用户名: 密码: 验证码:
共腔耦合式光纤激光器相干合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率高亮度的激光源在工业加工、自由空间光通信、激光雷达和定向能等领域具有重要应用,光纤激光束的相干合成是获得这类激光源的重要技术手段,而共腔耦合是多路光纤激光器通过无源自调整过程实现相干合成的有效途径。无源自调整相干合成方案结构简单,易于实现,但合成阵列通常在稳定性、效率和可扩展性等方面存在问题。本文提出了基于公共光纤环形腔耦合与单模光纤滤波的光纤激光器阵列锁相方案,为提高无源自调整相干合成阵列的稳定性、效率和可扩展性提供了一种新而有效的技术途径。利用迈克尔逊型耦合腔进行光纤激光器的相干合成是一种公共外腔耦合式相干合成技术,具有公共外腔耦合和共线干涉合成方案的一些特点。本文主要针对这两种典型的共腔耦合式光纤激光器相干合成技术方案展开了理论与实验研究,所取得的研究成果主要有以下几个方面:
     1.提出了基于公共光纤环形腔耦合的光纤激光器相干合成方案。方案中采用全光纤结构的环形耦合腔并通过多端口并排发射相干激光束,使合成阵列的稳定性、效率和可扩展性得到了一定的提高;利用该方案在实验上成功实现了三路光纤激光器的被动锁相输出,获得了约90%的合成效率;将公共环形腔耦合结构应用于两路环形腔激光器与可调谐激光器的相位锁定,也获得了较高效率的锁相输出,表明所提的公共光纤环形腔耦合式锁相方案对环形腔与可调谐光纤激光器也是适用的。
     2.理论上建模分析了公共光纤环形腔的特性,确定了设计适于锁相的公共环形耦合腔时应遵循的基本原则,并结合实验研究结果得到如下结论:较佳的成环耦合比为20%~30%之间,且耦合比的少许偏差对锁相效果几乎没有影响。
     3.在共腔耦合锁相方案中引入了单模光纤滤波技术,使得激光束各发射阵元之间形成了稳定的相位关系,研究了单模光纤滤波在控制远场光强分布与提高锁相稳定性两方面的作用,指出了通过并排组合方式实现相干合成时采取空间滤波选模措施的必要性。
     4.提出了f‐f结构的迈克尔逊型耦合外腔,并在理论上分析了该耦合外腔的能量传输特性,找到了调节外腔时需要重点控制的误差量。采用f‐f结构的迈克尔逊型耦合外腔,在实验上实现了两路光纤激光器的相干合成,并验证了f‐f结构的耦合外腔在增强单元激光器间的能量耦合与提高合成效率方面的作用。
     5.运用薄膜光学中的特征矩阵分析法,研究了迈克尔逊型耦合腔中分束器的相移特性,推导了两束相干光经过分束器分束后进行相干叠加时相位应满足的普适关系,并从物理机理上解释了分束器一侧发生相长干涉时另一侧必然发生相消干涉这一实验现象。
The laser sources with high brightness and high average power have significant applications in many fields, such as industrial machining, free space communications, laser radar and directed energy. Coherent beam combining of multiple fiber lasers has been expected to be an important technique to obtain a laser source of this kind, and coherent combining of multiple fiber lasers with common cavity coupling configuration is an effective approach by passive self-adjusting process. The passive self-adjusting coherent combining schemes usually own simple configuration and are easy to implement. However, the combined coherent array based on the above mechanism often suffers from the poor stability, combining efficiency and expandability. A novel phase locking scheme of fiber lasers is proposed based on common ring coupled cavity and single mode fiber filtering, which provides a new and effective method to improve the stability, efficiency and expandability of the general passive coherent array. Coherent combining of fiber lasers utilizing Michelson-type coupled cavity is a scheme based on common external cavity coupling, which owns the properties of both common external cavity coupling and collinear interferometric schemes. These two coherent combining schemes of fiber lasers with common cavity coupling configuration are investigated theoretically and experimentally in this paper, and the main achievements are listed as follows:
     1. The coherent combining scheme of fiber lasers based on the common fiber ring coupled cavity is proposed. Thanks to the all-fiber structure of ring coupled cavity and multiple parallel emitting ports, the stability, efficiency and expandability of combined array are improved evidently. Phase locking of three fiber lasers are demonstrated by using this scheme, and nearly 90% combining efficiency is obtained. The common ring coupled cavity is also employed to lock the phases of two ring cavity lasers and tunable fiber lasers, and the phase locked output with relatively high efficiency is also obtained, which indicates that the proposed phase locking scheme is compatible with ring cavity and tunable fiber lasers.
     2. The properties of the common fiber ring cavity are analyzed theoretically, and the basic principles when design a suitable common ring coupled cavity are summarized. Some crucial conclusions obtained from the theoretical analysis and experimental study are presented as follows: the optimized coupling ratio of constructing the ring cavity is in the range of 20% ~ 30%, and the small derivation of coupling ratios has little effect on the phase locking results.
     3. The single-mode fiber filtering technique is introduced into the proposed phase locking scheme with a common cavity, and relatively stable phase relation is formed among the multiple laser emitters. Both the actions of controlling the far-field intensity distribution and improving the phase locking stability are investigated, and the necessity of adopting the spatial filtering and mode selection measures when utilizing the side-by- side combining methods to realize efficient coherent combining are pointed out.
     4. The Michelson-type coupled cavity with an f‐f?configuration is presented, and its power transmission properties are analyzed theoretically, and the cavity errors which need to be paid more attention to decrease them when adjust the cavity are discovered. Moreover, coherent combining of two fiber lasers using the Michelson-type coupled cavity with an f‐f? configuration is demonstrated under low power condition, and the cavity’s functions of enhancing the energy coupling among individual fiber lasers and improving the combining efficiency are also verified in experiment.
     5. The phase shift properties of the beam splitter in Michelson-type coupled cavity are studied by the eigen-martix analyzing method in Optics, and the general relationship between the phase shifts of two splitted beams used for coherent combining is obtained, and then the experimental phenomenon that when the constructive interference occurs at one side of the beam splitter and the destructive interference has to occur at its opposite side is explained according to its physical mechanism.
引文
[1]范滇元.中国激光技术发展的回顾与展望.科学中国人,2003,3: 33~35
    [2]杜祥琬.对高平均功率DPL的几点认识.强激光与粒子束,2005,17(S0): 1~3
    [3]任国光,黄吉金.美国高能激光技术2005年主要进展.激光与光电子学进展, 2006,43(6): 3~9
    [4]张军,潘玉寨,胡贵军等.高功率光纤激光器的应用与展望.半导体光电,2003,24(4): 222~226
    [5]姬寒珊.高功率光纤激光器及其在激光武器中的应用前景分析.地面防空武器,2005,3: 29~32
    [6]楼祺洪,周军,王之江.光纤激光作为激光武器的能力分析.激光技术, 2003,27(3): 161~165
    [7] http://www.ipgphotonics.com/
    [8]刘颂豪.光纤激光器的新进展.光电子技术与信息. 2003,16(1): 1~8
    [9]楼祺洪,周军,朱健强等.高功率光纤激光器研究进展.红外与激光工程,2006,35(2): 135~138
    [10]陈苗海.高功率光纤激光器的研究进展.激光与红外,2007,37(7): 589~592
    [11] IPG喜获大订单德国宝马成买家[EB/OL]. http://www.ipgbeijing.com//content /view/194_116.html [2009-04-15]
    [12]高功率掺铥光纤激光器在诸多医学应用领域中优于钬激光[EB/OL]. http://www.ipgbeijing.com//content/view/88_115.html [2009-04-15]
    [13] IPG光纤激光在阿富汗成功执行扫雷任务[EB/OL]. http://www.ipgbeijing.com//content/view/85_115.html [2009-04-15]
    [14] The laser avenger zaps its target [EB/OL]. http://www.defensetech.org/archives/003791.html [2009-04-15]
    [15]梅遂生.向100kW进军的固体激光器——浅析国外固体高能激光技术发展现状与趋势.激光与光电子学进展,2005,42(10): 2~8
    [16]李晋闽.高平均功率全固态激光器发展现状、趋势及应用. 2008,45(7): 16~29
    [17]聂秋华.光纤激光器和放大器技术.北京:电子工业出版社,1997
    [18]大模场面积光纤高功率光纤激光器与光纤放大器[EB/OL]. http://www.cabling-system.com/html/2008-07/10716.html [2009-04-15]
    [19] J. Limpert, Fabian R?ser, S. Klingebiel, et al. The rising power of fiber lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 537~545
    [20]李进延,李海清,蒋作文等.双包层掺镱光纤研究进展.激光与光电子学进展,2006,43(7): 3~8
    [21] Y. Jeong, J. K. Sahu, D. N. Payne, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express, 2004, 12: 6088~6092
    [22] YLR-HP Series: 1-50kW Ytterbium Fiber Lasers [EB/OL]. http://www.ipgphotonics.com/apps_mat_multi_YLR.htm [2009-04-15]
    [23] Low-order-mode kilowatt fiber lasers operating at 1.07 microns [EB/OL]. http://www.ipgphotonics.com/apps_materials_multi.htm [2009-04-15]
    [24]李晨,闫平,陈刚等.采用国产掺Yb双包层光纤的光纤激光器连续输出功率突破700 W.中国激光,2006,33(6): 738
    [25]李伟,武子淳,陈曦等.大功率光纤激光器输出功率突破l kW.强激光与粒子束,2006,18(6): 890
    [26]赵鸿,周寿桓,朱辰等.大功率光纤激光器输出功率超过1.2 kW.激光与红外,2006,36(10): 930
    [27] A. Liem, J. Limpert, H. Zellmer, et al. 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett., 2003, 28(17): 1537~1539
    [28] Y. Jeong, J. Nilsson, J. K. Sahu, et al. Single-frequency, single-mode, plane- polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt. Lett., 2005, 30(5): 459~461
    [29] A. A. Said, T. Xia, A. Dogariu, et al. Measurement of the optical damage threshold in fused quartz. Appl. Opt., 1995, 34(18): 3374~3376
    [30] J. Hecht. Photonic frontiers: high-power fiber lasers: pumping up the power. 2005. http://www.laserfocusworld.com/articles/article_display.html?id=234077 [2009-04-15]
    [31] V.P. Gapontsev, D. Gapontsev, N. Platonov, et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness. CLEO/Europe, 2005, 6: 508
    [32] http://www.spilasers.com
    [33] http://www.nufern.com
    [34] http://www.crystal-fibre.com
    [35] D. Mehuys, W. Streifer, R. G. Waarts, et al. Model analysis of Talbot-cavity semi- conductor lasers. Opt. Lett., 1991, 16(11): 823~825
    [36] J. R. Leger, M. L. Scott, W. B. Veldkamp. Coherent addition of AlGaAs lasers using microlenses and diffractive coupling. Appl. Phys. Lett., 1988, 52(21): 1771~1773
    [37] F. X. D’Amato, E. T. Siebert, C. Roychoudhuri. Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity. Appl. Phys. Lett., 1989, 55(9): 816~818
    [38] E. Kapon, J. Katz, A. Yariv. Supermode analysis of phase-locked arrays of semi- conductor lasers. Opt. Lett., 1984, 10(4): 125~127
    [39] J. Yaeli, W. Streifer, D. R. Scifres, et al. Array mode selection utilizing anexternal cavity configuration. Appl. Phys. Lett., 1985, 47(2): 89~91
    [40] R. H. Rediker, R. P. Schloss, L. J. V. Ruyven. Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter with an external cavity. Appl. Phys. Lett., 1985, 46(2): 133~135
    [41] J. R. Leger, G. J. Swansor, W. B. Veldkamp. Coherent laser addition using binary phase gratings. Appl. Opt., 1987, 26(20): 4391~4399
    [42] J. W. Xu, S. Q. Li, K. K. Lee, et al. Phase locking in a two-element laser array: a test of the coupled-oscillator model. Opt. Lett., 1993, 18(7): 513~515
    [43] S. Menard, M. Vampouille, B. Colombeau, et al. High efficient phase locking and extra-cavity coherent combination of two diode-pumped Nd: YAG laser beams. Opt. Lett., 1996, 21(24): 1996~1998
    [44] Y. Zhou, L. P. Liu, C. Etson, et al. Phase locking of a two-dimensional laser array by controlling the far-field pattern. Appl. Phys. Lett., 2004, 84(16): 3025~3027
    [45] S. Menard, M. Vampouille, A. Desfarges-Berthelemot, et al. High efficient phase locking of four diode pumped Nd: YAG laser beams. Opt. Commun., 1999, 160: 344~353
    [46] D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, et al. Coherent combining of two Nd: YAG lasers in a Vernier-Michelson-type cavity. Appl. Phys. B, 2002, 75: 503~507
    [47] Q. J. Peng, Z. P. Sun, Y. H. Chen, et al. Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity. Opt. Lett., 2005, 30: 1485~1487
    [48] V. Eckhouse, A. A. Ishaaya, L. Shimshi, et al. Intracavity coherent addition of 16 laser distributions. Opt. Lett., 2006, 31(3): 350~352
    [49] A. A. Ishaaya, L. Shimshi, N. Davidson, et al. Coherent addition of spatially incoherent light beams. Opt. Express, 2004, 12(20): 4929~4934
    [50] A. A. Ishaaya, N. Davidson, L. Shimshi, et al. Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler. Appl. Phys. Lett., 2004, 85(12), 2187~2189
    [51] A. A. Ishaaya, V. Eckhouse, L. Shimshi, et al. Intracavity coherent addition of single high-order modes. Opt. Lett., 2005, 30(14): 1770~1772
    [52] L. Shimshi, A. A. Ishaaya, N. Davidson, et al. Upscaling coherent addition of laser distributions. Opt. Commun., 2007, 275: 389~393
    [53] L. Shimshi, A. A. Ishaaya, V. Eckhouse, et al. Passive intracavity coherent addition of nine laser distributions. Appl. Phys. Lett., 2006, 88: 041103
    [54] T. Y. Fan. Laser Beam Combining for High-Power, High Radiance Sources. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 567~577
    [55] A. Desfarges-Berthelemot, V. Kermene, D. Sabourdy, et al. Coherent combining of fiber lasers. C. R. Physique, 2006, 7: 244~253
    [56] S. J. Augst, J. K. Ranka, T. Y. Fan, et al. Beam combining of ytterbium fiber amplifiers. J. Opt. Soc. Am. B, 2007, 24(8): 1707~1715
    [57] Y. Zhou, L. Liu, F. Kong, et al. Phase locking of laser array. Proc. of SPIE, 2005, 6028: 602803
    [58]李永忠,范滇元.光纤激光器光束的叠加技术.激光与光电子学进展,2005,42(9): 26~29
    [59]肖瑞,侯静,姜宗福.光纤激光器的相干合成技术.激光技术,2005,29(5): 516~519
    [60]伍波,刘永智.高功率光纤激光器相干合成研究.激光与光电子学进展,2006,43(8): 55~61
    [61]何兵,楼祺洪,周军等.光纤激光器相干组束技术.激光与光电子学进展,2006,43(9): 1~8
    [62]楼祺洪,何兵,周军.光纤激光器及其相干组束.红外与激光工程,2007,36(2): 155~159
    [63]程勇,刘洋,许立新.激光相干合成技术研究新动向.红外与激光工程,2007,36(2): 163~166
    [64]曹涧秋,许晓军,侯静.光纤激光器的相干合成技术.红外与激光工程,2008,37(3): 456~470
    [65]范馨燕,刘京郊,王涛涛等.主动锁相光纤放大器相干合成技术研究进展.半导体光电,2008,29(4): 461~466
    [66]沈洪斌,李刚,何海军.光纤激光器相干组束技术研究进展.激光技术与应用,2008,6: 9~15
    [67]侯睿,赵尚弘,胥杰等.组束激光的军事应用前景分析.激光杂志,2008,29(3): 4~5
    [68] P. Sprangle, J. Penano, B. Hafizi, et al. Incoherent combining of high-power fiber lasers for long-range directed energy applications. SSDLTR Proceedings, 2006
    [69] P. Sprangle, A. Ting, J. Penano, et al. Incoherent combining of high-power fiber lasers for directed-energy applications. SSDLTR Proceedings, 2008
    [70] T. H. Loftus, A. Liu, P. R. Hoffman, et al. 258 W of Spectrally Beam Combined Power with Near-Diffraction Limited Beam Quality. Proc. of SPIE, 2006, 6102: 61020S
    [71] T. H. Loftus, A. Liu, P. R. Hoffman, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. Opt. Lett., 2007, 32(4): 349~351
    [72] T. H. Loftus, A. M. Thomas, P. R. Hoffman, et al. Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 487~497
    [73] T. H. Loftus, R. Hoffman, A. M. Thomas, et al. 522 W spectrally beam combined fiber laser with near-diffraction limited beam quality. Proc. of SPIE, 2007, 6552: 65520O
    [74] S. J. Augst, A. K. Goyal, R. L. Aggarwal, et al. Wavelength beam combining of ytterbium fiber lasers. Opt. Lett., 2003, 28(5): 331~333
    [75] L. B. Glebov. High brightness laser design based on volume Bragg gratings. Proc. of SPIE, 2006, 6216: 621601
    [76] O. Andrusyak, I. Ciapurin, V. Smirnov, et al. Spectral beam combining of fiber lasers with increased channel density. Proc. of SPIE, 2007, 6453: 64531L
    [77] A. Sevian, O. Andrusyak, I. Ciapurin, et al. Efficient power scaling of laser radiation by spectral beam combining. Opt. Lett., 2008, 33(4): 384~386
    [78] T. Y. Fan, A. Sanchez. Coherent (phased array) and wavelength (spectral) beam combining compared. Proc. of SPIE, 2005, 5709:157~164
    [79]周朴,侯静,陈子伦等.光纤激光相干合成与谱合成的比较.激光技术,2008,32(4): 413-416
    [80] J. Anderegg, S. Brosnan, E. Cheung, et al. Coherently coupled high power fiber arrays. Proc. of SPIE, 2006, 6102:61020U
    [81] C. X. Yu, J. E. Kansky, S. E. J. Shaw, et al. Coherent beam combining of a large number of PM fibers in a 2-D fiber array. Electron. Lett., 2006, 42(18):1024~1025
    [82] A. Shirakawa, T. Saitou, T. Sekiguchi. Coherent addition of fiber lasers by use of a fiber coupler. Opt. Express, 2002, 10(21): 1167~1172
    [83] T. B. Simpson, A. Gavrielides, P. Peterson. Extraction characteristics of a dual fiber compound cavity. Opt. Express, 2002, 10(20): 1060~1073
    [84] A. Shirakawa, K. Matsuo, K. Ueda, et al. Fiber laser coherent array for power scaling of single-mode fiber laser. Proc. of SPIE, 2004, 5662: 482~487
    [85] A. Shirakawa, K. Matsuo, K. Ueda, et al. Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control. Proc. of SPIE, 2005, 5709: 165~174
    [86] M. Fridman, V. Eckhouse, N. Davidson, et al. Efficient coherent addition of fiber lasers in free space. Opt. Lett., 2007, 32(7): 790~792
    [87] M. Fridman, V. Eckhouse, E. Luria, et al. Coherent addition of two dimensional array of fiber lasers. Opt. Commun., 2008, 281: 6091~6093
    [88] H. Bruesselbach, M. Minden, J. L. Rogers, et al. 200 W Self-Organized Coherent Fiber Arrays. CLEO, CMDD4
    [89]王建明,段开椋,王屹山.两光纤激光器相干合成的实验研究.物理学报,2008,57(9): 5627~5631
    [90] B. Lei, Y. Feng. Coherent combining of two fiber lasers in a Michelson-type coupled cavity. Opt. Commun., 2008, 281: 739~743
    [91] X. J. Jia, F. N. Liu, S. G. Fu, et al. Realization of an efficient coherent combination via Michelson cavity. Chinese Physics, 2007, 16(10): 2993~2997
    [92] F. N. Liu, B. Liu, B. C. Huang, et al. Investigation on characteristics of self-organization in Mach-Zehnder erbium-doped fiber laser cavity. Chinese Optics Letters, 2008, 6(3): 186~188.
    [93] D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, et al. Efficient coherent combining of widely tunable fiber lasers. Opt. Express, 2003,11(2): 87~97
    [94] D. Sabourdy, A. Desfarges-Berthelemot, V. Kermene, et al. Coherent combining of Q-switched fibre lasers. Electron. Lett., 2004, 40(20): 1254~1255
    [95] S. P.Chen, Y. G. Li, K. C. Lu. Branch arm filtered coherent combining of tunable fiber lasers. Opt. Express, 2005, 13(20): 7878~7883
    [96] J. Morel, A. Woodtli, R. Dandliker. Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating. Opt. Lett., 1993, 18(18): 1520~1522
    [97] J. Morel, A. Woodtli, R. Dandliker. Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by using of an intracavity phase grating. Proc. of SPIE, 1992, 1789: 13~17
    [98] E. C. Cheung, J. G. Ho, G. D. Goodno, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Opt. Lett., 2008, 33(4): 354~356
    [99] M. Brunel, A. L. Floch, F. Bretenaker, et al. Coherent addition of adjacent lasers by forked eigenstate operation. Appl. Opt., 1998, 37(12): 2402~2406
    [100] P. B. Phua, Y. L. Lim. Coherent polarization locking with near-perfect combining efficiency. Opt. Lett., 2006, 31(14): 2148~2150
    [101] X. J. Li, T. F. Morse, F. Luo, et al. Fiber laser with in-cavity polarization switching. Proc. of SPIE, 2005, 5792: 39~37
    [102] X. J. Li, F. Luo, S. Ippolito, et al. A Technique for the Combining of Double Clad Optical Fiber Lasers. Proc. of SPIE, 2003, 4974: 236~243
    [103] L. Liu, M. A. Vorontsov. Phase-Locking of Tiled Fiber Array using SPGD Feedback Controller. Proc. of SPIE, 2006, 5895: 58950P
    [104] M. A. Vorontsov, S. L. Lachinova. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis. J. Opt. Soc. Am. A, 2008, 25(8): 1949~1959
    [105] S. L. Lachinova, M. A. Vorontsov. Performance Analysis of an Adaptive Phase-locked Tiled Fiber Array in Atmospheric Turbulence Conditions. 2005, Proc. of SPIE, 5895: 58950O
    [106] C. Bellanger, A. Brignon, J. Colineau, et al. Coherent fiber combining by digital holography. Opt. Lett., 2008, 33(24): 2937~2939
    [107] B. W. Grime, W. B. Roh, T. G. Alley. Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror. Opt.Lett., 2005, 30(18): 2415~2417
    [108] D. C. Brown, H. J. Hoffman. Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers. IEEE J. Quantum Electron., 2001, 37(2): 207~217
    [109] M. Minden. Coherent Coupling of a Fiber Amplifier Array. Thirteenth Annual Solid State and Diode Laser Technology Review (SSDLTR), June 5-8, 2000
    [110] H. Bruesselbach, M. L. Minden, S. Q. Wang, et al. A coherent fiber array based laser link for atmospheric aberration mitigation and power scaling. Proc. of SPIE, 2004, 5338: 90~101
    [111] S. J. Augst, T. Y. Fan, A. Sanchez. Coherent beam combining of ytterbium fiber laser amplifiers. CLEO, 2003, CMK5
    [112] S. J. Augst, T. Y. Fan, A. Sanchez. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers. Opt. Lett., 2004, 29(5): 474~476
    [113] C. X. Yu, J. E. Kansky. S. E. J. Shaw, et al. Coherent Beam Combining of a Large Number of PM Fibers in a 2D Fiberarray. CLEO, 2006, CThAA6
    [114] J. Anderegg, S. Brosnan, M. Weber, et al. 8-watt coherently phased 4-element fiber array. Proc. of SPIE, 2003, 4974: 1~6
    [115] T. M. Shay, V. Benham, J. T. Baker, et al. First experimental demonstration of self-synchronous phase locking of an optical array. Opt. Express, 2006, 14(25): 12015-12021
    [116] T. M. Shay, Vincent Benham, L. J. Spring, et al. Self-Referenced Locking of Optical Coherence by Single-detector Electronic-Frequency Tagging. Proc. of SPIE, 2006, 6102: 61020V
    [117] T. M. Shay, V. Benham, J. T. Baker, et al. Self-Synchronous and Self-Referenced Coherent Beam Combination for Large Optical Arrays. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 480~486
    [118] D. G. Heflinger, L. O. Heflinger. Dynamic optical phase state detector. US Patent, 2000, 6147755
    [119] S. J. Brosnan, D. G. Heflinger, L. O. Heflinger. High average power fiber laser system with high-speed, parallel wavefront sensor. US Patent, 2002, 6366356 B1
    [120]肖瑞,侯静,姜宗福.光纤激光器阵列中相干合成中的位相探测与校正方法研究.物理学报,2006,55(1): 184~187
    [121]肖瑞,侯静,姜宗福,刘明.三路光纤放大器相干合成技术的实验研究.物理学报,2006,55(12): 6464~6469
    [122] M. A. Vorontsov. Adaptive photonics phase-locked elements (APPLE): System architecture and wavefront control concept. Proc. of SPIE, 2005, 5895: 589501
    [123] V. A. Kozlov, J. Hern′andez-Cordero, T. F. Morse. All-fiber coherent beam combining of fiber lasers. Opt. Lett., 1999, 24(24): 1814~1816
    [124] H. Bruesselbach, D. C. Jones, M. S. Mangir, et al. Self-organized coherence in fiber laser arrays. Opt. Lett., 2005, 30(11): 1339~1341
    [125] M. L. Minden, H. Bruesselbach, J. L. Rogers, et al. Self-organized coherence in fiber laser arrays. Proc. of SPIE, 2004, 5335: 89~97
    [126] Z. L. Chen, J. Hou, P. Zhou, et al. Mutual injection locking and coherent combining of three individual fiber lasers. Opt. Commun., 2009, 282(1): 60~63
    [127] B. Wang, E. Mies, M. Minden, et al. All-fiber 50 W coherently combined passive laser array. Opt. Lett., 2009, 34(7): 863~865
    [128] P. K. Cheo, A. Liu, G. G. King. A high-brightness laser beam from phase-locked multicore Yb-doped fiber laser array. Photonics Tech. Lett., 2001, 13(5), 439~441
    [129] Y. Huo, P. Cheo. Analysis of transverse mode competition and selection in multicore fiber lasers. J. Opt. Soc. Am. B, 2005, 22(11): 2345~2349
    [130] L. Li, A. Schülzgen, H. Li, et al. Phase-locked multicore all-fiber lasers: modeling and experimental investigation. J. Opt. Soc. Am. B, 2007, 24(8):1721~1728
    [131] J. Boullet, D. Sabourdy, A. Desfarges-Berthelemot, et al. Coherent combining in an Yb-doped double-core fiber laser. Opt. Lett., 2005, 30(15): 1962~1964
    [132] M. Wrage, P. Glas, D. Fischer, et al. Phase locking in a multicore fiber laser by means of a Talbot resonator. Opt. Lett., 2000, 25(19), 1436~1138
    [133] C. J. Corcoran, F. Durville. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl. Phys. Lett., 2005, 86: 201118
    [134] C. J. Corcoran, F. Durville, K. A. Pasch, et al. Spatial filtering of large-mode area fiber lasers using a self-Fourier cavity for high power applications. J. Opt. A: Pure and Appl. Opt., 2007, 9: 128~133
    [135] L. Liu, Y. Zhou, F. Kong, Y. Chen, et al. Phase locking in a fiber laser array with varying path lengths. Appl. Phys. Lett., 2004, 85(21): 4837~4839
    [136] Q. Peng, Y. Zhou, Y. Chen, et al. Phase locking of fiber lasers by self-imaging resonator. Electron. Lett., 2005, 41(4): 171~172
    [137] B. He, Q. Lou, J. Zhou, et al. High power coherent beam combination from two fiber lasers. Opt. Express, 2006, 14(7): 2721~2726
    [138]何兵,楼祺洪,周军等.两个光纤激光器的相位锁定及高相干功率输出.中国激光,2006, 33(9): 1153~1158
    [139] Q. H. Lou, B. He, J. Zhou. 122 Watts coherent beam combination from two Yb-doped double cladding fiber lasers. Conference on Lasers and Electro-Optics, Pacific Rim, 2007
    [140] B. He,Q. H. Lou, W. Wang, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator. Appl. Phys. Lett., 2008, 92: 251115
    [141]李剑峰,段开椋,王建明.两光子晶体光纤激光器相干锁定的实验研究.光学学报,2008,28(5): 923~926
    [142] B. Steinhausser, A. Brignon, E. Lallier, et al. High energy single mode narrow linewidth fibre laser source using SBS beam cleanup. Opt. Express, 2007, 15(10): 6464~6469
    [143] V. Eckhouse, M. Fridman, N. Davidson, et al. Phase locking and coherent combining of high-order-mode fiber lasers. Opt. Lett., 2008, 33(18): 2134~2136
    [144] A. A. Ishaaya, G. Machavariani, N. Davidson, et al. Conversion of a high-order mode beam into a nearly Gaussian beam by use of a single interferometr. Opt. Lett., 2003, 28(7): 504~506
    [145] M. Fridman, V. Eckhouse, N. Davidson, et al. Simultaneous coherent and spectral addition of fiber lasers. Opt. Lett., 2008, 33(7): 648~650
    [146] D. Kouznetsov, J. Bisson, A. Shirakawa, et al. Limits of Coherent Addition of Lasers Simple Estimate. Optical Review, 2005, 12(6): 445~447
    [147] A. E. Siegman. Resonant modes of linearly coupled multiple fiber laser structures. 2004, http://www.stanford.edu/~siegman/coupled_fiber_modes.pdf.
    [148] C. J. Corcoran, F. Durville, K. A. Pasch. Coherent Array of Nonlinear Regene- rative Fiber Amplifiers. IEEE J. Quantum Electron., 2008, 44(3): 275~282
    [149] M. L. Minden. Passive coherent combining of fiber oscillators. Proc. of SPIE, 2007, 6453: 64530P
    [150] J. E. Rothenberg. Passive coherent phasing of fiber laser arrays. Proc. of SPIE, 2008, 6873: 687315
    [151]刘泽金,周朴,许晓军.高能光纤激光系统浅析.强激光与粒子束,2008,20(11): 1761~1767
    [152]周朴,许晓军,刘泽金等.相干合成光束在湍流大气中的传输.光学学报, 2008,11: 2051~2056
    [153]孙玲,赵鸿,杨文是等.多光束激光相干合成技术研究.激光与红外,2007,37(2): 111~113
    [154]曹涧秋,陆启生,侯静等.光纤激光器相干合成系统中组束误差对远场光场的影响.中国激光,2008,35(3): 351~358
    [155]肖瑞,侯静,姜宗福.光纤放大器阵列的远场特性研究.物理学报,2007,56(8): 4550~4555
    [156]肖瑞,周朴,侯静等.激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响.物理学报,2007,56(2): 819~823
    [157]肖瑞.主振荡功率放大器方案光纤激光相干合成技术.博士学位论文,国防科技大学,2007
    [158]周朴,刘泽金,许晓军等.高功率光纤激光部分相干合成的可行性及效果分析.光学学报,2008,28(4): 730~733
    [159] P. Zhou, Z. L. Chen, X. L. Wang, et al. Tolerance on tilt error for coherent combining of fiber lasers. Chinese Optics Letters, 2009, 7(1): 394~396
    [160]雷兵,冯莹,刘泽金.利用全光纤耦合环实现三路光纤激光器的相位锁定.物理学报,2008,57(10): 6419~6424
    [161] F. Gori, M. Santarsiero, R. Borghi. Intensity based model analysis of partially coherent beams wit h Hermite-Gaussian modes. Opt. Lett., 1998, 23: 989~991
    [162] J. Q. Cao, J. Hou, Q. S. Lu, et al. Numerical research on self-organized coherent fiber laser arrays with circulating field theory. J. Opt. Soc. Am. B, 2008, 25(7): 1187~1192
    [163] L. Fabiny, P. Colet, R. Roy, et al. Coherence and phase dynamics of spatially coupled solid-state lasers. Physical Review A, 1993, 47(5): 4287~4296
    [164] K. S. Thornburg, Jr., M. Moller, et al. Chaos and coherence in coupled lasers. Physical Review E, 1997, 55(4): 3865~3869
    [165] J. R. Terry, K. S. Thornburg, Jr., et al. Synchronization of chaos in an array of three lasers. Physical Review E, 1999, 59(4): 4036~4043
    [166]周朴,侯静,陈子伦等.光纤激光器自组织相干阵列的理论分析.强激光与粒子束,2007,19(5): 709~412
    [167] P. Zhou, Z. L. Chen, X. J. Xu, et al. Modeling self-organized coherent fiber laser array. Proc. of SPIE, 2007, 6823: 68230G
    [168] J. L. Rogers, S. Peleˇs, K. Wiesenfeld. Model for high-gain fiber laser arrays. IEEE J. Quantum Electron., 2005, 41(6): 767~773
    [169] S. Peleˇs, J. L. Rogers, K. Wiesenfeld. Robust synchronization in fiber laser arrays. Physical Review E, 2006, 73: 026212
    [170] C. J. Corcoran, K. A. Pasch. Output Phase Characteristics of a Nonlinear Regenerative Fiber Amplifier. IEEE J. Quantum Electron., 2006, 43(6): 437~439
    [171] M. Digonnet, R. Sadowski, H. Shaw, et al. Experimental evidence for strong UV transition contribution in the resonant nonlinearity of doped fibers. J. Lightw. Technol., 1997, 15(2): 299~303
    [172] J. Arkwright, P. Elango, T. Whitbread, et al. Nonlinear phase changes at 1310 and 1545 nm observed far from resonance in diode pumped ytterbium fiber. IEEE Photon. Technol. Lett., 1993, 8(3): 408~410
    [173] A. A. Fotiadi, N. G. Zakharov, O. L. Antipov, et al. All-fiber coherent combining of Er-doped fiber amplifiers by active resonantly-induced refractive index control in Yb-doped fiber. CLEO/QELS, 2008, CWB2
    [174]陈子伦,侯静,周朴等.两个光纤激光器的互相注入锁定.物理学报,2008,56(12): 7046~7050
    [175] Z. L. Chen, J. Hou, P. Zhou, et al. Mutual Injection-Locking and Coherent Combining of Two Individual Fiber Lasers. IEEE J. Quantum Electron., 2008,44(6): 515~519
    [176] Q. Wang, S. Han, L. Yan, et al. Mutual injection locking of two individual Nd: YVO4 lasers. IEEE J. Quantum Electron., 2005, 41(9): 1168~1175
    [177] Q. Wang, S. Han, L. Yan, et al. Mutual injection locking and coherent beam combining of multiple Nd: YVO4 lasers. Proc. of SPIE, 2005, 5792: 48~53
    [178] Q. Wang, L. Yan. Theoretical Study of Mutual Injection Locking of Two Individual Lasers. CLEO, 2007, JWA77
    [179] B. Lei, Y. Feng. Phase locking of an array of three fiber lasers by an all-fiber coupling loop. Opt. Express, 2007, 15(25): 17114~17119
    [180] J. Lhermite, A. Desfarges-Berthelemot, V. Kermene, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop. Opt. Lett., 2007, 32(13): 1842~1844
    [181]雷兵,冯莹,魏立安等.用于光纤激光器阵列锁相的实验研究.光学学报,2009.9发表
    [182] F. Zhang, J. W. Y. Lit. Direct-coupling single-mode fiber ring-resonator. J. Opt. Soc. Am. A, 1988, 5(8): 1347~1355
    [183] Y. H. Ja. Generalized theory of optical fiber loop and ring resonators with multiple couplers. Applied Optics, 1990, 29(24): 3517~3529
    [184]姚琼,宋章启,谢元平等.谐振腔光纤陀螺光纤谐振环特性研究.光子学报, 2007,36(4): 676~680
    [185] C. C. Lee, Y. K. Chen, S. K. Liaw. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission. Opt. Lett., 1998, 23(5): 358~360
    [186] C. H. Yeh, T. T. Huang, H. C. Chien, et al. Tunable S-band erbium-doped triple- ring laser with single-longitudinal-mode operation. Opt. Express, 2007, 15(2): 382~386
    [187]张欣,陈伟,刘宇等.单纵模多环形腔掺铒光纤激光器及其稳定性.中国激光, 2007,34(1): 48~52
    [188] S. P. Chen, Z. J. Liu, X. L. Wang, et al. Efficiency enhanced coherent combining of fiber lasers through mutual injection locking. Proc. of SPIE, 2008, 7100: 71002
    [189]柳春郁,余有龙,高应俊.单模与多模光纤耦合器的光束合波.光学学报, 2005,25(6): 743~745
    [190] B. Lei, Y. Feng, L.Wei, et al. Efficient phase locking of erbium-doped fiber ring lasers by a common ring filter. J. Opt. A: Pure Appl. Opt. 2009, 11: 015509
    [191] B. Lei, Y. Feng. Coherent combining of tunable erbium-doped fiber lasers by a single-mode fiber feedback loop. Chinese Optics Letters, To be published 2009.11
    [192]季家镕.高等光学教程——光学的基本电磁理论.北京:科学出版社,2007
    [193] M. Didomenico. Characteristic of single-frequency Michelson- type He-Ne gas laser. IEEE J. Quantum Electron., 1966, QE-2: 311~322
    [194] L. Moller, C. R. Doeer, C. H. Joyner, et al. Multifrequency laser based on integrated Vernier-Michelson cavity for mode stabilization. Electron. Lett., 2000, 36: 540~542
    [195] P. Barnsley, P. Urquhart, C. Millar, et al. Fiber Fox-Smith resonators: application to single-longitudinal-mode operation of fiber lasers. J. Opt. Soc. Am. A, 1988, 5(8): 1339~1346
    [196] V. Eckhouse, M. Fridman, N. Davidson, et al. Loss Enhanced Phase Locking in Coupled Oscillators. Phys. Rev. Lett., 2008, 100: 024102
    [197]周炳琨,高以智,陈绸嵘,陈家骅编著.激光原理.北京:国防工业出版社,2000,4th edition.
    [198] B. Lü, H. Ma. Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry. Opt. Commun., 1999, 171: 185~194
    [199] Y. A. Rubinov. Interferometer for optical coupling and mode selection in a multichannel laser array. Appl. Opt., 1995, 34(21): 4235~4239
    [200]吴重庆.光波导理论.北京:清华大学出版社,2005,P205~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700