用户名: 密码: 验证码:
风电接入引致电网辅助服务成本分摊机制及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化是全世界都面临的重大挑战,其中人类活动所排放的C02数量急剧增加是最主要的原因,其对环境的影响也越来越重要。在世界C02排放总量中,中国已经成为全世界C02排放量最多的国家,占了20%以上的比重,而且比重还有进一步加大的趋势。因此在未来全世界控制C02排放的努力中中国必将承担越来越大的压力和责任。其中电力行业C02排放占了中国排放总量的40%左右,是C02排放总量最多的行业,因此电力行业C02强度下降对于中国2020年C02减排目标的实现至关重要。
     大规模发展可再生能源对电力行业C02减排具有积极作用,中国可再生能源也取得了超常规发展。可再生能源包括风力发电、太阳能发电、潮汐能发电、地热发电、生物质能发电等,目前中国具备大规模发展条件的主要是风力发电,所以本论文主要研究风力发电的发展。由于风力发电具有波动性、不确定性以及不可调峰性等特征,在接入电网发电时需常规电源提供调峰和备用等辅助服务,才‘可以满足电网调度的要求。随着风力发电的大规模发展,其对常规电源辅助服务的需求也将越来越大,常规电源是否可以提供足够的辅助服务对于风力发电的发展也至关重要。原电监会的统计显示,2010年1-6月份,风电弃风导致损失电量27.76亿千瓦时,占同期风电上网电量的12.47%,其最主要的原因就在于电力系统能够为风电接入提供辅助服务的能力不足。因此,提高电力系统为风电接入提供辅助服务的能力,对于风电真正入网发电,具有非常重要的意义。
     但是,提高电力系统辅助服务能力需要较大投入,单纯依靠电力系统自身很难承担,同时风电大规模接入电网所带来的电力系统辅助服务成本提高由电力系统承担也有失公平,需要在此基础上进一步研究风电接入所带来的辅助服务成本提高的分摊和补偿机制,激励电力系统为风电接入提供辅助服务。只有这样,电力系统辅助服务能力才能真正提高,风电发电入网也才能够真正得到保障。
     因此,为研究上述问题,本论文分以下内容进行分析。首先对风电接入导致的辅助服务成本进行分析,得到风电接入导致的辅助服务成本的特性及其影响因素,然后利用静态合作博弈方法分析辅助服务成本如何在风电场之间进行分摊,并对各种静态合作博弈分析结果进行对比讨论,在静态合作博弈分析基础上,进一步研究利用动态合作博弈方法分析辅助服务成本如何在风电场之间动态分摊,最后在辅助服务成本分摊静态合作和动态合作博弈模型的基础上,得到适合中国的风电接入导致的辅助服务成本分摊机制。
     大规模风电接入电网主要影响的辅助服务有调峰、备用和无功。随着风电发电技术的发展,尤其是双馈感应异步风力发电机的出现,其自身可以提供无功补偿,对电力系统无功辅助服务的需求很小。因此风电接入对电力系统无功辅助服务的影响可以忽略。本论文将重点研究风电接入对调峰和备用辅助服务的影响。风电接入对辅助服务影响程度的分析主要采用“有无对比法”,即通过对比风电是否接入电网,两者之间的差值即风电接入所带来的影响。风电接入对不同的辅助服务影响的原因也不相同。调峰辅助服务主要是由于风电出力波动性所带来的,因此风电接入导致的调峰辅助服务应该采用无风电接入负荷持续曲线与风电接入净负荷持续曲线(负荷与风电综合)所导致的调峰辅助服务的差值进行计算。备用辅助服务主要是由于风电出力预测偏差所带来的,因此风电接入导致的备用辅助服务应该采用无风电接入预测偏差与风电接入综合预测偏差所导致的备用辅助服务的差值进行计算。
     同时本论文进一步发现只要两个风电场出力的相关系数不为1,风电场联合接入电网导致的调峰辅助服务成本和备用辅助服务成本就比风电场单独接入电网导致的辅助服务成本之和要小,即风电联合入网会对调峰辅助服务成本和备用辅助服务成本产生“平滑效应”。因此需要进一步分析风电场联合接入电网导致的辅助服务成本如何在风电场之间进行分摊。
     本文进一步构建了风电接入电网导致辅助服务成本分摊静态合作博弈模型和动态合作博弈模型。静态合作博弈模型包括按照EANS方法分摊模型,Shapley值方法分摊模型,Owen值方法分摊模型,核仁方法分摊模型,动态合作博弈模型包括开环纳什均衡动态合作分摊模型、反馈纳什均衡动态合作分摊模型以及动态Shapley值合作分摊模型。模型对比分析结果表明,对于风电接入导致的调峰辅助服务成本而言,在数据不充分的情况下,按照电量分摊是一个比较可行的方案,在数据不断完善的情况下,则可以逐渐的过渡到按照核仁方法或者Shapley值方法进行分摊,而对于风电接入导致的备用辅助服务成本而言,按照电量分摊则完全不可行,初期可以考虑按照各自引致比例进行分摊,然后逐渐过渡到按照核仁方法或者Shapley值方法进行分摊。
     目前的辅助服务补偿机制采用发电厂按照上网电量(或者电费)的比例承担辅助服务成本,这种机制用来补偿风电引发的辅助服务成本不是特别理想,如果风电场也按照这种方式和火电厂一样承担辅助服务成本,则有失公平。因此辅助服务补偿机制需要为适应补偿风电辅助服务成本作进一步改进。
     对于风电接入导致的调峰辅助服务成本,需要事先知道非常详细的负荷每分钟波动状况以及风电每分钟出力状况以及风电出力之间每分钟的平滑效应,这就需要非常庞大的数据监测和数据积累,相应需要付出的成本也比较高。所以要想确定风电接入导致的调峰辅助服务成本在数据不完善的情况下很难确定出来,而且风电出力波动主要是由风能资源决定的,这一因素也主要是客观原因,不是风电场努力能够改善的。因此风电出力波动性所导致的调峰成本也不是风电企业自身努力可以改善降低的。所以初期可以考虑风电接入导致的调峰辅助服务成本不由风电场承担,而是改由消费者来承担。在有了充分的数据积累和良好的数据监测能力后再考虑由风电场承担各自所导致的调峰成本,初期可以考虑按照电量分摊,未来在逐渐过渡到更合理的按照核仁方法或者Shapley值方法进行分摊的方式。
     对于风电接入导致的备用辅助服务成本,其主要是由风电场的不确定性所导致的,这一不确定性可以通过提高风电预测水平进行改善,所以备用成本由风电场自身承担和补偿也可以激励风电场改进自身出力的预测精度,这也可以降低风电接入导致的备用辅助服务成本。备用成本补偿和分摊初期可以考虑按照风电场各自引致比例进行分摊,然后逐渐过渡到按照核仁方法或者Shapley值方法进行分摊。
     由于改革难度不同,因此本论文建议先易后难,实现风电场对其导致的辅助服务成本进行补偿和分摊。第一阶段可以考虑在不改变现有辅助服务考核和补偿办法的情况下增加对风电预测精度进行考核的内容,基于风电出力预测精度考核结果由风电场对风电导致的备用辅助服务成本进行补偿,风电导致的调峰辅助服务成本则通过上调火电标杆上网电价,进而通过销售电价进行补偿。第二阶段则可以考虑改变目前辅助服务考核和补偿办法的资金来源,打破成本补偿资金在发电系统内循环的状况,改为由电网公司承担考核后成本补偿资金的不足部分,并计入购电成本通过销售电价进行补偿,而不再间接通过上调上网电价来补偿辅助服务成本,同时风电承担自身引发的备用成本。由于通过辅助服务考核方式确定的辅助服务成本可能不太经济,没有达到成本最低的状况,第三阶段可以考虑建立电力现货市场,通过发电企业报价方式确定调峰辅助服务成本,在明确风电接入导致的调峰辅助服务成本状况的基础上,由风电按照其电量进行补偿和分摊,同时建立电力备用辅助服务市场,通过发电企业报价方式确定备用辅助服务成本,消费者和风电进行分别对其引发的备用成本进行补偿。
     当然对于风电接入导致的辅助服务成本如何进行补偿和分摊还有很多值得深入研究的内容,包括:1、风电导致的无功等其他辅助服务成本及如何补偿;2、辅助服务提供如何在不同技术之间进行优化;3、省间甚至是区域间如何对风电接入导致的辅助服务成本进行补偿;4、在考虑风电正外部性的情况下如何分摊风电接入导致的辅助服务成本;5、电网公司如何参与辅助服务成本补偿;6、在电力市场交易机制设计时如何避免市场力的影响;7、如何设计合理的辅助服务交易机制让风电场以合适的角色参与。
Global climate change, resulting mainly from rapid increase of CO2emitted by human activities, is a considerable challenge facing the whole world and exerts increasingly significant impacts on environment. China is the world's biggest CO2emitter, taking up20%of total amount. It is estimated that the proportion will continue increasing. China has an increasingly heavy responsibility to CO2mitigation in the world. In China, power sector is the biggest CO2emitter, accounting for about40%of the total emission in China. In order to realize the2020target for CO2emission in China, reduced CO2intensity in power sector is crucial.
     Large-scale wind power development plays an active role in CO2reduction in power sector. For this purpose, China's wind power has witnessed rapid development. However, wind power is intermittent, uncertain, and cannot be moved down. In order to meet the requirements of dispatching, ancillary services such as peak-shaving and operational reserve from conventional power are required for integration. With the large-scale wind power development, demand for ancillary services provided by conventional power is increasing. The capacity of conventional power's provision of ancillary services is crucial to wind power development. Former SERC statistics show that in the period between January and June in2010,2.776billion kWh of electricity was lost due to wind curtailment, taking up12.47%of the total integrated electricity in the same period. The major reason for the loss is the lack of ancillary services. Therefore, increased capacity of ancillary service provision in power system has very important significance towards wind power integration.
     Improved capacity of ancillary service provision in power system requires huge investment, which can hardly be afforded by power system itself. Also, it would be unfair to have the power system afford the cost. Hence, in order to incentivize ancillary service provision for wind power integration, further research is necessary on distribution and compensation mechanisms for the ancillary service cost. Only in this way can capacity of ancillary service provision in power system be enhanced, and wind power integration be guaranteed.
     Therefore, in order to study the above problems, this paper will conduct the following analysis. Firstly, the author will examine the ancillary services costs resulting from wind power integration to summarize its characteris and main influencing factors. Then the author will adopt static cooperation game theory to allocate the wind power incurred intergration ancillary service cost, with thorough comparison and disucssion on the anlaysis results. Base on the anlysis resutls from the staic cooperation game theory, the author will further use a dynamic cooperation game theory to allocate the ancillary service cost between wind farms in a dynamic modelling. Lastly, by combining the analysis results from both static and dynamic cooperation game theories, the thesis will come up with a wind power integration incurred ancillary services cost distribution mechanism that fits China's context.
     In China, the scope of ancillary services covers primarily the peak-shaving, operational reserve and reactive services. Most of them share identical concepts with international ones. Along with the development of wind power generation technoglogy, particularly the invention of double-fed induction asynchronous wind turbines which can suffice its own reactive service, the power system requires little reactive ancillary service. Thus this paper will focus on the wind power integration's impact on peak-shaving and operational reserve services.
     The main analyzing tool to the wind power integration's degree of impact on the ancillary services is called "With&Without Antitheses", that is by comparing the difference of the power grid between wind power connected and disconnected situations to determine the wind power intergration impact. Furthermore, different types of ancilary services have different impacts on wind power integration incurred ancilary services cost. Peak-shaving ancillary service was mainly due to the volatility of wind power output, so that the peak-shaving ancillary cost brought by wind power integration should be the difference of the ancillary service cost between non-wind power load duration curve and wind power integrated load duration curve (load and wind power integrated). Operational reserve ancillary service was mainly caused by wind power output prediction error, so that the extra ancillary service cost brought by wind power integration should be the difference between operational reserve ancillary service cost of the non-wind power output prediction error and the wind power integrated output prediction error.
     Meanwhile, the paper found that as long as the correlation coefficient of two wind farms' power output is not1, the total peak-shaving and operational reserve ancillary service costs of two wind farms'joint intergration is less than respective integration, which means the combined integration of wind power would have a "smoothing effect" on peak-shaving&operational reserve ancillary services. Therefore, it is necessary to further analyze the allocation of combined wind intergration ancillery service cost among wind farms.
     The paper further build wind power integration incurred ancillary service cost distribution in a static cooperative game model and a dynamic cooperative game model. Static cooperative game model consists of static methods in accordance with EANS allocation model, Shapley value allocation model, Owen value apportion model and nucleolus apportion model. While dynamic cooperative game model includes open-loop dynamic cooperative Nash equilibrium allocation model, dynamic cooperative feedback Nash equilibrium allocation model and Shapley value cooperation dynamic allocation model. The comparative analysis of the model results show that wind power integration peak-shaving inccured ancillary services cost, in the case of insufficient data, distribution in accordance with the electricity output is a more viable option; while in the case of improving data, gradual transition to the nucleolus method or Shapley value allocation method is feasible. On the other hand, for wind integration incurred operational reserve ancillary service cost, distribution in accordance with the electricity output is not feasible. It is suggested that at the initial stage, cost can be allocated in accordance with their power proportion integrated, and then gradually transfer to nucleolus allocation methods or Shapley value method.
     The current compensation distribution mechanism for ancillary service which in accordance with on-grid electricity output (or electricity tariff) proportion isn't suitable for wind power integration inccured ancillary service cost distribution. It is unfair for the wind farm and thermal power plants to bear the cost following current distribution method. Therefore, the ancillary service compensation distribution mechanism needs to be adjusted and improved to fit the wind energy.
     To calculate the wind power peak-shaving ancillary services cost, it requires a costly large data monitroing and accumulaion which includes:every minute fluctuation of the power load, wind power output per minute and the wind power output per minute smoothing effect. Thus it is difficult to calculate the wind integration incurred peak-shaving ancillary service cost without sufficient data. However, wind power output fluctuations are mainly determined by the characteristic of wind energy resource that can not be overcomed by the wind farm. Therefore, at early stage, the wind power integration inccured peak-shaving ancillary cost is suggested to be borne by the consumer instead of the wind farms. After establishing a sufficient data accumulation and data monitoring capacity, the peak-shaving cost can be transferred back to the wind farm respectively. The distribution methods can start from distributing in accordance with the electricity output, and gradually transfer to a more rational nucleolus method or Shapley value apportion approach.
     Considering the difficultis at different stages of reform, this paper suggests to start the reform from the easier sector, and to achieve a rational distribution and compensation mechanism for the wind power integration incurred ancillary service cost. At the first stage, while keeping the current ancillary service assessment and compensation measures, it is suggested to add a wind power prediction accuracy assessment, based on which compensating wind farm's operational reserve ancillary service cost, whereas the wind power inccured peak-shaving ancillary service cost can be compensated by raising the feed-in tariff that transmitted to the sales tariff. At the second stage, it is suggested to change the internal loop of fund rasing and compensating for the ancillaery service assesment and compensation within the power generation sector. And the grid companies will bear the shortfall of the compensation after assessment which can be reimbursed in the sales tariff, instad of feed-in tariff. And wind farm bears its self-inccured spare ancillary cost. However, the assessmet determined ancillery service cost is not economical, hence it won't reach the lowest cost. At the third stage, with the establishment of electricity spot trade market, the peak-shaving ancillery cost will be determined by power generation companies offer. With sufficient data and knowledge of wind integration incurred peak-shaving ancillary service cost, the wind power compensation and distirubtion will be based on wind electricity output proportion. On the other hand, while building a power operational reserve ancillary service market, the generation company's offer can determine the ancillary service cost which the consumer and the wind power will compensate their inccured ancillary costs respectivly.
     Further study on the compensation and distribution of wind power integration inccured ancillary service cost is required, including:1. The compensation to wind power inccured reacive and other ancillary service cost;2, Technologies to optimize ancillary service provision;3, The compensation to wind power integration inccured ancillary service cost among provinces and even among regions;4, The distribution of wind power integration inccured ancillary cost considering wind power's positive externalities;5, grid companies invovlement in ancillary service cost compensation;6, The design of the electricity market trading mechanism to avoid the impact of market power;7, The design of a reasonable ancillary service mechanism that promote wind power's appropriate participation.
引文
[1]Energy Information Agency, www.eia.gov
    [2]俞燕山,胡军峰,林卫斌,吴疆.“十二五”电力发展若干问题研究[M].北京:中国电力出版社,2010年
    [3]俞燕山等,《电力应对气候变化对策》课题组.电力行业应对气候变化技术与
    政策选择[M],香港:觐公出版社,2011年
    [4]中国电力企业联合会.中国电力行业年度发展报告2011[M],北京:中国市场
    出版社,2011年
    [5]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社,2010
    年
    [6]国家电力监管委员会网站,www.serc.gov.cn
    [7]国家电力监管委员会.风电、光伏发电情况监管报告[R].2011年1月
    [8]国家电力监管委员会.并网发电厂辅助服务管理暂行办法[R].2006年11月
    [9]Federal Energy Regulatory Commission. Order 889, Open Access Same-Time Information System (formerly Real-Time Information Networks) and Standards of Conduct[EB/OL]. www.ferc.gov
    [10]李博,朱元成.北欧电力市场辅助服务[J].中国电力,2008,41(4):88-92
    [11]温步瀛,周峰,程浩忠,等.电力市场辅助服务及其定价研究综述[J].华东电力,2001,11:30-34
    [12]何永秀,马听,王怡,等.电力辅助服务市场(ASM)国际比较研究[J].华东电力,2003,7:9-13
    [13]赵大溥,陈志姚,钟全,等.电力市场环境下辅助服务市场的实现[J].中国电力,2007,40(2):80-84
    [14]黄永皓,尚金成,康重庆,等.电力辅助服务交易市场的运作机制及模型[J].电力系统自动化,2003,27(2):33-36
    [15]张保会,王立永,谭伦农,等.基于供需双方可靠性竞标的辅助服务交易新机制[J].电网技术,2005,29(23):50-55,61
    [16]张森林.区域电力市场辅助服务运营模式研究[J].水电能源科学,2008,26(2):188-191
    [17]方军,乞建勋,牛东晓.基于发电主市场价格信息的辅助服务定价方法[J].华北电力大学学报,2006,33(6):47-50
    [18]张森林.区域电力市场辅助服务补偿机制实用化研究[J].水电能源科学,2008,26(3):193-197,203
    [19]国家发展改革委经济研究所,湖北省物价局,湖北清江水电开发公司联合课题组.以辅助服务为主的水电价格政策研究[J].中国物价,2008,2:16-21
    [20]韩少晓,孙嘉,延峰.AGC机组辅助服务定量评估[J].电网技术,2005,29(18):26-29
    [21]丁军威,沈瑜,康重庆,等.备用辅助服务市场的组织与交易决策[J].电力系统自动化,2003,27(2):29-32,59
    [22]何永秀.电力经济价值与备用辅助服务市场交易理论及实证研究[D].华北电力大学博士学位论文,2006年
    [23]王林川,郑丽娜,张伟,等.电力市场辅助服务的无功定价研究[J].东北电力大学学报,2007,27(4):50-54
    [24]吴集光.电力市场环境下AGC和备用辅助服务研究[D].四川大学博士学位论文,2005年
    [25]李婷婷.电力市场下辅助服务的定价研究[D].华北电力大学硕士学位论文,2009年
    [26]熊虎岗,程浩忠.电力市场环境下无功辅助服务[J].现代电力,2007,24(2):84-91
    [27]邓东林.电力市场下备用辅助服务模式及其定价方式研究[D].贵州大学硕士学位论文,2009年
    [28]陈金.电力市场下的辅助服务研究——无功辅助服务市场的成本与定价研究[D].贵州大学硕士学位论文,2009年
    [29]李雪凌.电力市场下辅助服务的研究——AGC辅助服务市场的竞价模式与定价研究[D].贵州大学硕士学位论文,2008年
    [30]刘涌.考虑辅助服务的发电商优化运行研究[D].上海交通大学博士学位论文,2006年
    [31]许蔚.考虑可中断负荷的备用辅助服务交易与定价问题研究[D].北京交通大学硕士学位论文,2010年
    [32]吴集光,刘俊勇,宋卫平,等.市场环境下评估AGC机组参与辅助服务方法研究[J].中国电力,2006,39(3):40-44
    [33]Enrique Lobato Migu'elez, Ignacio Egido Cort'es, Luis Rouco Rodr'iguez, Gerardo L'opez Camino. An Overview of Ancillary Services in Spain[J]. Electric Power Systems Research,2008,78:515-523
    [34]Panagiotis Andrianesis, Pandelis Biskas, George Liberopoulos. An Overview of Greece's Wholesale Electricity Market with Emphasis on Ancillary Services[J]. Electric Power Systems Research,2011,81:1631-1642
    [35]C. Clastres, T.T. Ha Pham, F. Wurtz, S. Bacha. Ancillary Services and Optimal Household Energy Management with Photovoltaic Production[J]. Energy,2010,35: 55-64
    [36]S.K. Parida, S.N. Singh and S.C. Srivastava. Ancillary Services Management Policies in India:An Overview and Key Issues[J]. The Electricity Journal,2009,22(1): 88-97
    [37]R. Jamalzadeh, M.M. Ardehali, M. Rashidinejad. Development of Modified Rational Buyer Auction for Procurement of Ancillary Services Utilizing Participation Matrix[J]. Energy Policy,2008,36:900-909
    [38]A.L. Costa, A. Simoes Costa. Energy and Ancillary Service Dispatch through Dynamic Optimal Power Flow[J]. Electric Power Systems Research,2007,77: 1047-1055
    [39]Ricardo Raineri, Raul Arce, Sebastian Rlos, Carlos Salamanca. From a Bundled Energy-capacity Pricing Model to an Energy-capacity-ancillary Services Pricing Model[J]. Energy Policy,2008,36:2878-2886
    [40]Yann Rebours, Daniel Kirschen, Marc Trotignon. Fundamental Design Issues in Markets for Ancillary Services[J]. The Electricity Journal,2007,20(6):26-34
    [41]R. Raineri, S. Rlos, D. Schiele. Technical and Economic Aspects of Ancillary Services Markets in the Electric Power Industry:an International Comparison[J]. Energy Policy,2006,34:1540-1555
    [42]Alan G Isemonger. The Evolving Design of RTO Ancillary Service Markets[J]. Energy Policy,2009,37:150-157
    [43]Tarjei Kristiansen. The Nordic Approach to Market-based Provision of Ancillary Services[J]. Energy Policy,2007,35:3681-3700
    [44]龙云,周华锋,杨林.南方区域发电厂并网运行及相关辅助服务管理系统[J].南方电网技术,2011,5(3):90-93
    [45]马历,雷肖.湖北电网辅助服务市场概述[J].水电与新能源,2011,3:12-13,21
    [46]陈明辉.发电机组参与辅助服务的机制研究[D].华南理工大学硕士学位论文,2010年
    [47]田雄,姚建刚,龚陈雄,等.电厂并网运行管理及辅助服务管理系统的研发[J].电力系统保护与控制,2011,39(1):118-122
    [48]周旭,顾洁,程浩忠.区域电力辅助服务市场评价体系[J].电力科学与技术学报,2011,26(1):86-91
    [49]彭虎,郭钰锋,王松岩,等.风电场风速分布特性的模式分析[J].电网技术,2010,34(9):206-210
    [50]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110
    [51]曹娜,于群,戴慧珠.风速波动时风电场动态波动分析[J].太阳能学报,2009,30(4):497-502
    [52]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9
    [53]韩小琪,宋璇坤,李冰寒,等.风电出力变化对系统调频的影响[J].中国电力,2010,43(6):26-29
    [54]周天睿,王旭,张谦,等.大规模风电对江苏电网规划影响的实证分析[J].中国电力,2010,43(2):11-15
    [55]肖创英,汪宁渤,陟晶,等.甘肃酒泉风电出力特性分析[J].电力系统自动化,2010,34(17):64-67
    [56]申张亮,谢珍建,郑建勇,等.江苏沿海陆地风电场出力对地区综合负荷特性影响的分析[J].华东电力,2010,38(3):391-394
    [57]Katie Coughlin, Joseph H. Eto. Analysis of Wind Power and Load, Data at Multiple Time Scales[EB/OL]. Ernest Orlando Lawrence Berkeley National Laboratory, December 2010. http://www.ferc.gov/industries/electric/indus-act/reliability/analysiswindpowerload.pd f
    [58]袁铁江,晁勤,李义岩,等.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):23-27
    [59]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5
    [60]罗海洋,刘天琪,李兴源.风电场短期风速的混沌预测方法[J].电网技术,2009,33(9):67-71
    [61]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91
    [62]白兴忠,江国琪,王建学,等.风电接入对西北电网辅助服务的影响[J].中国电力,2009,42(12):73-76
    [63]赵冰.以调峰能力为约束的辽宁电网风电接纳问题研究[D].东北电力大学硕士学位论文,2010年
    [64]Bart C. Ummels, Madeleine Gibescu, Engbert Pelgrum, Wil L. Kling, Arno J. Brand. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch[J]. IEEE Transactions on Energy Conversion,2007,22(1):44-51
    [65]Heitor H. D. Mangueira, Osvaldo R. Saavedra, Jose E. O. Pessanha. Impact of Wind Generation on the Dispatch of the System:A Fuzzy Approach[J]. Electrical Power and Energy Systems,2008,30:67-72
    [66]杨宏,刘建新,苑津莎.风电系统中常规机组负调峰能力研究[J].中国电机工程学报,2010,30(16):26-31
    [67]包能胜.风电—燃气轮机互补发电系统若干关键问题的研究[D].清华大学博士学位论文,2007年
    [68]苏鹏,刘天琪,李兴源.含风电的系统最优旋转备用的确定[J].电网技术,2010,34(12):158-162
    [69]颜巧燕,温步瀛,江岳文.风电并网后系统备用容量需求分析[J].电力与电工,2009,29(2):14-16
    [70]王飞.基于CCP的含风电系统旋备计划优化方法研究[D].华北电力大学硕士学位论文,2010年
    [71]ISO/RTO Council. Variable Energy Resources, System Operations and Wholesale Markets[EB/OL]. ISO/RTO Council Briefing Paper, August 2011. http://www.isorto.org/atf/cf/%7B5B4E85C6-7EAC-40A0-8DC3-003829518EBD%7 D/IRC VER-BRIEFING PAPER-AUGUST 2011.PDF
    [72]Milligan, Michael, Erik Ela, Debra Lew, Dave Corbus, and Yih-huei Wan. Advancing Wind Integration Study Methodologies:Implications of Higher Levels of Wind[EB/OL]. National Renewable Energy Laboratory Conference Paper: NREL/CP-550-48944, July 2010. Presented at WindPower 2010, Dallas, Texas, May 23-26,2010. http://www.nrel.gov/wind/systemsintegration/pdfs/2010/milligan_advancing_methodo logies.pdf
    [73]Guodong Liu, Kevin Tomsovic. Quantifying Spinning Reserve in Systems with Significant Wind Power Penetration[J]. IEEE Transactions on Power Systems,2012, 27(4):2385-2393
    [74]Kristof De Vos, Andreas G. Petoussis, Johan Driesen et al. Revision of Reserve Requirements Following Wind Power Integration in Island Power Systems[J]. Renewable Energy,2013,50,268-279
    [75]王邦一,李玲芳,黄伟.风电并网对云南电网无功及电压控制影响[J].云南电力技术,2010,38(4):26-27
    [76]刘洋.风电接入电网的电压无功支撑规律研究[D].山东大学硕士学位论文,2009年
    [77]许国东,章立栋.风电系统的无功功率与电网电压稳定[J].能源工程,2007,5:49-52
    [78]胡敏,周任军,杨洪明,等.考虑风力发电的系统无功优化模型和算法[J].长沙理工大学学报(自然科学版),2009,6(1):43-48
    [79]贾俊川,刘晋,张一工.双馈风力发电系统的新型无功优化控制策略[J].中国电机工程学报,2010,30(30):87-92
    [80]严干贵,王茂春,穆钢,等.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J].电工技术学报,2008,23(7):98-104
    [81]Fan Lingling, Yin Haiping, Miao Zhixin. On Active/Reactive Power Modulation of DFIG-Based Wind Generation for Interarea Oscillation Damping[J]. IEEE Transactions On Energy Conversion,2011,26(2):513-521
    [82]Xu Lie, Cartwright Phillip. Direct Active And Reactive Power Control Of DFIG For Wind Energy Generation[J]. IEEE Transactions On Energy Conversion,2006, 21(3):750-758
    [83]Hassink Paul, Matthews Dave, O'Keefe Rob, et al. Dynamic Reactive Compensation System For Wind Generation Hub[A].2006 IEEE/PES Power Systems Conference and Exposition[C],470-475. IEEE/PES Power Systems Conference and Exposition, OCT 29-NOV 01,2006, Atlanta, GA
    [84]周双喜,王海超,陈寿孙.风力发电运行价值分析[J].电网技术,2006,30(14):98-102
    [85]Poul Alberg Otergaard. Ancillary Services And The Integration Of Substantial Quantities Of Wind Power[J]. Applied Energy,2006,83:451-463
    [86]J. Charles Smith, Michael R. Milligan, Edgar A. DeMeo, et al. Utility Wind Integration and Operating Impact State of the Art[J]. IEEE Transactions On Power Systems,2007,22(3):900-908
    [87]Hannele Holttinen, Michael Milligan, Brendan Kirby, Tom Acker, Viktoria Neimane, Tom Molinski. Using Standard Deviation As A Measure Of Increased Operational Reserve Requirement For Wind Power[J]. Wind Engineering,2008,32(4): 355-378
    [88]Erik Ela, Brendan Kirby, Eamonn Lannoye, Michael Milligan, Damian Flynn, Bob Zavadil, Mark O'Malley. Evolution of Operating Reserve Determination in Wind Power Integration Studies[A]. IEEE Power And Energy Society General Meeting 2010[C], PES General Meeting, Minneapolis, MN. JUL 25-29,2010,1-8
    [89]Ela, E.; Milligan, M.; Parsons, B.; Lew, D.; Corbus, D. The Evolution Of Wind Power Integration Studies:Past, Present, And Future[A]. Power & Energy Society General Meeting[C],2009. PES '09. IEEE:1-8
    [90]Goran Strbac, Anser Shakoor, Mary Black, Danny Pudjianto, Thomas Bopp. Impact Of Wind Generation On The Operation And Development Of The UK Electricity Systems[J]. Electric Power Systems Research,2007,77:1214-1227
    [91]Patrick J. Luickx, Erik D. Delarue, William D. D'haeseleer. Impact Of Large Amounts Of Wind Power on The Operation of An Electricity Generation System: Belgian Case Study[J]. Renewable and Sustainable Energy Reviews,2010,14: 2019-2028
    [92]Manuel A. Matos, R. J. Bessa. Setting The Operating Reserve Using Probabilistic Wind Power Forecasts[J]. IEEE Transactions On Power Systems,2011,26(2): 594-603
    [93]Milligan, Michael, Erik Ela, Bri-Mathias Hodge, Brendan Kirby, Debra Lew, Charlton Clark, Jennifer DeCesaro, Kevin Lynn. Cost-Causation and Integration Cost Analysis for Variable Generation[EB/OL]. National Renewable Energy Laboratory Technical Report:NREL/TP-5500-51860, June 2011. http://www.nrel.gov/wind/systemsintegration/pdfs/2011/milligan_cost_causation_inte gration_cost_analysis.pdf
    [94]North American Electric Reliability Corporation. Special Report:Accommodating High Levels of Variable Generation[EB/OL]. April 2009. http://www.nerc.com/files/ⅣGTF_Report_041609.pdf
    [95]Holttinen, Hannele, Peter Meibom, Antje Orths, Frans van Hulle, Bernhard Lange, Mark O'Malley, Jan Pierik, et al. Design and Operation of Power Systems with Large Amounts of Wind Power[EB/OL]. Final Report, Phase one 2006-2008. IE A WIND Task 25. VTT.2009. http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2493.pdf
    [96]胡朝阳.成本分摊理论和竞价博弈方法在电力市场中的应用研究[D].浙江大学博士学位论文,2003年
    [97]何永秀,黄文杰,赵晓丽,等.大用户直购电辅助服务成本分摊机制[J].华北电力大学学报,2004,31(4):70-74
    [98]谢俊,白兴忠,魏建详,等.西北电网调峰成本补偿研究[J].浙江大学学报(工学版),2009,43(3):584-588,595
    [99]Xie J., Bai X., Feng D., et al. Peaking Cost Compensation In Northwest China Power System[J]. European Transactions On Electrical Power,2009,19(7): 1016-1032
    [100]Pablo Frias, Tomas Gomez, David Soler. A Reactive Power Capacity Market Using Annual Auctions[J]. IEEE Transactions On Power Systems,2008,23(3): 1458-1468
    [101]Wen-Chen Chu, Bin-Kwie Chen, Chung-Hsien Liao. Allocating the Costs of Reactive Power Purchased in an Ancillary Service Market by Modified Y-Bus Matrix Method[J]. IEEE Transactions On Power Systems,2004,19(1):174-179
    [102]J. H. T. Hernandez, M. Jimenez-Guzman, G. Gutierrez-Alcaraz. Ancillary Reactive Power Service Allocation Cost In Deregulated Markets:A Methodology[J]. Electrical Power and Energy Systems,2005,27:371-378
    [103]Wen-Chen Chu, Yi-Ping Chen. Feasible Strategy for Allocating Cost of Primary Frequency Regulation[J]. IEEE Transactions On Power Systems,2009,24(2): 508-515
    [104]Z. Song, L. Goel, P. Wang. Optimal Spinning Reserve Allocation In Deregulated Power Systems[J]. Generation, Transmission & Distribution, IET,2005,152(4): 483-488
    [105]Nalin B. Dev Choudhury, Swapan K. Goswami. Fair Allocation of Transmission Ancillary Service Cost using Game Theory:A Preliminary Study[A]. Universities Power Engineering Conference (AUPEC) [C],2010 20th Australasian, Christchurch, 5-8 Dec.2010,1-5
    [106]Juan-Juan Wang, Wei-Dong Li, Wen-Lei Zhao, Yun-Li Zhao. A Novel Strategy for Allocation Cost of Automatic Generation Control in Electricity Market Environment A].2010 2nd International Conference on Signal Processing Systems (ICSPS) [C],5-7 July 2010,3:237-240
    [107]Igor Kuzle, Darjan Bosnjak, Sejid Tesnjak. An Overview of Ancillary, Services in an Open Market Environment[A]. Control & Automation,2007[C]. MED'07. Mediterranean Conference on,27-29 June 2007:1-6
    [108]Nidul Sinha, Loi Lei Lai, Palash Kumar Ghosh. GA Based Algorithm for Optimum Allocation of Reactive Power under Deregulated Environment[A]. DRPT2008[C] 6-9 April 2008 Nanjing China,6-9 April 2008:926-932
    [109]Adrian Andreoiu, Kankar Bhattacharya. Game Theory Based Evaluation of PSS Control Effort[A]. Power Engineering Society General Meeting[C],2005. IEEE, 12-16 June 2005,1:548-591
    [110]Pablo M. Ribeiro, Luiz Guilherme B. Marzano, Javier R. O. Soto, Ricardo B. Prada, Albert C. G. Melo. Methodology to Remunerate the Generation Reserve and the Reactive Power Support as Ancillary Services based on the Benefit Proportioned to the Power System[A]. Power Tech,2005 IEEE[C], Russia,27-30 June 2005:1-7
    [111]M. De S.K. Goswami. Reactive Support Allocation Using Improved Y-Bus Matrix Method[J]. Generation, Transmission & Distribution, IET,2011,5(4):448- 460
    [112]Somayeh Dehghan, Ali Reza Sedighi, Mohammad Hasan Moradi, Hamid Reza Mirjalili. The New Non-Discriminatory Strategy For Cost Allocation In Restructured System[A]. Power System Technology (POWERCON) [C],2010 International Conference on,24-28 Oct.2010:1-6
    [113]Chira Achayuthakan, Weerakorn Ongsakul, TVAC-PSO Based Optimal Reactive Power Dispatch for Reactive Power Cost Allocation under Deregulated Environment[A]. Power & Energy Society General Meeting[C],2009. PES'09. IEEE, 26-30 July 2009:1-9
    [114]谢识予.经济博弈论[M].第三版,上海:复旦大学出版社,2002年
    [115]董保民,王运通,郭桂霞.合作博弈论[M].北京:中国市场出版社,2008年
    [116]杨荣基,彼得罗相,李颂志.动态合作:尖端博弈论——较诺奖贡献更复杂的解法与数式[M].北京,中国市场出版社,2007年
    [117]高效,彭建春,罗安.多种交易模式下核仁解分摊输电网固定成本[J].中国电机工程学报,2007,27(10):120-124
    [118]余贻鑫,王艳君,陈晓明.基于实用安全域的电力系统安全成本分摊[J].中国电机工程学报,2009,29(19):1-7
    [119]周兴华.电力市场环境下网损分摊方法研究[D].中国农业大学硕士学位论文,2005年
    [120]梁周.电力市场环境下我国输电服务定价及费用分摊机制研究[D].华北电力大学博士学位论文,2010年
    [121]高效,彭建春,罗安.分区核仁法分摊多区域互联输电网固定成本[J].继电器,2007,35(23):39-42
    [122]陈锐.基于Shapley值的双边交易阻塞费用分摊方法[D].湖南大学硕士学位论文,2005年
    [123]李生伟.基于合作博弈Owen值的输电损耗分摊[D].湖南大学硕士学位论文,2004年
    [124]鲁栗.基于合作博弈核仁解的输电固定费用分摊[D].湖南大学硕士学位论文,2005年
    [125]王卿然,张粒子.基于合作博弈与虚拟企业理论的跨地区输电费分摊机制研究[J].价格月刊,2010,5:12-14,19
    [126]高效,彭建春,罗安.考虑输电阻塞的电网固定成本分摊核仁法[J].电网技术,2007,31(22):49-53
    [127]Bhakar Rohit, Sriram V. S., Padhy Narayana Prasad, et al. Probabilistic Game Approaches for Network Cost Allocation[J]. IEEE Transactions On Power Systems, 2010,25(1):51-58
    [128]Faria Eduardo, Barroso Luiz Augusto, Kelman Rafael, et al. Allocation of Firm-Energy Rights Among Hydro Plants:An Aumann-Shapley Approach[J]. IEEE Transactions On Power Systems,2009,24(2):541-551
    [129]Contreras Javier, Gross George, Manuel Arroyo Jose; et al. An Incentive-Based Mechanism For Transmission Asset Investment[J]. Decision Support Systems,2009, 47(1):22-31
    [130]Bhakar Rohit, Sriram V. S., Padhy N. P., et al. Transmission Embedded Cost Allocation in Restructured Environment:A Game-theoretic Approach[J]. Electric Power Components And Systems,2009,37(9):970-981
    [131]Lima Delberis A.; Contreras Javier; Padilha-Feltrin Antonio. A Cooperative Game Theory Analysis For Transmission Loss Allocation[J]. Electric Power Systems Research,2008,78(2):264-275
    [132]Junqueira Max, da Costa Luiz Carlos Jr., Barroso Lulz Augusto, et al. An Aumann-Shapley Approach To Allocate Transmission Service Cost Among Network Users In Electricity Markets[J]. IEEE Transactions On Power Systems,2007,22(4): 1532-1546
    [133]Ruiz Pablo A., Contreras Javier. An Effective Transmission Network Expansion Cost Allocation Based On Game Theory[J]. IEEE Transactions On Power Systems, 2007,22(1):136-144
    [134]Hu ZY, Chen L, Gan DQ, et al. Allocation Of Unit Start-Up Costs Using Cooperative Game Theory[J]. IEEE Transactions On Power Systems,2006,21(2): 653-662
    [135]Bjorndal E, Stamtsis GC, Erlich I. Finding Core Solutions For Power System Fixed Cost Allocation[J]. IEE Proceedings-Generation Transmission And Distribution, 2005,152(2):173-179
    [136]Erli G, Takahasi K, Chen LN, et al. Transmission Expansion Cost Allocation Based On Cooperative Game Theory For Congestion Relief[J]. International Journal Of Electrical Power & Energy Systems,2005,27(1):61-67
    [137]陈伟,查迎春.关于成本分摊的合作博弈方法[J].运筹与管理,2004,13(2):54-57
    [138]邓建高,王普查.基于Shapley值的价值链合作企业成本分摊博弈分析[J].科学技术与工程,2009,9(14):4252-4254,4260
    [139]Sadegh, M, Kerachian, R. Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games:Fuzzy Least Core and Fuzzy Weak Least Core[J]. Water Resources Management,2011,25(10):2543-2573
    [140]Fiestras-Janeiro, MG, Garcia-Jurado, I, Mosquera, MA. Cooperative Games And Cost Allocation Problems[J]. TOP,2011,19(1):1-22
    [141]Wang, LZ, Fang, LP, Hipel, KW. Negotiation over Costs and Benefits in Brownfield Redevelopment[J]. Group Decision And Negotiation,2011,20(4): 509-524
    [142]Fiestras-Janeiro M. G., Garcia-Jurado I., Meca A., et al. Cooperative Game Theory And Inventory Management J]. European Journal Of Operational Research, 2011,210(3):459-466
    [143]Dror M., Hartman B. C. Survey Of Cooperative Inventory Games And Extensions[J]. Journal Of The Operational Research Society,2011,62(4):565-580
    [144]Tsang S. W., Jim C. Y. Game-Theory Approach For Resident Coalitions To Allocate Green-Roof Benefits[J]. Environment And Planning A,2011,43(2):363-377
    [145]Mallozzi Lina. Cooperative Games In Facility Location Situations With Regional Fixed Costs[J]. Optimization Letters,2011,5(1):173-181
    [146]Hall Nicholas G., Liu Zhixin. Capacity Allocation and Scheduling in Supply Chains[J]. Operations Research,2011,58(6):1711-1725
    [147]Chen Rachel R., Yin Shuya. The Equivalence Of Uniform And Shapley Value-Based Cost Allocations In A Specific Game[J]. Operations Research Letters, 2010,38(6):539-544 [148]Mahjouri Najmeh, Ardestani Mojtaba. A Game Theoretic Approach For
    Interbasin Water Resources Allocation Considering The Water Quality Issues[J]. Environmental Monitoring And Assessment,2010,167(1-4):527-544
    [149]Chen Xin, Zhang Jiawei. A Stochastic Programming Duality Approach to Inventory Centralization Games[J]. Operations Research,2009,57(4):840-851
    [150]Niksokhan Mohammad Hossein, Kerachian Reza, Karamouz Mohammad. A Game Theoretic Approach For Trading Discharge Permits in Rivers[J]. Water Science And Technology,2009,60(3):793-804
    [151]Zhang, JW. Cost Allocation for Joint Replenishment Models[J]. Operations Research,2009,57(1):146-156
    [152]Leng Mingming, Parlar Mahmut. Allocation of Cost Savings in a Three-Level Supply Chain with Demand Information Sharing:A Cooperative-Game Approach[J]. Operations Research,2009,57(1):200-213
    [153]Rosenthal Edward C. A Game-Theoretic Approach To Transfer Pricing In A Vertically Integrated Supply Chain[J]. International Journal Of Production Economics, 2008,115(2):542-552
    [154]Homburg Carsten, Scherpereel Peter. How Should The Cost Of Joint Risk Capital Be Allocated For Performance Measurement? [J] European Journal Of Operational Research,2008,187(1):208-227
    [155]Oezener Okan Oersan, Ergun Oezlem. Allocating Costs In A Collaborative Transportation Procurement Network[J]. Transportation Science,2008,42(2): 146-165
    [156]Slikker M, Fransoo J, Wouters M. Cooperation Between Multiple News-Vendors With Transshipments[J]. European Journal Of Operational Research, 2005,167(2):370-380
    [157]Reinhardt G, Dada M. Allocating The Gains From Resource Pooling With The Shapley Value[J]. Journal Of The Operational Research Society,2005,56(8): 997-1000
    [158]Tanimoto, K. Cost Allocation In Joint Replacement For Multi-State Deteriorating Systems[A]. IEEE International Conference on Systems, Man and Cybernetics[C], Waikoloa, HI. OCT 10-12,2005:1150-1155
    [159]Nagarajan, M, Sosic, G. Stable Farsighted Coalitions In Competitive Markets[J]. Management Science,2007,53(1):29-45
    [160]Dror, M, Guardiola, LA, Meca, A, Puerto, J. Dynamic Realization Games In Newsvendor Inventory Centralization[J]. International Journal Of Game Theory,2008, 37(1):139-153
    [161]Curiel, I. Multi-Stage Sequencing Situations[J]. International Journal of Game Theory,2010,39(1-2):151-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700