用户名: 密码: 验证码:
基于半导体光集成器件的毫米波拍频光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用光学方法产生高频毫米波是近年来迅速发展的光纤无线通信(RoF)系统中的一项重要技术。相比传统的电子学方法,光生毫米波不仅能大大降低系统成本,还能实现较大范围的频率调谐。同时,光生毫米波技术还可以在雷达、制导以及遥感等领域获得广泛的应用。如果将光生毫米波系统进行单片集成,还能进一步降低系统的复杂度和成本,提高其性能和实用价值。
     本论文针对光生低噪声毫米波信号的需要,设计并制作了基于边带注入锁定的毫米波集成拍频光源,对其光生微波的性能进行了系统的研究,并详细分析了边带注入锁定系统中影响相位噪声特性的因素,通过实验证明利用集成器件可以有效简化光生微波系统,改善光生毫米波信号的相位噪声特性。
     论文首先研究了基于分立器件的边带注入锁定系统的性能。比较了利用单边带和双边带注入锁定获得的光生微波信号的相位噪声特性,并利用高阶边带的注入锁定获得了频率为42 GHz的低相位噪声微波信号。论文进一步分析了边带注入锁定系统的相干性与光生微波相位噪声特性的关系,发现主激光器的线型和拍频光之间的光程差是影响光生微波相位噪声特性的重要因素,并由此指出单片集成是改善相位噪声特性的有效途径。
     在以上研究基础上,论文设计并制作了含有两个DFB激光器和一个Y分支波导的AlGaInAs多量子阱Y分支型集成拍频光源,并开展了基于外注入锁定和自注入锁定的集成拍频光源产生高频毫米波的实验研究。在外注入锁定方式中,集成拍频光源取代分立器件系统中的两个从激光器,从而消除了两束拍频光之间的光程差。在自注入锁定方式中,一个DFB激光器作为主激光器,另一个DFB激光器作为从激光器。将主激光器直接调制在张弛振荡频率附近,利用调制非线性增强产生多阶边带,可以通过单边带注入锁定有效地实现调制信号的高阶倍频。无论外注入锁定和自注入锁定,均获得了频率在40 GHz以上的高频毫米波,其相位噪声特性较基于分立器件的系统均有明显改善。同时,所产生的微波频率还可以实现GHz量级的调谐。
Optical generation of high-frequency millimeter-wave (mm-wave) is a key technology for radio over fiber (RoF) system, which has attracted much attention in recent years. Compared with traditional electronic methods, generation of mm-wave by optical means is not only able to reduce the system cost, but also capable to realize wide-range frequency tunability. Meanwhile, the technology also has wide applications in the fields of radar, missile guidance, remote sensing and so on. By monolithically integrating the optical mm-wave generation system, the complexity and cost of the system will be further reduced, as well as improving its performance and practicability.
     In this dissertation, an integrated heterodyning light source based on sideband injection locking is designed and fabricated, and its performance in optical microwave generation is investigated systematically. Factors that influence the phase noise performance of the optically generated microwave carrier in a sideband injection locking system are also analyzed in detail. It is experimentally verified that monolithically integrated device is effective in reducing the complexity of optical microwave generation system and improving the phase noise characteristics of the generated microwave signal.
     The performance of sideband injection locking system based on discrete lasers is studied first. The phase noise performance of microwave carriers generated by single- and double-sideband injection locking schemes is compared. Microwave carrier at 42 GHz with low phase noise is also generated by adopting high-order sideband injection locking. The influence of the coherence of the sideband injection locking system on the phase noise performance of the generated microwave carrier is then investigated. The lineshape of master laser and the optical path length difference between the two beating lights are found to be critical to the phase noise performance of the optically generated microwave. And it is further pointed out that monolithic integration is an efficient way to improve the phase noise performance of the sideband injection locking system.
     An AlGaInAs multiple quantum well Y-branch integrated dual wavelength laser diode is then designed and fabricated, which monolithically integrates two DFB lasers with associated Y-branch coupler. Both external and self injection locking configurations are adopted to generate high-frequency millimeter-wave carrier by the integrated dual wavelength laser diode. In the external injection locking configuration, the integrated device is used in place of two discrete slave lasers and the optical path difference between the two beating lights is thus made negligible. In the self injection locking configuration, one DFB laser works as the master laser and the other one works as the slave laser. By directly modulating the master laser near its relaxation resonance frequency, multiple sidebands are generated due to enhanced modulation nonlinearity. As a result, frequency multiplication can be realized by means of single-sideband injection locking. In both external and self injection locking configurations, millimeter-wave carrier at a frequency over 40 GHz has been generated and the phase noise performance improves remarkably compared with system based on discrete lasers. In addition, a frequency tuning range on the order of GHz has also been demonstrated for the optically generated millimeter-wave carrier.
引文
[1] Niebert N, Schieder A, Abramowicz H, et al. Ambient networks: an architecture for communication networks beyond 3G. IEEE Wireless Communications, 2004, 11(2): 14-22.
    [2] Erasala N, Yen D C. Bluetooth technology: a strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 2002, 24(3): 193-206.
    [3] Zhao Y. Standardization of mobile phone positioning for 3G systems. IEEE Communications Magazine, 2002, 40(7): 108-116.
    [4] Chen H-H, Fan C-X, Lu W-W. China’s perspectives on 3G mobile communications and beyond: TD-SCDMA technology. IEEE Wireless Communications, 2002, 9(2): 48-59.
    [5] Frattasi S, Fathi H, Fitzek F H P, et al. Defining 4G technology from the user’s perspective. IEEE Network, 2006, 20(1): 35-41.
    [6] Hui S Y, Yeung K H. Challenges in the migration to 4G mobile systems. IEEE Communications Magazine, 2003, 41(12): 54-59.
    [7] Jordan R, Abdallah C T. Wireless communications and networking: an overview. IEEE Antennas and Propagation Magazine, 2002, 44(1): 185-193.
    [8] Rappaport T S, Annamalai A, Buehrer R M, et al. Wireless communications: past events and a future perspective. IEEE Communication Magazine 50th Anniversary Commemorative Issue, 2002, 40(5): 148-161.
    [9]程时端.综合业务数字网.北京:人民邮电出版社, 1993: 51-56.
    [10]冯建和,王岚. ADSL宽带接入技术及应用.北京:人民邮电出版社, 2002: 5-8.
    [11] Karao?uz J. High-rate wireless personal area networks. IEEE Communications Magazine, 2001, 39(21): 96-102.
    [12] Bergano N S, Davidson C R. Wavelength division multiplexing in long-haul transmission systems. Journal of Lightwave Technology, 1996, 14(6): 1299-1308.
    [13] Borella M S, Jue J P, Banerjee D, et al. Optical components for WDM lightwave networks. Proceedings of the IEEE. 1997, 85(8): 1274-1307.
    [14] Ito T, Fukuchi K, Kasamatsu T. Enabling technologies for 10 Tb/s transmission capacity and beyond. 27th European Conference on Optical Communication (ECOC), 2001: 598 - 601.
    [15] Kanamori H, Yokota H, Tanaka G, et al. Transmission characteristics and reliability of pure-silica-core single-mode fibers. Journal of Lightwave Technology, 1986, LT-4(8): 1144-1150.
    [16] Nagayama K, Kakui M, Matsui M, et al. Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance. Electronics Letters, 2002, 38(20): 1168-1169.
    [17] Cooper A J.‘Fibre/radio’for the provision of cordless/mobile telephony services in the access network. Electronics Letters, 1990, 26(24): 2054-2056.
    [18] Ogawa H, Polifko D, Banba S. Millimeter-wave fiber optics systems for personal radio communication. IEEE Transactions on Microwave Theory and Techniques, 1992, 40(12): 2285-2293.
    [19] Braun R-P, Grosskopf G, Heidrich H, et al. Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(4): 320-330.
    [20] Kitayama K-I. Architectural considerations of fiber-radio millimeter-wave wireless access systems. Fiber and Integrated Optics, 2000, 19(2): 167-186.
    [21] Seeds A J, K. J. Williams. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628-4641.
    [22] Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314-335.
    [23] Liu Q, Qiao C, Mitchell G, et al. Optical wireless communication networks for first- and last-mile broadband access [Invited]. Journal of Optical Networking, 2005, 4(12): 807-828.
    [24] Shin Y-M, Barnett L R, Luhmann N C, Jr.. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Transactions on Electron Devices, 2009, 56(5): 706-712.
    [25] Qiu J X, Levush B, Pasour J, et al. Vacuum tube amplifiers. IEEE Microwave Magazine, 2009, 10(7): 38-51.
    [26] Trew R J. High-frequency solid-state electronic devices. IEEE Transactions on Electron Devices, 2005, 52(5): 638-649.
    [27] Amendment of Part 2 of the Commission’s rules to allocate additional spectrum to the inter-satellite, fixed, and mobile services and to permit unlicensed Devices to use certain segments in the 50.2–50.4 GHz and 51.4–71.0 GHz Bands. Federal Communications Commission, ET Docket No. 99-261, 2000: FCC 00-442. http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-00-442A1.pdf
    [28] Hamaguchi K, Shoji Y, Ogawa H, et al. A wireless video home-link using 60 GHz band: concept and performance of the developed system. 30th European Microwave Conference, 2000: 1-4.
    [29] Koh C. The benefits of 60 GHz unlicensed wireless communications. YDI Wireless Whitepaper, 2003: 041104A.
    [30]甘体国.毫米波工程.成都:电子科技大学出版社, 2006: 693-718.
    [31] Allen Telecom’s radio-over-fiber technology powers mobile communications at Sydney 2000 Olympics. Fiber Optics Business, Nov 15, 2000. http://findarticles.com/p/articles/mi_m0IGK/is_21_14/ai_73843087/
    [32] Chelouche M, Plattner A. Mobile broadband system (MBS): trends and impact on 60 GHz band MMIC development. Electronics & Communication Engineering Journal, 1993, 5(3): 187-197.
    [33] Mineo N, Yamada K, Nakamura K, et al. 60-GHz band electroabsorption modulator module. Optical Fiber Communication Conference and Exhibit (OFC), 1998: 287-288.
    [34] Kitayama K-I, Kuri T, Ogawa Y. Error-free optical 156-Mbit/s millimeter-wave wireless transport through 60-GHz external modulation. Optical Fiber Communication Conference and Exhibit (OFC), 1998: 14-15.
    [35] Kuri T, Kitayama K-I, Ogawa Y. Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz-band optical pilot tone. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1332-1337.
    [36] Kuri T, Kitayama K-I, St?hr A, et al. Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation. Journal of Lightwave Technology, 1999, 17(5): 799-806.
    [37] Smith G H, Novak D, Ahmed Z. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electronics Letters, 1997, 33(1): 74-75.
    [38] Williams K J, Esman R D. Optically amplified downconverting link with shot-noise-limited performance. IEEE Photonics Technology Letters, 1996, 8(1): 148-150.
    [39] Sun C K, Orazi R J, Pappert S A. Efficient microwave frequency conversion using photonic link signal mixing. IEEE Photonics Technology Letters, 1996, 8(1): 154-156.
    [40] Helkey R, Twichell J C, Cox C, III. A down-conversion optical link with RF gain. Journal of Lightwave Technology, 1997, 15(6): 956-961.
    [41] Smith G H, Novak D. Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion. IEEE MTT-S International Microwave Symposium Digest, 1998, 3: 1509-1512.
    [42] Griffin R A, Kitayama K. Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation. Electronics Letters, 1998, 34(8): 795-796.
    [43] Kitayama K-I, Griffin R A. Optical downconversion from millimeter-wave to IF-band over 50-km-long optical fiber link using an electroabsorption modulator. IEEE Photonics Technology Letters, 1999, 11(2): 287-289.
    [44] Westbrook L D, Moodie D G. Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator. Electronics Letters, 1996, 32(19): 1806-1807.
    [45] Noel L, Wake D, Moodie D G, et al. Novel techniques for high-capacity 60-GHz fiber-radio transmission systems. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1416-1426.
    [46] Stohr A, Kitayama K-I, Jager D. Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1338-1341.
    [47] Kuri T, Kitayama K-I, Takahashi Y. 60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver. IEEE Photonics Technology Letters, 2000, 12(4): 419-421.
    [48] Kitayama K-I, St?hr A, Kuri T, et al. An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2588-2595.
    [49] Kitayama K, Ikeda K, Kuri T, et al. Full-duplex demonstration of single electroabsorption transceiver basestation for mm-wave fiber-radio systems. International Topical Meeting on Microwave Photonics (MWP), 2001: 73-76.
    [50] Liou K-Y, Dutta N K, Burrus C A. Linewidth-narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength. Applied Physics Letters, 1987, 50(9): 489-491.
    [51] Bissessur H, Starck C, Emery J-Y, et al. Very narrow-linewidth (70 kHz) 1.55μm strained MQW DFB lasers. Electronics Letters, 1992, 28(11): 998-999.
    [52] Inaba Y, Kito M, Ohya J, et al. Gain-coupled DFB lasers with reduced optical confinement for narrow spectral-linewidth. IEEE 16th International Semiconductor Laser Conference (ISLC), 1998: 71-72.
    [53] Su H, Zhang L, Wang R, et al. Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers. IEEE Photonics Technology Letters, 2004, 16(10): 2206-2208.
    [54] Kunii T, Matsui Y, Horikawa H, et al. Narrow Linewidth (85 kHz) operation in long cavity 1.5μm-MQW DBR Laser. Electronics Letters, 1991, 27(9): 691-692.
    [55] Smith G M, Hughes J S, Lammert R M, et al. Very narrow linewidth asymmetric cladding InGaAs-GaAs ridge waveguide distributed Bragg reflector lasers. IEEE Photonics Technology Letters, 1996, 8(4): 476-478.
    [56] Lammert R M, Hughes J S, Roh S D, et al. Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings. IEEE Photonics Technology Letters, 1997, 9(2): 149-151.
    [57] Kim D Y, Pelusi M, Ahmed Z, et al. Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser. Electronics Letters, 1995, 31(9): 733-734.
    [58] Kitayama K, Kuri T, Yokoyama H, et al. 60 GHz millimeter-wave generation and transport using stabilized mode-locked laser diode with optical frequency DEMUX switch. IEEE Global Telecommunications Conference (GLOBECOM), 1996, 3: 2162-2169.
    [59] Novak D, Ahmed Z, Waterhouse R B, et al. Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2257-2262.
    [60] Bauer S, Brox O, Kreissl J, et al. Optical microwave source. Electronics Letters, 2002, 38(7): 334-335.
    [61] Deng Z, Yao J. Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 763-767.
    [62] Qi G, Yao J, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(10): 3090-3097.
    [63] Kawanishi T, Sakamoto T, Tsuchiya M, et al. 70 dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation. 2006 Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference, 2006: OWC4.
    [64] Yu J, Jia Z, Yi L, et al. Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photonics Technology Letters, 2006, 18(1): 265-267.
    [65] Wang T, Chen M, Chen H, et al. Millimetre-wave signal generation using FWM effect in SOA. Electronics Letters, 2007, 43(1): 36-38.
    [66] Wang T, Chen M, Chen H, et al. Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier. IEEE Photonics Technology Letters, 2007, 19(16): 1191-1193.
    [67] Chen L, Pi Y, Wen H, et al. All-optical mm-wave generation by using direct-modulation DFB laser and external modulator. Microwave and Optical Technology Letters, 2007, 49(6): 1265-1267.
    [68] Ma J, Xin X, Yu J, et al. Optical millimeter wave generated by octupling the frequency of the local oscillator. Journal of Optical Networking, 2008, 7(10): 837-845.
    [69] Gliese U, Nielsen T N, Bruun M, et al. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers. IEEE Photonics Technology Letters, 1992, 4(8): 936-938.
    [70] Goldberg L, Esman R D, Williams K J. Generation and control of microwave signals by optical techniques. IEE Proceedings J Optoelectronics, 1992, 139(4): 288-295.
    [71] Langley L N, Elkin M D, Edge C, et al. Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals. IEEE Transactions on icrowave Theory and Techniques, 1999, 47(7): 1257-1264.
    [72] Bordonalli A C, Walton C, Seeds A J. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. Journal of Lightwave Technology, 1999, 17(2): 328-342.
    [73] Johansson L A, Seeds A J. Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photonics Technology Letters, 2000, 12(6): 690-692.
    [74] Johansson L A, Liu C P, Seeds A J. A 65-km span unamplified transmission of 36-GHz radio-over-fiber signals using an optical injection phase-lock loop. IEEE Photonics Technology Letters, 2002, 14(11): 1596-1598.
    [75] Brunel M, Bretenaker F, Blanc S, et al. High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop. IEEE Photonics Technology Letters, 2004, 16(3): 870-872.
    [76] Pillet G, Morvan L, Brunel M, et al. Le Floch. Dual-frequency laser at 1.5μm for optical distribution and generation of high-purity microwave signals. Journal of Lightwave Technology, 2008, 26(15): 2764-2773.
    [77] Ahmed Z, Liu H F, Novak D, et al. Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection. IEEE Photonics Technology Letters, 1996, 8(1): 37-39.
    [78] Braun R-P, Grosskopf G, Meschenmoser R, et al. Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking. Electronics Letters, 1997, 33(16): 1395-1396.
    [79] Braun R-P, Grosskopf G, Rohde D, et al. Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking. IEEE Photonics Technology Letters, 1998, 10(5): 728-730.
    [80] Laperle C, Svilans M, Poirier M, et al. Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1219-1224.
    [81] Ogusu M, Inagaki K, Ohira T. Subcarrier multiplexing signal modulation at 60 GHz using two-mode injection-locked Fabry-Perot laser. Electronics Letters, 2000, 36(25): 2102-2103.
    [82] Al-Mumin M, Wang X, Mao W, et al. Optical generation and self subharmonic injection locking of tunable 10-100 GHz microwave/millimeter signals. Conference on Lasers and Electro-Optics (CLEO), 2000: 96-97.
    [83] Hong J, Hui R. Tunable millimeter-wave generation with subharmonic injection locking in two-section strongly gain-coupled DFB lasers. IEEE Photonics Technology Letters, 2000, 12(5): 543-545.
    [84] Ogusu M, Inagaki K, Mizuguchi Y. 60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser. IEEE Microwave and Wireless Components Letters, 2001, 11(3): 101-103.
    [85] Pham T-T, Kim H-S, Won Y-Y, et al. Bidirectional 1.25-Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Pérot laser diode by multimode injection locking. Journal of Lightwave Technology, 2009, 271(13): 2457-2464.
    [86] Zhu N H, Zhang H G, Man J W, et al. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection. Optics Express, 2009, 17(24): 22114-22123.
    [87] Chang C-H. High speed vertical cavity surface emitting lasers with injection locking [博士学位论文]. Berkeley: Department of Electrical Engineering and Computer Science, University of California at Berkeley, 2002.
    [88] Adler R. A study of locking phenomena in oscillators. Proceedings of the Institute of Radio Engineers, 1946, 34: 351-357.
    [89] Kobayashi S, Kimura T. Injection locking in AlGaAs semiconductor laser. IEEE Journal of Quantum Electronics, 1981, QE-17(5): 681-689.
    [90] Otsuka K, Tarucha S. Theoretical studies on injection locking and injection-induced modulation of laser diodes. IEEE Journal of Quantum Electronics, 1981, QE-17(8): 1515-1521.
    [91] Lang R. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics, 1982, QE-18(6): 976-983.
    [92] Tromborg B, Osmundsen J H, Olesen H. Stability analysis for a semiconductor laser in an external cavity. IEEE Journal of Quantum Electronics, 1984, QE-20(9): 1023-1032.
    [93] Hui R, D’Ottavi A, Mecozzi A, et al. Injection locking in distributed feedback semiconductor lasers. IEEE Journal of Quantum Electronics, 1991, 27(6): 1688-1695.
    [94] Annovazzi-Lodi V, Donati S, Manna M. Chaos and locking in a semiconductor laser due to external injection. IEEE Journal of Quantum Electronics, 1994, 30(7): 1537-1541.
    [95] Kobayashi S. Injection-locked semiconductor laser amplifier // Yamamoto Y. Coherence, Amplification, and Quantum Effects in Semiconductor Lasers. New York: John Wiley & Sons, Inc., 1991: 367-410.
    [96] Chang C-H, Chrostowski L, Chang-Hasnain C-J. Injection locking of VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1386-1393.
    [97] Richter L E, Mandelberg H I, Kruger M S, et al. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE Journal of Quantum Electronics, 1986, QE-22(11): 2070-2074.
    [98] Derickson D. Fiber optics test and measurement. New Jersey: Prentice Hall PTR, 1998: 179-202.
    [99] Coldren L A, Corzine S W. Diode lasers and Photonics integrated circuits. New York: John Wiley & Sons, Inc., 1995: 236-241.
    [100]蔡鹏飞. 10 Gb/s AlGaInAs DFB激光器与40 Gb/s集成光源模块的研究[博士学位论文].北京:清华大学电子工程系, 2007.
    [101] Zah C-E, Bhat R, Pathak B N, et al. High-performance uncooled 1.3-μm AlxGayIn1?x?yAs/InP strained-layer quantum-well lasers for subscriber loop applications. IEEE Journal of Quantum Electronics, 1994, 30(2): 511-523.
    [102] Pan J-W, Chau K-G, Chyi J-I, et al. Suppression of electron and hole leakage in 1.3μm AlGaInAs/InP quantum well lasers using multiquantum barrier. Applied Physics Letters, 1998, 72(17): 2090-2092.
    [103] Piprek J, White J K, SpringThorpe A J. What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?. IEEE Journal of Quantum Electronics, 2002, 38(9): 1253-1259.
    [104] Takemasa K, Kubota M, Munakata T, et al. 1.3-μm AlGaInAs buried-heterostructure lasers. IEEE Photonics Technology Letters, 1999, 11(8): 949-951.
    [105] Selmic S R, Chou T-M, Sih J, et al. Design and characterization of 1.3-μm AlGaInAs-InP multiple-quantum-well lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(2): 340-349.
    [106]黄缙.面向DFB/EA集成光源的大面积部分光栅制作技术的研究[学士学位论文].北京:清华大学电子工程系, 2005.
    [107]彭江得.光电子技术基础.北京:清华大学出版社, 1988: 150-161.
    [108]张溪文,董博,洪炜,等.光隔离器及其相关的磁光材料.材料科学与工程, 2002, 20(3): 438-440.
    [109] Shimizu H, Nakano Y. First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator. Japanese Journal of Applied Physics, 2004, 43(12A): L1561-L1563.
    [110] Shimizu H, Nakano Y. Fabrication and characterization of an InGaAsp/InP active waveguide optical isolator With 14.7 dB/mm TE mode nonreciprocal attenuation. Journal of Lightwave Technology, 2006, 24(1): 38-43.
    [111] Shimizu H, Nakano Y. Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range. IEEE Photonics Technology Letters, 2007, 19(24): 1973-1975.
    [112]张明俊.高速集成光源模块封装关键技术研究[硕士学位论文].北京:清华大学电子工程系, 2007.
    [113]周奇伟. 40 Gb/s高速集成光源模块封装关键技术研究[硕士学位论文].北京:清华大学电子工程系, 2009.
    [114] Petermann K. Laser diode modulation and noise. Dordrecht: Kluwer Academic Publishers, 1988: 97-106.
    [115] Fu W, Huang X, Tan F, et al. An improved microcontroller compensated low phase noise overtone TCXO. IEEE International Frequency Control Symposium, 2009: 974-977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700