimization of a fast scanningmillimetre-wave short range SAR imaging system [C]. Proceedings of theEuropean Radar Conference, Munich, Germany,2007:24-27.
    [80] F. Gumbmann, P. H. Tran, J. Weinzierl, et al.3D SAR processing for a fastscanning millimetre-wave short range imaging system [C]. European Conferenceon Synthetic Aperture Radar, Friedrichshafen, Germany,2008:1-4.
    [81] L. C. Graham. Synthetic interferometer radar for topographic mapping [J]. Proc. ofIEEE,1974,62(6):763-768.
    [82] A. K. Gabriel and R. M. Goldstein. Crossed orbit interferometry: theory andexperimental results from SIR-B [J]. Int. J. Remote Sens.,1988,9(5):857-872.
    [83] R. Bamler and P. Hartl. Synthetic aperture radar interferometry [J]. InverseProblems,1998,14(4): R1-R54.
    [84] P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic aperture radar interferometry[J]. Proc. of IEEE,2000,88(3):333-382.
    [85] E. Rodrigurez and J. M. Martin. Theory and design of interferometric syntheticaperture radar [J]. Proc. Inst. Elect. Eng.,1992,139(2):147-159.
    [86]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [87] K. K. Knaell and G. P. Cardillo. Radar tomography for the generation ofthree-dimensional images [J]. IET Radar Sonar Navig.,1995,142(2):54-60.
    [88] P. Pasquali, C. Prati, F. Rocca, et al. A3D SAR experiment with EMSL data [C].International Geoscience and Remote Sensing Symposium, Firenze, Italy,1995:784-786.
    [89] G. Fornaro, F. Lombardini, and F. Serafino. Three-dimensional multipass SARfocusing: experiments with long-term spaceborne data [J]. IEEE Trans. Geosci.Remote Sens.,2005,43(4):702-714.
    [90] A. Budillon, A. Evangelista, and G. Schirinzi. Three-dimensional SAR focusingfrom multipass signals using compressive sampling [J]. IEEE Trans. Geosci.Remote Sens.,2011,49(1):488-499.
    [91] G. Corsini, M. Diani, F. Lombardini, et al., Simulated analysis and optimization ofa three-antenna airborne InSAR system for topographic mapping [J]. IEEE Trans.Geosci. Remote Sens.,1999,37(5):2518-2529.
    [92] D. G. Thompson, A. E. Robertson, D. V. Arnold, et al. Multi-baselineinterferometric SAR for iterative height estimation [C]. International Geoscienceand Remote Sensing Symposium, Hamburg, Germany,1999,251-253.
    [93] H. W. Yu, Z. F. Li, et al. A cluster-analysis-based efficient multibaselinephase-unwrapping algorithm [J]. IEEE Trans. Geosci. Remote Sens.,2011,49(1):478-487.
    [94] P. Pasquali, C. Prati, F. Rocca, et al. A3-D SAR experiment with EMSL data [C].International Geoscience and Remote Sensing Symposium, Firenze, Italy,1995:784-786.
    [95] A. Reigher, A. Moreira, and K. P. Papathanassiou. First demonstration of airborneSAR tomography using multibaseline L-band data [C]. Intemational Geoscienceand Remote Sensing Symposium, Hamburg, Germany,1999:44-46.
    [96] G. Fomaro and F. Serafino. Spaceborne3D SAR tomography: experiments withERS data [C]. International Geoscience and Remote Sensing Symposium,Anchorage, USA,2004:1240-1243.
    [97] A. Reigber and A. Moreira. First demonstration of airborne SAR tomography usingmultibaseline L-band data [J]. IEEE Tran. Geosci. Remote Sens.,2000,38(9):2142-2152.
    [98] Z. She, D. A. Gray, R. E. Bogner, et a1. Three-dimensional spaceborne syntheticaperture radar (SAR) imaging with multipass processing [J]. Int. J. Remote Sens.,23(4):4357-4382.
    [99] J. Homer, I. D. Longstaff, Z. She, et a1. High resolution3-D imaging viamulti-pass SAR [J]. IEE Proc. Radar Sonar Navig.,2002,149(1):45-50.
    [100] F. Lombardini and A. Reigber. Adaptive spectral estimation for multibaselineSAR tomography with airborne L-band data [C]. International Gcoscience andRemote Sensing Symposium, Toulouse, France,2003:2014-2016.
    [101] P. Berardino, G. Fornaro, R. Lanari, et al. Multi-pass synthetic aperture radar for3-D focusing [C]. International Geoscienee and Remote Sensing Symposium,Toronto, Canada,2002:176-178.
    [102] G. Fomaro, F. Serafino, and F. Soldovieri. Three dimensional focusing withmultipass SAR data [J]. IEEE Tran. Geosci. Remote Sens.,2003,41(4):507-517.
    [103]王金峰. SAR层析三维成像技术研究[D].成都:电子科技大学,2010.
    [104] F. Lombardini, M. Pardini, and F. Gini. Sector interpolation for3D SAR imagingwith baseline diversity data [C]. International Waveform Diversity and DesignConference, Pisa, Italy,2007:297-301.
    [105] F. Lombardini and M. Pardin.3-D SAR tomography: the multibaseline sectorinterpolation approach [J]. IEEE Geosci. Remote Sens. Lett.,2008,5(4):630-634.
    [106] G. Fornaro and A. Pauciullo. LMMSE3-D SAR focusing [J]. IEEE Tran. Geosci.Remote Sens.,2009,47(1):214-223.
    [107] W. X. Tan, W. Hong, Y. P. Wang, et al.3-D Range Stacking Algorithm forForward-Looking SAR3-D Imaging [C]. International Geoscience and RemoteSensing Symposium, Boston, USA,2008(III):1212-1215.
    [108] G. Franceschetti, A. Iodice, and D. Riccio. Forward-looking synthetic apertureradar (FLoSAR): the array approach [J]. IEEE Geosci. Remote Sens. Lett., in press.
    [109] B. R. Mahafza and S. Mitch. Three-dimensional SAR imaging using linear arrayin transverse motion [J]. IEEE Trans. Aerosp. Electron. Syst.,1996,32(1):499-510.
    [110] C. H. Gierull. On a concept for an airborne downward-looking imaging radar [J].International Journal of Electronics and Communications,1999,53(6):295-304.
    [111] R. Giret, H. Jeuland, and P. Enert. A study of a3D-SAR concept for amillimeter-wave imaging radar onboard an UAV [C]. European Radar Conference,Amsterdam, Netherland,2004:201-204.
    [112] M. Weib and J. Ender. A3D imaging radar for small unmanned airplanes-ARTINO [C]. European Radar Conference, Paris, France,2005:209-212.
    [113] J. Klare, M. Weib, O. Peters, et al. ARTINO: A new high resolution3D imagingradar system on an autonomous airborne platform [C]. International Geoscienceand Remote Sensing Symposium, Denver, USA,2006:3825-3828.
    [114] M. Weib, O. Peters, and J. Ender. A three dimensional SAR system on an UAV
    [C]. International Geoscience and Remote Sensing Symposium, Barcelona, Spain,2007:5315-5318.
    [115]任笑真,杨汝良.机载前视SAR三维成像算法研究[J].电子与信息学报,2010,32(6):1361-1365.
    [116]任笑真,杨汝良.机载前视SAR三维成像原理及分辨率分析[J].电子科技大学学报,2010,39(5):706-710.
    [117] X. Z. Ren, J. T. Sun, and R. L. Yang. A new three-dimensional imaging algorithmfor airborne forward-looking SAR [J]. IEEE Geosci. Remote Sens. Lett.,2011,8(1):153-157.
    [118] M. Soumekh. Reconnaissance with slant plane circular SAR imaging [J]. IEEETrans. Image Processing,1996,5(8):1252-1265.
    [119] M. Soumekh. Synthetic aperture radar signal processing with MATLAB algorithm[M]. New York: Wiley,1999.
    [120] A. Ishimaru, T. K. Chan, and Y. Kuga. An imaging technique using confocalsynthetic aperture radar [J]. IEEE Trans. Geosci. Remote Sens.,1998,36(5):1524-1530.
    [121] A. Ishimaru, T. Chan, and Y. Kuga. Experimental studies on circular SAR imagingin clutter using angular correction function technique [J]. IEEE Trans. Geosci.Remote Sens.,1999,37(5):2192-2197.
    [122]吴雄峰,王彦平,吴一戎,等.圆周合成孔径雷达投影共焦三维成像算法[J].系统工程与电子技术,2008,30(10):1874-1878.
    [123]林赟,谭维贤,洪文,等.圆迹SAR极坐标格式算法研究[J].电子与信息学报,2010,32(12):2802-2807.
    [124] O. Ponce, P. Prats, M. Rodriguez-Cassola, et al. Processing of circular SARtrajectories with fast factorized back-projection [C]. International Geoscience andRemote Sensing Symposium, Vancouver, Canada,2011:3692-3695.
    [125] P. O. Frolind, M. Lundberg, and A. Gustavsson. First results on VHF-band SARimaging using circular tracks [C]. European Conference on Synthetic ApertureRadar, Friedrichshafen, Germany,2008:221-224.
    [126] P. O. Frolind, A. Gustavsson, M. Lundberg, et al. Circular-aperture VHF-bandsynthetic aperture radar for detection of vehicles in forest concealment [J]. IEEETrans. Geosci. Remote Sens.,2012,50(4):1329-1339.
    [127] H. Oriot and H. Cantalloube. Circular SAR imagery for urban remote sensing [C].European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany,2008:205-208.
    [128] M. Pinheiro, P. Prats, R. Scheiber, et al.. Tomographic3D reconstruction fromairborne circular SAR [C]. International Geoscience and Remote SensingSymposium, Cape Town, South Africa,2009:21-24.
    [129]洪文.圆迹SAR成像技术研究进展[J].雷达学报,2012,1(2):124-135.
    [130] J. Burki and C. F. Barnes. Slant plane CSAR processing using householdertranform [J]. IEEE Trans. Image Processing,2008,17(10):1900-1907.
    [131] Y. Lin, W. Hong, W. X. Tan, et al. Extension of range migration algorithm tosquint circular SAR imaging [J]. IEEE Geosci. Remote Sens. Lett.,2011,8(4):651-655.
    [132]张祥坤.高分辨率圆迹合成孔径雷达成像机理及方法研究[D].北京:中国科学院研究生院,2007.
    [133]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [134] R. Bamler. A comparison of range-Doppler and wavenumber domain SARfocusing algorithms [J]. IEEE Trans. on Geosci. Remote Sens.,1992,30(4):706-713.
    [135] R. Wang, O. Loffeld, H. Nies, et al. Focus FMCW SAR data using thewavenumber domain algorithm [J]. IEEE Trans. on Geosci. Remote Sens.,2010,48(4):2109-2118.
    [136]井伟,张磊,邢孟道,等.聚束式SAR的宽场景成像算法[J].电子学报,2009,37(3):470-475.
    [137] M. Jeon and Y. S. Kim. Migration technique for rotor synthetic aperture radar [J].IEE Electronics Letters,1997,33(7):630-631.
    [138] R. Lanari, G. Fornaro, D. Riccio, et al. Generation of digital elevation models byusing SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study[J]. IEEE Trans. Geosci. Remote Sensing,1996,34(5):1097-1114.
    [139]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [140]郭交,李真芳,刘艳阳,等.一种基于相干性本质的InSAR方位向预滤波方法[J].电子学报,2012,40(3):417-421.
    [141] R. Wang, Y. K. Deng, O. Loffeld, et al. Focusing bistatic SAR data in doublesliding spotlight mode with terraSAR-X and PAMIR based on azimuth chirpfiltering [C]. European Conference on Synthetic Aperture Radar, Berlin, Germany,2012:772-775.
    [142] M. Schwabisch and D. Geudtner. Improvement of phase and coherence mapquality using azimuth prefiltering: examples from ERS-I and X-SAR [C].International Geoscience and Remote Sensing Symposium, Firenze, Italy,1995:205-207.
    [143]穆冬.干涉合成孔径雷达成像技术研究[D].南京:南京航空航天大学,2001.
    [144] R. Scheiber and A. Moreira. Coregistration of interferometric SAR images usingspectral diversity [J]. IEEE Trans. Geosci. Remote Sensing,2000,38(5):2179-2191.
    [145] A. Cole-Rhodes, K. L. Johnson, L. J. Moigne, et al. Multiresolution registration ofremote sensing imagery by optimization of mutual information using a stochasticgradient [J]. IEEE Trans. Image Process,2003,12(12):1495-1511.
    [146] R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite radar interferometry:two-dimensional phase unwrapping [J]. Radio Science,1988,23(4):713-720.
    [147] W. Xu and I. G. Cumming. A region growing algorithm for InSAR phaseunwrapping [J]. IEEE Trans. Geosci. Remote Sens.,1999,37(1):124-134.
    [148] D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted andunweighted phase unwrapping that uses fast transforms and iterative methods [J]. J.Opt. Soc. Am. A,1994,11(1):107-177.
    [149] G. Fornaro, F. Serafino, and F. Soldovieri. Three-dimensional focusing withmultipass SAR data [J]. IEEE Trans. Geosci. Remote Sens.,2003,41(3):507-517.
    [150] F. Lombardini and M. Pardini. Superresolution differential tomography:experiments on identification of multiple scatterers in spaceborne SAR data [J].IEEE Trans. Geosci. Remote Sens.,2012,50(4):1117-1129.
    [151] J. Shi, X. L. Zhang, J. Y. Yang, and C. Wen. APC trajectory design for“one-active” linear-array three-dimensional imaging SAR [J]. IEEE Trans. Geosci.Remote Sens.,2010,48(3):1470-1486.
    [152] A. Dallinger, S. Schelkshorn, and J. Detlefsen. Efficient ω-k algorithm for circularSAR and cylindrical reconstruction areas [J]. Adv. Radio Sci.,2006, vol.4:85-91.
    [153] W. X. Tan, W. Hong, Y. P. Wang, et al. Synthetic aperture radar tomographysampling criteria and three-dimensional range migration algorithm with elevationdigital spotlighting [J]. Sci. China Ser. F-Inf. Sci.,2009,52(1):100-114.
    [154] X. Z. Ren, L. L. Tan, and R. L. Yang. Research of three-dimensional imagingprocessing for airborne forward-looking SAR [C]. IET International RadarConference, Guilin, China,2009:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700