用户名: 密码: 验证码:
铁系混凝剂处理引黄水库水的混凝效果和絮体特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对引黄水库水水质的季节变化特点,制备了多种铁系混凝剂,针对不同季节引黄水库水进行混凝试验。通过考察浊度、有机物和藻类的去除效果,筛选出适合不同季节引黄水库水的混凝剂。对碱化度和复合比等混凝剂合成条件对混凝效果的影响进行研究,并考察了pH和水力条件对混凝效果的影响。在小试研究的基础上,开展了混凝-沉淀-过滤和混凝-气浮-过滤的中试研究。并对不同铁盐混凝剂处理引黄水库水时生成絮体的大小、絮体生长速度、分形维数、絮体强度以及絮体的破碎再生能力等絮体性质进行了研究。主要研究内容及结果如下:
     1.针对春秋季引黄水库水的特点,选择五种铁系无机高分子混凝剂进行混凝试验,考察它们对浊度和有机物的去除效果。结果发现,聚合氯化铁(PFC)和聚合氯化铝铁(PFAC)对春秋季引黄水库水的混凝效果最佳。通过考察投药量、碱化度(B值)、铁铝摩尔比(Al/Fe)(?)口pH对混凝效果的影响,确定了两种混凝剂的最佳合成和混凝条件。对于PFC而言,B=0.5时有最佳的混凝效果,投加8-12mg/L可取得良好的有机物去除效果;对于PFAC而言,B=1.5、A1/Fe=7:1时,可在6-10mg/L的投药量范围内有较好的浊度和有机物去除效果。在pH=4-9范围内,PFC和PFAC出水浊度随pH的升高而降低,有机物去除率随pH的升高先上升后下降,最佳pH范围分别为5.00-5.50和5.50-6.50。
     2.在处理夏季高藻引黄水库水时,选择两种无机-有机复合混凝剂PFC-PDMDAAC和PFAC-PDMDAAC,研究投药量、无机有机复合质量比、pH和投加方式对浊度、有机物和藻类的去除效果。结果表明,与无机混凝剂相比,无机-有机复合混凝剂具有较好的混凝效果,且对pH的适应性更强(最佳pH范围5.0-8.0)。复合混凝剂可以发挥两种组分的协同作用,与两种组分复配适用相比,混凝效果更佳PFAC-PDMDAAC的最佳复合质量比为(Al+Fe)/PDMDAAC=4:1-8:1;最佳投药量为3mg/L;PFC-PDMDAAC的最佳复合质量比为Fe/PDMDAAC=4:1最佳投药量为4mg/L
     3.在处理冬季低温低浊引黄水库水时,选择两种含有硅酸盐的无机复合混凝剂聚合硅酸氯化铝铁(PFASiC)和聚合硅酸硫酸铁(PFSiS),研究投药量、硅酸盐含量和pH对浊度和有机物去除效果的影响。结果表明:与无机混凝剂相比,两种复合混凝剂均能取得较好的浊度和有机物去除效果。PFSiS的最佳投药量范围为10-12mg/L,最佳pH范围为5.50-6.00。与PFSiS相比,PFASiC混凝效果更好,最佳投药量范围为5-6mg/L。当Si/(Fe+A1)摩尔比为0.05时,PFASiC混凝效果最好,最佳pH范围为5.00-6.25。
     4.通过正交试验研究水力条件对引黄水库水处理混凝效果的影响,结果发现PFC、PFAC、PFAC-PDMDAAC和PFASiC四种混凝剂的最佳水力条件如下:PFC和PFAC:快搅速度200rpm,快搅时间:30s,慢搅速度40rpm,慢搅时间15min;PFASiC:快搅速度150rpm,快搅时间:30s,慢搅速度40rpm,慢搅时间25min;PFAC-PDMDAAC快搅速度300rpm,快搅时间:60s,慢搅速度40rpm,慢搅时间15min。
     5.在小试研究的基础上,进行混凝-沉淀-过滤和混凝-气浮-过滤的中试研究。结果表明:采用混凝-沉淀-砂滤工艺处理高藻引黄水库水时,PFAC和PFAC-PDMDAAC的最佳投药量范围分别为4-6mg/L和2-5mg/L;两种混凝剂相比,PFAC-PDMDAAC混凝沉淀效果更好,并能提高砂滤出水水质;在处理低温低浊引黄水库水时,气浮法的固液分离效果优于沉淀法,在气浮过滤工艺中,PFASiC较水厂使用的PFAC混凝效果好,最佳投药量范围为1-5mg/L。对三种混凝剂进行原料成本和投药成本核算,发现在各自最佳投药量下PFAC-PDMDAAC与PFASiC的投药成本较PFAC分别降低了29.9%和15.9%。
     6.在铁系混凝剂处理引黄水库水的过程中,通过激光散射法在线监测混凝过程中絮体的粒径变化,研究絮体的生长过程;并对形成的絮体施加一定的剪切力,研究絮体在外加剪切力下的破碎与再生情况;根据散射光强度和散射矢量之间的关系,计算絮体的分形维数。结果发现:
     (])PFC和PFAC生成絮体的特性受投药量、pH和合成条件的影响。投药量越大,生成絮体的体积越大,絮体生长速度越快;PFC在pH=7.00时生成絮体速度快、体积大,pH越小,PFC生成絮体的强度越大;PFAC则在pH=9.00时生成絮体速度快、体积大;B=0.5的PFC生成的絮体速度快、体积大,B值越小PFC生成絮体的强度越大;PFAC在B=1.5、A1/Fe=7:1时生成絮体速度快、体积大,PFAC在B=1.5、A1/Fe=5:1时生成的絮体强度最大;絮体的破碎再生能力与B值、Al/Fe摩尔比、pH和剪切强度等因素有关:两种混凝剂相比,PFC的再生能力更强。
     (2)在处理低温低浊引黄水库水时,含有硅酸盐的混凝剂较无机混凝剂生成的絮体体积更大,絮体生长速度更快,絮体强度更大;对于PFASiC而言,Si/(Fe+A1)=0.05时絮体生长最快、絮体体积最大,硅含量越高,絮体强度越大;pH对PFSiS生成絮体的速度影响较大,对生成絮体的大小影响不大,当pH≥5.50时,PFSiS生成的絮体强度大,絮体不易破碎,而破碎后絮体的恢复能力较差;对于PFASiC而言,不同pH下生成絮体大小顺序为:pH=5.50>pH=9.00>pH=7.00>pH=4.00,在pH=4.00时生成絮体的恢复能力最强,pH=7.00时恢复能力最差,相同条件下,PFASiC生成絮体的恢复能力比PFAC差:在PFASiC的生长过程中,快速搅拌的转速和时间对生成絮体的大小影响较大,慢速搅拌对生成絮体的大小影响不大。
     (3)在使用无机-有机复合混凝剂处理夏季高藻引黄水库水时,有机物含量、pH和投加方式对絮体特性有较大的影响。有机物含量对絮体生长过程影响较大,向无机混凝剂中加入PDMDAAC,絮体生长速度减慢,但可以增加生成絮体的体积;与无机混凝剂相比,无机-有机复合混凝剂的抗剪切能力较强,破碎后絮体的恢复能力较强;两种复合混凝剂在四个pH条件下生成絮体的体积相差不大但絮体的生长速度均随pH的升高而增加;先投加无机混凝剂再投加PDMDAAC的复配方式生成絮体的体积最大,絮体抗剪切能力和恢复能力均最强;先投加PDMDAAC再投加无机混凝剂的复配方式生成絮体的体积最小,絮体抗剪切能力和恢复能力均较差;无机-有机复合混凝剂生成絮体的性质居中。
     (4)通过对絮体分形维数的研究,发现在混凝过程中,絮体的分形维数先升高后下降。分形维数升高,说明形成了结构比较密实的微絮体,而分形维数的下降表示吸附架桥和网捕作用开始占主导地位,导致絮体的结构变得松散;破碎后的絮体分形维数升高,说明破碎过程中絮体结构发生改变,絮体变得更加密实;一般来说,絮体的粒径越大,其分形维数越小
The quality of the Yellow River reservoir water is considered to be seasonal vaired. A series of ferric based coagulants were prepared to treat the Yellow River reservoir under different conditions:reservoir water in spring and fall, high algae-laden water in summer and low-temperture low turbidity in winter. Coagulation tests were carried out to determine the suitable coagulants for each water quality conditions. The influence of coagulants prepare conditions (B value and molar ration), pH and hydraulic conditions on coagulation effects was investigated. Pilot scale tests were carried out to study the coagulation effect on coagulation-sedimentation-filtration process and coagulation-flotation-filtration process. The floc properties, such as floc size, floc growth rate, fractal dimension, floc strength and floc recovery capability, were investigaged. Main research contents and the results are as follows:
     1. In the treatment of spring and fall reservoir water, five coauglantswere assessed by their turbidity and organic matter removal. The results showed that, polyferric chloride (PFC) and polyferric aluminum chloride (PFAC) obtained better organic matter removal effects than other coagulants. The influence of dosage, B value, Al/Fe molar ratio and pH on coagulation was investigated. For PFC, when B=0.5, the best coagulation effects were obtained, and the optimum dosage range was8-12mg/L. For PFAC, when B=1.5and Al/Fe=7:1, the removal of turbidity and organic matter were better in the dosage range of6-10mg/L. In the experimental pH conditions, the residual turbidity decreased with the pH increased, and the organic matter removal efficiency increased first and then decreased, with the optimum pH range of5.00-5.50and5.50-6.50, respectively.
     2. Two organic-inorganic composite coagulants, PFC-PDMDAAC and PFAC-PDMDAAC were used to treat the high algae-laden water. The influence of dosage, composite ratio, pH and dosage method on turbidity, organic matter and algae removal were investigated. The results showed that, compared with inorganic coagulants, the orgainic-inorganic composite coagulants gave better coagulation effects. The composite coagulants performed well in a wider pH range of5.0-8.0. In the composite coagulants, the organic components and the inorganic components work cooperative and give better coagulation effects than use them together. The composite ratio of PFAC-PDMDAAC were optimized to be (A+Fe)/PDMDAAC 4:1-8:1, and the Fe/PDMDAAC for PFC-PDMDAAC was4:1. The optimum dosages of PFC-PDMDAAC were4mg/L. and for PFAC-PDMDAAC is3mg/L.
     3. In the treatment of low-temperture low-turbidity water, two inorganic composite coagulants PFASiC and PFSiS were used. and the influence of dosage, Si content and pH on turbidity and organic matter removal were investigated. The results showed that, the silicate composite coagulants gave better effects than inorganic coagulants. The optimum dosage range of PFSiS was10-12mg/L, and the optimum pH range is5.50-6.00. For PFASiC, when Si/(Fe+Al) molar ratio was0.05, best coagulation effects were obtained, and the optimum pH range was5.00-6.25.
     4. The influence of hydraulic conditions on the Yellow River water treatment was assessed by a series of orthogonal tests. The results showed that, the optimum hydraulic conditions of each coagulants were as follows. PFC and PFAC:rapid mixture speed200rpm. rapid mixture time30s. slow stirring speed40rpm. slow stirring time15min:PFASiC:150rpm,30s,40rpm.25min:PFAC-PDMDAAC:300rpm,60s,40rpm,15min.
     5. The pilot scale results showed that, in the treatment of high algae-laden water on coagulation-sedimentation-flitration process, the optimum dosages of PFAC and PFAC-PDMDAAC were4-6mg/L and2-5mg/L respectively. Compared with PFAC. PFAC-PDMDAAC gave better sedimentation effect and could improve the quality of sand-filtration effluent. In the treatment of low-temperature low-turbidity water, floatation gave better separation effect than sedimentation. In the floatation process. PFASiC performed better than PFAC, with the optimum dosage of1-5mg/L. The dosing costs of PFAC-PDMDAAC and PFASiC decreased29.9%and15.9%, compared with PFAC.
     6. During the coagulation of the Yellow River water, the variation of floc size was determined by a laser fraction instrument to investigate the floc growth. A series of shear forces were applied on the flocs, and the breakage and regrowth of floes were studied. The fractal dimension of flocs was calculated by the relationship between the scattered light intensity and the scattering vector. The results showed that:
     (1) The properties of flocs formed by PFC and PFAC were influenced by dosage, pH and coagulant prepared conditions. At larger dosage, the size of flocs was larger and the floe growth rate is faster. Under the pH=7.00condition, the PFC flocs grow faster and the formed flocs were bigger. The strength of PFC flocs increased with the pH decreased. PFAC flocs gave faster growth rate and larger floc size at pH=9.00. When B=0.5, the PFC flocs gave faster growth rate, larger floc size and the flocs were much stronger. When B=1.5and Al/Fe=7:1, PFAC flocs gave faster growth rate and larger floc size. The strongest flocs appeared at B=1.5and Al/Fe=5:1. The recovery capability of floes was related to the B value, Al/Fe molar ratio, pH and the applied shear force. Compared with PFAC flocs, PFC flocs gave better recovery capability.
     (2) In the treatment of low-temperature low-turbidity water, floes formed by silicate inorganic composite coagulants were much bigger and stronger than those formed by inorganic coagulants. For PFASiC, when Si/(Fe+Al)=0.05, flocs gave faster grow rate and larger size. Floc strength increased with the increase of Si content. For PFSiS flocs, the pH condition gave larger influence to growth rate, but litter influence to floc size. When pH is bigger than5.50, PFSiS flocs is much stronger and hard be broken, but the broken flocs recovered badly. For PFASiC, flocs formed at pH=5.50were the largest. The flocs formed at pH=4.00gave best recovery capability, while worst recovery capability was observed at pH=7.00. In the formation of PFASiC, the rapid mixture speed and rapid mixture time affected the floc size significantly, and the slow stirring gave litter influence.
     (3) In the treatment of high algae-laden water, the organic content in composite coagulants, pH and dosage method influence the floc properties. The growth of flocs slowed down when PDMDAAC was added, but the floc sizes were increased. Compaered with flocs formed by inorganic coagualnts, those formed by organic-inorganic coagulants were much stronger and gave better recovery capabilities. Flocs growth rates increased with the increase of pH, but the floc sizes were similar at experimental pH conditions. PFAC+PDMDAAC gave largest floc size, stronger flocs and better recovery capability.
     (4) During the coagulation, floc fractal dimension increased in the first mintues, and then decreased. The increase of fractal dimension indicated the formation of compact structures, and the decrease of fractal dimension indicated that the bridging and swept dominate the formation of flocs, resulting incompact flocs. The fractal dimension increased after breakage, which means the change in structure during. Generally, biger flocs had smaller fractal dimensions.
引文
[1]Edzwald J K, Tobiason J E. Enhanced versus Optimized Multiple Objective Coagulation. Chemical Water and Wastewater Treatment [M]. New York: Springer,1998,113-124
    [2]王东升,刘海龙,晏明全等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报,2006,26(4):544-551.
    [3]Edzwald J. K., Tobiason J. E.. Enhanced coagulation:US requirement and a broader view [J]. Water Sci. Technol.,1999,40(9):63-70.
    [4]许春华.高宝玉,卢磊,等.城市纳污河道废水化学强化一级处理的研究[J].山东大学学报(理学版),2006.41(2):116-120.
    [5]Bell-Ajy K., Abbaszadegan M., Ibrahim E.. et al. Conventional and optimized coagulation for NOM removal [J]. J. Am. Water Works Assoc.,2000.92 (10): 44-58.
    [6]Jarvis, P., Jefferson, B., Gregory, J., Parsons, S.A.. A review of floc strength and breakage [J]. Water Res.,2005.39:3121-3137.
    [7]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.9-18.
    [8]张声,谢曙光.张晓健,等.利用强化混凝去除水源水中天然有机物的研究进展[J].环境污染治理技术与设备,2003,4:19-22.
    [9]张永吉,周玲玲,刘志生,等.水中天然有机物的分类特性及其卤代活性[J].环境科学,2005,26:104-107.
    [10]Bourbigot M. M., Dodin A., Lneritier R.. Limiting bacterial after growth in distribution systems by removing biodegradable organics [C]. In:Proceeding American Water Works Association. Ann. Conf., Miami, Fla.,1982
    [11]US EPA. Enhanced coagulation and enhanced precipitative softening guidance manual [M]. EPA. Office of Ground Water and Drinking Water, Washington, DC, 1998.
    [12]傅剑锋,季民,金洛楠.水中天然有机物富里酸的光催化氧化研究[J].化学通报,2005,11:871-875.
    [13]Reckhow D. A., Singer P. C. Chlorination byproduct in drinking waters:From formation potentials to finished water concentrations. JAWWA,1990.82(4): 173-184.
    [14]蒋绍阶,刘宗源.UV254最为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-65.
    [15]Edzwald J. K.. Coagulation in drinking water treatment:particles, organics, and coagulants. In:IAWQ/IWSA Joint Specialized Conference. Control of Organic Material by Coagulation and Floc Separation Processes,1-3 September 1992, Geneva, Switzerland,1-15.
    [16]马军,陈忠林,李圭白,等.高锰酸盐复合药剂助凝处理高稳定性地表水[J].中国给水排水,1999,15(4):1-3.
    [17]祝心如Watts C. D., Fielding M.. DDT和水中腐殖酸、富里酸的络合[J].环境化学,1987:6(6):48-53.
    [18]Chiou C. T., Malcolm R. L., Brinton J. I., et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids [J]. Enviorn. Sci. Technol.,1986.20(5):502-508.
    [19]McCarthy J. F., Jimenez B. D.. Reduction in bioavailability to bluegills of polycycilic aromatic hydrocarbons bound to dissolved humic material [J]. Environ. Toxicol. Chem.,1985,4:511-521.
    [20]Balarezo A. L., Jones V. N., Yu H. T., et al. Influence of humic acid on 1-aminopyrene ecotoxicity during solar photolysis process [J]. Int. J. Mol Sci., 2002,3:1133-1144.
    [21]王占生.1992年度给水处理年会交流论文集[C].北京:北京建筑工业出版社,1992.
    [22]汤鸿霄.对21世纪水资源问题的思考[J]Newton-科学世界,1999,8:3-3.
    [23]汤鸿霄,钱易.文湘华,等.水体颗粒物与难降解有机物的特性与控制技术(上卷)[M].北京:中国环境科学出版社.1999.
    [24]严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [25]许春华.强化混凝-动态膜工艺处理城市受污染河水的研究[D].济南:山东大学博士学位论文,2009.
    [26]Cheng R. C., Krasner S. W., Green J. F., et al. Enhanced coagulation:a preliminary evaluation [J]. J. Am. Water Works Assoc.,1995,87(2):91-103.
    [27]Dennett K. E.. Coagulation:its effection on organic matter [J]. J. Am. Water Works Assoc.,1996,88(4):129-138.
    [28]施周,张绍辉.强化混凝去除水中天然有机物(NOM)的研究[J].南华大学学报(理工版),2004,18(2):6-9.
    [29]Miller L. B. A.. Study of the effects of anions upon the properties of "alum floe" [J]. Pub. Health Repts.,1925,40:351-359.
    [30]O'Melia C. R.. Coagulation in wastewater treatment [C]. In the scientific basis of flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands,1978.
    [31]Hahn H. H., Stumm W.. Kinetics of coagulation with hydrolyzed aluminum [J]. J. Colloid Inter.Sci.,1968,28:133-142.
    [32]Micheals A. S.. Aggregation of suspensions by polyelectrolytes [J]. Ind. Eng. Chem.,1954,46:1485-1490.
    [33]Letterman R. D., Lyer D. R.. Immobilization of cadmium in sediment by treatment with an aluminum salt and freeze—thaw dehydration. Environ. Sci. Tehnol.,1985,19(8):673-681.
    [34]Randtke S. J.. Organic contaminants removal by coagulation and related processes combinations [J]. J. Am. Water Works Assoc.,1988,80(5):40-56.
    [35]Dempsey, B. A. Reaction between fulvic acid and aluminum:Effect on the coagulation process. In:I. H. Suffet and P. MacCarthy(editors). Aquatic Humic Substance:Influence on Fate and Treatment of Pollutant. ACS, Washington, D. C.1989.
    [36]Gray, K. A. The preparation. characterization, and use of inorganic iron(Ⅲ) polymers for coagulation in water treatment [M].The Johns Hopkins Univ. Baltimore,1988.
    [37]Sinsabaugh R.. L., Hoehn R. C.; Knocke W. R., et al. Removal of dissolved organic carbon by coagulation with iron sulfate [J]. J. Am. Water Works Assoc. 1986,78(5):74-82.
    [38]Bernhardt H., Clasen J.. Flocculation of micro-organisms [J]. J. Water SRT-Aqua, 1991,40(2):76-87.
    [39]李明玉,潘倩,王丽燕,等.不同混凝剂对流溪河水源水中藻类去除的对比[J].中国环境科学,2010,30(11):1484-1489.
    [40]Crozes G., White P., Marshall M. Enhanced coagulation:Its effect on NOM removal and chemical costs [J]. J. Am. Water Works Assoc.,1995,87(1):78-89.
    [41]Zhao Y. X., Gao B. Y., Shon H. K., et al. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts [J]. J. Hazard. Mater.,2011,185:1536-1542.
    [42]Zhan X., Gao B. Y., Wang Y., et al. Influence of velocity gradient on aluminum and iron floc property for NOM removal from low organic matter surfacewater by coagulation [J]. Chem. Eng. J.,2011,166(1):116-121.
    [43]Krasner S. M., Amy G.. Jar test evaluations of enhanced coagulation [J]. J. Am. Water Works Assoc.,1995.87(10):93-107.
    [44]Sieliechia J. M., Lartiges B. S., Kayem G. J., et al. Changes in humic acid conformation during coagulation with ferric chloride:Implications for drinking water treatment [J]. Water Res.,2008,42(8-9):2111-2123.
    [45]Lei G. Y., Ma J., Guan X. H., et al. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water [J]. Desalination,2009, 247:518-529.
    [46]Takaara T., Sano D., Masago Y., et al. Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloridein drinking water treatment [J]. Water Res.,2010,44:3781-3786.
    [47]Gao B. Y., Yue Q, Y., Wang Y.. Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewater treatment [J]. Sep. Purif. Technol.,2007,56:225-230.
    [48]Zhao X. L., Zhang Y. J.. Algae-removing and algicidal efficiencies of polydiallyldimethylammonium chloride composite coagulants in enhanced coagulation treatment of algae-containing raw water [J]. Chem. Eng. J.,2011,173: 164-170.
    [49]Matilainen, A., Vepsalainen M., Sillanpaa, M.. Natural organic matter removal by coagulation during drinking water treatment:A review [J]. Adv. Colloid Interface. Sci.2010,159,189-197.
    [50]张灵燕,吴波,张芮铭.强化混凝与优化混凝在常规水处理中的运用[J].环境科学导刊,2008,27(1):56-59.
    [51]Tipping E., Reddy M. M., Hurley M. A.. Modelling electrostatic and heterogeneity effects on proton dissociation from humic substances. Environ. Sci. Technol.,1990.24:1700-1705.
    [52]Julien F., Gueroux B., Mazet M.. Comparison of organic compounds removal by coagulation-flocculation by adsorption onto performed hydroxide flocs [J]. Water Res.,1994,28:2567-2574.
    [53]Qin J. J., Oo M. H., Kekre K. A., et al. Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water [J]. Sep. Purif. Technol.,2006.49:295-298.
    [54]Gregor J. E., Nokes C. J., Fenton E.. Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation [J]. Water Res.,1997,31(12):2949-2958.
    [55]Yang Z. Z., Gao B. Y., Yue Q. Y., et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water [J]. J. Hazar. Mater.,2010,178 596-603.
    [56]Cheng W. P.. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution [J]. Chemosphere,2002,47: 963-969.
    [57]Xiao F.. Huang J. C. H., Zhang B. J., et al. Effects of low temperature on coagulation kinetics and floc surface morphology using alum [J]. Desalination. 2009,237:201-213.
    [58]Xiao F., Ma J., Yi P., et al. Effects of low temperature on coagulation of kaolinite suspensions [J]. Water Res.,2008.42:2983-2992.
    [59]Morris J. K., Knocke W. R.. Temperature effects on the use of metal-ion coagulants for water treatment [J]. J. Am. Water Works Assoc.,1984.76(3): 74-79.
    [60]霍明昕,刘馨远.低温低浊水质特性的分析[J].中国给水排水,1998.14(6):33-34.
    [61]Kang L. S., Cleasby J. L.. Temperature effects on flocculation kinetics using Fe(III) coagulant [J]. J. Environ. Eng. ASCE.1995,121(12):893-901.
    [62]Van Benschoten J. E., Edzwald J. K.. Chemical aspects of coagulation using aluminum salts-1. Hydrolytic reactions of alum and polyaluminum chloride [J]. Water Res.,1990,24(12):1519-1526.
    [63]雷鹏举,曲久辉,杨日光.微絮凝直接纤维过滤处理低温低浊水试验研究[J].环境化学,1999,18(6):561-565.
    [64]马军,刘伟,李圭白.高铁酸盐复合药剂强化混凝处理低温低浊水的试验研究[J].给水排水,1997.23(11):9-11.
    [65]潘碌亭.新型聚硅铝铁絮凝剂强化处理低温低浊水[J].水处理技术,2006.32(10):63-65.
    [66]陈忠林,马军,王东田,等.松花江水低温低浊时期的强化混凝生产性试验[J].哈尔滨建筑大学学报.1996,29(5):73-77.
    [67]Mhaisalkar V. A., Paramasivam R., Bhole A. G.. Optimizing physical parameters of rapidmix design for coagulation-flocculation of turbid waters [J]. Water Res.. 1991.25(1):43-52.
    [68]刘海龙.王东升,王敏.等.强化混凝对水力条件的要求[J].中国给水排水,2006,22(5):1-4.
    [69]张灵燕,吴波,张芮铭.强化混凝与优化混凝在常规水处理中的运用[J].环境科学导刊,2008,27(1):56-59.
    [70]Rossini M., Garrido J. G.. Galluzzo M.. Optimization of the coagulation-flocculation treatment:influence of rapid mix parameters [J]. Water Res.,1999. 33(8):1817-1826.
    [71]Muyibi S. A., Evison L. M.. Optimizing physical parameaters affecting coagulation of turbid water with moring a oleifera seeds [J]. Water Res..1995. 29(12):2689-2695.
    [72]陆柱,蔡兰坤,陈中兴.水处理药剂[M].北京:化学工业出版社.2002.8-10.
    [73]王燕.新型聚合铁基无机—有机复合混凝剂性能的研究[D].济南:山东大学博士学位论文,2007.
    [74]Cohen J. M., Hannah S. A.. Coagulation and flocculation:Water quality and treatment (3rd edtion) [M], New York:McGraw-Hill 1971:66-122.
    [75]Srinivasan P. T., Viraraghavan T., Surbramanian K. S., Alumnium in drinking water:an overview [J]. Water SA..1999,25:47-56.
    [76]Parthasarathy N., Buffle J.. Study of polymeric aluminium(Ⅲ) hydroxide solution for application in wastewater treatment. Properties of the polymer and optimal conditions of preparation [J]. Water Res.,1985.19(1):25-36.
    [77]张永战.聚合铝生产方法评述[J].河南化工,1994.5(8):8-10.
    [78]Licsko L.. On the type of bond developing between the aluminum and iron(Ⅲ) hydroxide and organic substances [J]. Water Sci. Technol.,1993.27(11): 249-252.
    [79]周勤,肖锦.给水原水处理中的混凝技术[J].工业水处理,1999,19(2):3-5.
    [80]Ovenden C. and Xiao H.. Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems [J]. Colloid. Surface. A,2002,197: 225-234.
    [81]苏滕,陆中兴.混凝剂的研究应用与开发动向(一) [J].净水技术,2000,18(3):7-9.
    [82]Bough W. A.. Chitosan-a polymer from seafood waste, for use in treatment of food processing waste and activated sludge [J]. Process. Biochem.,1976.11: 13-16.
    [83]Bulatovic S. M.. Use of organic polymers in the flotation of polymetallic ores:A review. Miner. Eng.,1999,12:341-354.
    [84]Moore K..1.. Johnson M. G., Sistrunk W. A.. Effect of polyelectrolyte treatments on waste strength of snap and dry bean wastewaters [J]. J. Food Sci.,1987,52: 491-502.
    [85]高宝玉.水和废水处理用复合高分子絮凝剂的研究进展[J].环境化学,2011.30(1):337-345.
    [86]Gao B. Y., Yue Q. Y., Miao J.. Evaluation of polyaluminum ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment [J]. Water Sci. Technol.,2002,47(1):127-132.
    [87]Boisvert J. P., To T. C., Berrak A., et al. Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate [J]. Water Res.,1997,31(8):1939-1946
    [88]Gao B. Y.. Yue Q. Y., Wang B. J.. The chemical species distribution and transformation of polyaluminum silicate chloride coagulant [J]. Chemosphere. 2002.46(6):809-813
    [89]Zouboulis A. I., Moussas P. A.. Polyferric silicate sulphate (PFSiS):preparation. characterisation and coagulation behaviour [J]. Desalination,2008,224:307-316.
    [90]Gao B. Y., Yue Q. Y., Wang B. J.. Properties and coagulation preformance of coagulant poly-aluminum-ferric-silicate-chloride in water and wastewater treatment [J].J. Environ. Sci. Heal. A,2006, A41(7):1281-1292.
    [91]张凯松,周启星,吴伟民.铝盐-淀粉复合絮凝剂污水处理效果研究[J].应用生态学报,2004.15(8):1443-1446.
    [92]江丽,蒋文举,谈牧.微波法复合絮凝齐(?)PAFC-PAM的制备及脱色性能[J].环境科学与技术.2009.32(6):72-75.
    [93]Moussas P. A., Zouboulis A. I.. A New inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA) [J]. Water Res., 2009,43(14):3511-3524.
    [94]Gao B. Y., Wang Y., Yue Q. Y.. The chemical species distribution of aluminum in composite flocculants prepared from polyaluminum chloride (PAC) and polydimethyldiallylammonium chloride (PDMDAAC) [J]. Acta Hydroch. Hydrob.,2005.33(4):365-371.
    [95]Chen T., Gao B. Y., Yue Q. Y.. Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment [J]. Colloid. Surface. A, 2010,355:121-129.
    [96]Pinotti A., Zaritzky N.. Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes [J]. Waste Manage.,2001,21: 535-542.
    [97]高志飞,陈建中.微生物絮凝剂(MBF)的絮凝[J].工业给排水,2006,28(5):25-29.
    [98]秦梅枝,王晶.环境生物技术的研究现状与发展趋势[J].内蒙古环境保护,1997,9(3):15-17.
    [99]刘祎.微生物絮凝剂结构—性能关系分析及应用研究[D].西安:西安建筑科技大学硕士学位论文,2011.
    [100]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学.1990,9(6):70-75.
    [101]岳钦艳,高宝玉,苗晶,等.聚合氯化铁混凝剂的电性及除浊性能研究[J].工业水处理,2002,22(12):40-43.
    [102]Leprince. Polymeriled iron chloride, an improved inorganic coagulant. J. Am. Water Works Assoc..1984.776:93-97.
    [103]Tang H. X., Stumm W.. The coagulation behaviors of Fe(Ⅲ) polymeric species-I. preformed polymers by base addition [J]. Water Res.1987,21(1): 115-121
    [104]Tang H. X., Stumm W.. The coagulation behaviors of Fe(Ⅲ) polymeric species-Ⅱ, preformed polymers in various concentrations [J]. Water Res.1987,21(1): 123-128.
    [105]苗晶.稳定高效聚合氯化铁混凝剂的基础研究[D].济南:山东大学硕士学位论文.2002.
    [106]Jiang J. Q., Graham N. J. D.. Pre-polymerised inorganic coagulants and phosphorus removal by coagulation- A review. Water S. A.,1998.24(3): 237-244.
    [107]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术,2004,30(6):315-319.
    [108]高宝玉,王秀芬,于慧,等.聚合氯化铝铁絮凝剂的性能研究[J].环境化学,1994,13(5):415-420.
    [109]Zhao Y., Zhang L. Y., Ni F., et al. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal [J]. Desalination,2011, 273(2-3):414-420.
    [110]Lan W., Qiu H. Q., Zhang J., et al, Characteristic of a novel composite Inorganic polymer coagulant-PFAC prepared by hydrochloric pickle liquor [J]. J. Hazard. Mater.,2009,162:174-179.
    [111]胡翔,周定.聚硅酸系列混凝剂的发展与展望[J].化工进展,1998(6):20-22.
    [112]Hasegawa T.. Hashimeto K., Onitsuka T.. Characteristic of metal-polysilicate coagulants [J]. Water Sci. Technol.,1991,23(7):1713-1722.
    [113]Fu Y., Yu S. L., Yu Y. Z., et al. Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic-ferric coagulant [J]. J. Environ. Sci. 2007,19:678-688.
    [114]高宝玉,宋永会.岳钦艳.聚硅酸硫酸铁混凝剂的性能研究[J].环境科学1993.7:46-48.
    [115]付英,于水利.聚硅酸铁水解规律及混凝机理的探讨[J].环境科学,2007.28(1):113-119.
    [116]Qiu Z. M., Jiang W. T., He Z. J.. Post-treatment of banknote printing v/astewater using polysilicate ferro-aluminum sulfate (PSFA) [J]. J. Hazard. Mater.,2009, 166(2-3):740-745.
    [117]顾学芳,张跃军,陈伟忠.阳离子絮凝剂PDA的合成与应用研究—对废纸再生造纸废水的处理[J].工业水处理.2001.21(1):22-25.
    [118]Yue Q. Y., Gao B. Y., Wang Y., et al. Synthesis of polyamine flocculants and their potential use in treating dye wastewater [J]. J. Hazard. Mater.,2008,152: 221-227
    [119]舒型武,郑怀礼.阳离子型有机絮凝剂研究进展[J].现代化工.1999,21(10):13-16.
    [120]Wei J. C., Gao B. Y., Yue Q. Y., et al. Comparison of coagulation behavior and floc structurecharacteristic of different polyferric-cationic polymer dualcoagulants in humic acid solution [J]. Water Res.,2009,43,724-732.
    [121]Wei J. C. Gao B. Y., Yue Q. Y., et al. Effect of dosing method on color removal performance and flocculation dynamics of polyferric-organic polymer dual-coagulant in synthetic dyeing solution [J]. Chem. Eng. J.,2009.151(1-3): 176-182.
    [122]Sun C. Z.. Yue Q. Y.. Gao B. Y.. et al. Synthesis and floc properties of polymeric ferric aluminum chloride -polydimethyl diallylammonium chloride coagulant in coagulating humic acid-kaolin synthetic water [J]. Chem. Eng. J., 2012,185-186:29-34.
    [123]Cornwell, D. A., Bishop, M. M.. Determining velocity gradients in laboratory and full scale systems [J].J. Am. Water Works Assoc.,1983.75(9):470-475.
    [124]Amirtharajah, A., O'Melia, C.R.. Coagulation processes:destabilisation. mixing and flocculation [M]. In:Pontius, F.W. (Ed.). Water Quality and Treatment. A Handbook of Community Water Supplies. McGraw-Hill. New York.1990.
    [125]Gregory, J.. Fundamentals of flocculation [J]. Crit. Rev. Environ. Control,1989, 19:185-230.
    [126]Parker. D. S.. Kaufman, W. J.. Jenkins. D.. Floc breakup in turbulent flocculation processes [J].J. Sanit. Eng. Div.:Proc. Am. Soc. Civ. Eng.,1972. S A 1:79-99.
    [127]Biggs C. A., Lant P. A.. Activated sludge flocculation:on-line determination of floe size and the effect of shear [J]. Water Res..2000,34:2542-2550.
    [128]Brakalov, L. B.. A connection between the orthokinelic coagulation capture efficiency of aggregates and their maximum size [J]. Chem. Eng. Sci.,1987,42: 2373-2383.
    [129]Gregory, J.. Dupont. V.. Properties of floes produced by water treatment coagulants [J]. Water Sci. Technol.,2001,44:231-236.
    [130]Wang, Y., Gao, B. Y., Xu. X. M., et al. Characterization of floc size, strength and structure in various aluminum coagulants treatment [J]. J. Colloid. Interf. Sci., 2009,332:354-359.
    [131]McCurdy, K., Carlson, K., Gregory, D.. Floc morphology and cyclic shearing recovery:comparison of alum and polyaluminium chloride coagulants [J]. Water Res.,2004,38:486-494.
    [132]Yukselen M. A., Gregory J.. The effect of rapid mixing on the break-up and re-formation of flocs [J]. J. Chem. Technol. Biot.,2004,79:782-788.
    [133]Bache D. H., Johnson C., McGilligan J. F., et al. A conceptual view of floc structure in the sweep floc domain [J]. Water Sci. Technol,1997,36(4):49-56.
    [134]Leentvaar J., Rebhun M.. Strength of feric hydroxide flocs [J]. Water Res.,1983, 17(8):895-902.
    [135]Francois R. J.. Strength of aluminum hydroxide flocs [J]. Water Res.,1987. 21(9):1023-1030.
    [136]Lee C. H., Liu, J. C.,. Sludge dewaterability and floc structure in dual polymer conditioning [J]. Adv. Environ. Res.,2001,5:129-136.
    [137]Bache D.H., Al-Ani, S.H.. Development of a system for evaluating floe strength [J]. Water Sci. Technol.,1989.21,529-537.
    [138]Yeung A. K. C., Pelton R.. Micromechanics:A new approach to studying the strength and breakup of flocs [J]. J. Colloid. Interf. Sci.,1996,184(2):579-585.
    [139]Govoreanu R., Seghers D., Nopens I., et al. Linking floc structure and settling properties to activated sludge population dynamics in an SBR [J]. Water Sci. Technol.,2000,47(12):9-18.
    [140]Bache D. H., Rasool E. R.. Characteristics of aluminohumic flocs in relation to DAF performance [J]. Water Sci. Technol.,2001,43(8):203-208.
    [141]Wu C. C., Wu J. J., Huang R. Y.. Floc strength and dewatering efficiency of alum sludge [S]. Adv. Environ. Res.,2003,7(3):617-621.
    [142]Bache D. H., Rasool E. R., Moffat D., et al. On the strength and character of alumino-humic flocs [J]. Water Sci. Technol.,1999,40(9):81-88.
    [143]Spicer P. T., Pratsinis S. E., Raper J., et al. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks [J]. Powder Technol.,1998,97(1):26-34.
    [144]Gregory, J., Nelson, D.W.. Monitoring of aggregates in flowing suspension [J]. Colloids Surf.,1986,18:175-188.
    [145]Mandelbrot B. B. How long is the coast of Britain, statistical self-similarity and fractal dimension [J]. Science,1967,156:636-638.
    [146]井敏莉,李敏,姚敏.分形理论在絮凝形态学中的应用与展望[J].中国水运,2008,8(9):145-147
    [147]王东升,汤鸿霄,栾兆坤.分形理论及其研究方法[J].环境科学学报,2001.21.suppl,(6):10-16.
    [148]Jiang Q., Logan B. E.. Fractal dimensions of aggregates from shear devices [J]. J. Am. Water Works Assoc.,1996.90:100-113.
    [149]余剑锋,王东升,叶长青.等.利用小角度激光光散射研究阳离子有机高分子絮凝剂的絮体粒径和絮体结构[J].环境科学学报,2007,27(5):770-774.
    [150]Wang Y. L., Du B. Y., Liu J., et al. Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride-humic acid(PACl-HA) flocs [J]. J. Colloid Interf. Sci.,2007,316(2):457-466.
    [151]Chakraborti R. K., Atkinson J. F., Van Benscoten J. E.. Characterization of alum floc by image analysis [J]. Environ. Sci. Technol.,2000,34(18):3969-3976.
    [152]Li X. Y., Leung R. P. C.. Determination of the fractal dimension of microbial floes from the change in their size distribution after breakage [J]. Environ. Sci. Technol.,2005,39(8):2731-2735.
    [153]Li X. Y., Passow U., Logan B. E.. Fractal dimension of small (15-200 mm) particles in Esaten Pacific coastal waters [J]. Deep-Sea Res. I.,1998,45(1): 115-131.
    [154]Wu, R. M.. Lee, D. J., Waite, T. D., et al. Multilevel structure of sludge flocs [J]. J. Colloid Interf. Sci.,2002,252:383-392.
    [155]Lin M. Y.. Lindsay H. M.. Weitz D. A., et al. Universality in colloid aggregation [J]. Nature,1989,339(6223):360-362.
    [156]Tang S., Ma Y.. Sebastine I. M.. The fractal nature of Escherichia coli biological flocs [J]. Colloid. Surf. B.,2001,20(3):211-218.
    [157]Lin J. L., Huang C., Chin C. J. M., et al. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms [J]. Water Res.,2008, 42:4457-4466.
    [158]Mu Y., Ren T. T., Yu H. Q.. Drag coefficient of porous and permeable microbial granules [J]. Environ. Sci. Technol.,2008,42(5):1718-1723.
    [159]Weitz D. A., Huang J. S., Lin M. Y., et al. Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids [J]. Phys. Rev. Lett.,1985,54(13): 1416-1419.
    [160]Li D. H., Ganczarczy K. J.. Fractal geometry of particle aggregates generated in water and wastewater treatment process [J]. Environ. Sci. Technol..1989,23(11): 1385-1390.
    [161]Li K. H., Ganczarcay K. J.. Saroboscopic determination of settling velocity, size and porocity of a sediment flocs [J]. Water Res.,1987,21:257-262.
    [162]Yu W. Z., Gregory J., Campos L. C.. Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC [J]. Water Res.,2010,44: 3959-3965.
    [163]Jiang Q., Logan B. E.. Fractal dimension of aggregates determined from steady-state size distribution [J]. Environ. Sci. Technol.,1991,25(12): 2031-2038.
    [164]Logan B. E., Kilps J. R.. Franctal dimensions of aggregates formed in different fluid mechanical environments [J]. Water Res.,1995,29(2):443-453.
    [165]Jarvis P., Jefferson B., Parsons S. A.. Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source [J]. Water Res.,2006.40:2727-2737.
    [166]Schaefer D. W.. Polymers, fractals, and ceramic materials [J]. Science,1989, 243:1023-1027.
    [167]Rieker, T.P., Hindermann-Bischoff, M.. Ehrburger-Dolle, F... Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites [J]. Langmuir,2000,16:5588-5592.
    [168]Waite T. D., Cleaver J. K., Beattie J. K.. Aggregation kinetics and fractal structure of g-alumina assemblages. J. Colloid Interf. Sci.,2001,241:333-339.
    [169]Lee S. Y., Anthony A., Fane G. et al. Impact of natural organic matter on floc size and structure effects in membrane filtration [J]. Environ. Sci. Technol.,2005, 39:6477-6486.
    [170]Li T., Zhu Z., Wang D. S., et al. Characterization of floc size, strength and structure under various coagulation mechanisms [J]. Powder Technol.,2006,168: 104-110.
    [171]Jarvis P., Jefferson B., Parsons S. A.. Breakage, regrowth. and fractal natural organic matter flocs [J]. Environ. Sci. Tchnol.,2005,39(7):2307-2314.
    [172]Yukselen M. A., Gregory J.. The reversibility of floc breakage [J]. Int. J. Miner. Process.,2004,73(2-4):251-259.
    [173]付英,于水利.于衍真.等.聚硅酸铁混凝剂絮凝与破碎的定量研究[J].环境科学,2008.29(1):92-98.
    [174]Zhan X., Gao B. Y., Yue Q. Y., et al. Coagulation behavior of polyferric chloride for removing NOM from surface water with low concentration of organic matter and its effect on chlorine decay model [J]. Sep Purif. Technol. 2010.75.61-68.
    [175]王炳建.新型混凝剂聚合硅铝铁的基础及应用性能研究[D].济南:山东大学硕士学位论文,2003.
    [176]Yoe J. H..7-iodo-8-hydroxyquinoline-5-sulfonic acid as a reagent for the colorimeteric determination of ferric iron [J]. J. Am. Chem. Soc.,1932.54 (11), 4139-4143.
    [177]Swank H. W., Mellon M. G.. Determination of iron:with 7-Iodo-8-hydroxyquinoline-5-sulfonic acid [J]. Ind. Eng. Chem. Anal. Ed.,1937,9 (9), 406-409.
    [178]Jiang J. Q.. Graham N. J. D., Observations of the comparative hydrolysis/ precipitation behaviour of polyferric sulphate and ferric sulphate [J]. Water Res.. 1998.32(3):930-935.
    [179]Davenport Jr. W. H.. Determination of aluminum in presence of iron spectrophotometric method using ferron [J]. Anal. Chem.,1949,21 (6),710-711.
    [180]Smith R. W.. Nonequilibrium systems in natural water chemistry [M]. American Chemical society, Advance in Chem. Series,1971,106:250-279.
    [181]中华人民共和国化学工业部,水处理剂 聚合氯化铝 [S],1995,GB15892-1995.
    [182]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社.
    [183]Hu C. Z., Liu H. J., Qu J. H., et al. Coagulation behavior of aluminum salts in eutrophic water, significance of Al13 species and pH control [J]. Environ. Sci. Technol.,2006,40:325-331.
    [184]邢大军,张庆国.门雪峰.济南市鹊山调蓄水库工程特色[J].中国给水排水,2004,20(7):74-76.
    [185]O"Melia C. R., Gray K. A., Yao C.. Polymeric inorganic coagulants [C]. Denver, USA:American Water Works Association Research Foundation, American Water Works Association,1989.
    [186]Cheng W. P.. Hydrolytic characteristics of polyferric sulfate and its application in surface water treatment [J]. Sep. Sci. Technol.,2001,36(10):2265-2277'.
    [187]田宝珍,张云.铝铁共聚复合絮凝剂的研制及应用[J].工业水处理,1998,18(1):17-19.
    [188]胡勇有,李宗峰,宁寻安,等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J]华南理工大学学报,1999,27(7):20-26.
    [189]斯塔姆W.,摩尔根J.J.,汤鸿霄等.水化学[M].北京:科学出版社,1987.182.
    [190]Xu W. Y., Gao B. Y., Yue Q. Y., et al. Effect of preformed and non-preformed Al13 species on evolution of floc size, strength and fractal nature of humic acid flocs in coagulation process [J]. Sep Purif. Technol.,2011,78:83-90.
    [191]汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚一絮凝行为差异[J].环境化学,1997,16(6):497-505.
    [192]Xu. W.Y., Gao, B.Y., Yue, Q.Y., et al. Effect of shear force and solution pH on flocs breakage and re-growth formed by nano-Al13 polymer. Water Res.,2010, 44,1893-1899.
    [193]Chow C. W. K., van Leeuwen J. A., Fabris R., et al. Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon [J]. Desalination,2009,245(1-3):120-134.
    [194]Uyak V., Toroz I.. Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies [J]. J. Hazard. Mater.,2007, 141(1):320-328.
    [195]Yan M. Q., Wang D. S., Qu J. H.. Enhanced coagulation for high alkalinity and micro-polluted water:The third way through coagulant optimization [J]. Water Res.,2008,42(8-9):2278-2286.
    [196]Shin J. Y.. Spinette R. F., O'Melia C. R.. Stoichiometry of coagulation revisited [J]. Environ. Sci. Technol.,2008,42(7):2582-2589.
    [197]Bond T.. Goslan E. H., Parsons S. A., et al. Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MI EX and nanofiltration [J]. Water Res.,2010,44(5):1645-1653.
    [198]Abbaszadegan M., Mayer B. K., Ryu H., et al. Efficacy of removal of CCL viruses under enhanced coagulation conditions [J]. Environ. Sci. Technol.,2007, 41(3):971-977.
    [199]Park S., Yoon T.. Effects of iron species and inert minerals on coagulation and direct filtration for humic acid removal [J]. Desalination,2009, 239(1-3):146-158.
    [200]王燕,高宝玉,岳钦艳,等.聚合铝基复合絮凝剂的特性[J].环境科学.2004,25(增刊):70-73.
    [201]赵晓蕾.张跃军.李潇潇,等PAC/PDM对夏季太湖预氯化高藻水的除藻效能[J].南京理工大学学报(自然科学版).2010.34(4):570-574.
    [202]邹华.潘纲.陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响[J].环境科学,2005,26(2):148-151.
    [203]刘成.高乃云.陈卫.混凝对微囊藻毒素的去除效果及机理研究[J].中国给水排水.2007.23(23):51-55.
    [204]Gibbs R. J.. Effect of natural organic coating on the coagulation of particles [J]. Environ. Sci. Technol.,1983,17:237-240.
    [205]石明岩,崔福义,张海龙,等.低温低浊受污染水处理中混凝剂的优化选择[J].工业水处理.2002.22(10):29-31.
    [206]王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的混凝性能[J].环境科学学报,2001(21):37-42.
    [207]Cheng W. P., Chi F. H., Li C. C., et al. A Study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants [J]. Colloid. Surface. A,2008,312(2-3):238-244.
    [208]Wang D. S., Tang H. X.. Modified inorganic polymer flocculant-PFSi:its preparation, characterisation and coagulation behaviour [J]. Water Res.,2001, 35(14):3418-3428.
    [209]Moussas P. A., Zouboulis A. I.. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant—polyferric silicate sulphate (PFSiS) [J]. Sep. Purif. Technol.,2008,63(2):475-483.
    [210]栾兆坤,刘振儒,赵春禄.聚铝铁硅絮凝剂的合成方法及其混凝效能[J]环境化学,1997,16(6):546-551.
    [211]王炳建.高宝玉,岳钦艳.等.新型无机高分子复合絮凝剂聚合硅酸铝铁混凝效果研究[J].山东大学学报(理学版),2003,38(5):111-115.
    [212]蔡忠,胡翔,米建英,等.新型混凝剂聚硅酸铁铝的制备及其混凝性能[J].水处理技术,2007,33(11):20-22.
    [213]Gao B. Y., Yue Q. Y., Wang B. J.,et al. Poly-aluminum-silicate-chloride (PASiC):a new type of composite inorganic polymer coagulant [J]. Colloid. Surfaces A,2003,229:121-127.
    [214]谢娟,王新强.聚硅酸铝铁絮凝剂处理造纸黑液研究[J].工业用水与废水,2005,4(8):24-28.
    [215]邱俊明,邱祖民.铁改性聚硅酸盐类絮凝剂的研究进展[J].江西化工,2003,1:1-3.
    [216]Owens P. N., Walling D. E.. The phosphorus content of fluvial sedimentation in rural and industrialized river basins [J]. Water Res.,2002,36(3):685-701.
    [217]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水2002,18(2):29-31.
    [218]高宝玉,岳钦艳,王炳建.聚合硅酸铝铁絮凝剂的制备及其水解和絮凝特性[J].环境化学,2004,23(6):713-714.
    [219]Wang, Y. L., Feng, J., Dentel, S. K., et al. Effect of polyferric chloride (PFC) doses and pH on the fractal characteristics of PFC-HA floes [J]. Colloid. Surf. A. 2011,379.51-61.
    [220]Wang Y. L., Lu J., Du B. Y., et al. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces [J]. J. Environ. Sci.,2009,21: 41-48.
    [221]Wang Y., Gao B. Y., Yue Q. Y., et al. On-line optical determination of floc size of Fe(Ⅲ) coagulants [J].J.Environ. Sci.,2005,17(6):921-925.
    [222]Gregory D., Carlson K.. Relationship of pH and floc formation kinetics to granular media filtration performance [J]. Environ. Sci. Tchnol.,2003,37: 1398-1403.
    [223]Bache D. H. Floc rupture and turbulence:a framework for analysis [J]. Chan. Eng. Sci.,2004.59:2521-2534.
    [224]Selomulya C., Amal R., Bushell G., et al. Evidence of shear rate dependence on restructuring and breakup of latex aggregates [J]. J. Colloid Inferf. Sci.,2001,236: 67-77.
    [225]Sharp E. L., Jarvis P., Parsons S. A., et al. The impact of Zeta potential on the physical properties of ferric-NOM flocs [J]. Environ. Sci. Technol.,2006,40(12): 3934-3940.
    [226]Zhu G. C., Zheng H. L., Zhang Z., et al.Characterization and coagulation-flocculation behavior of polymeric aluminum ferric sulfate (PAFS) [J]. Chem. Eng. J.,2011.178:50-59.
    [227]Gao B. Y., Yue Q. Y.. Effect of SO42-/Al3+ ratio and OH-/Al3+ value on the characterization of coagulant poly-aluminum-chloride-sulfate (PACS) and its coagulation performance in water treatment [J]. Chemosphere,2005,61(4): 579-584.
    [228]Staaks C., Fabris R., Lowe T., et al. Coagulation assessment and optimisation with a photometric dispersion analyser and organic characterisation for natural organic matter removal performance [J]. Chem. Eng. J.,2011,168(2):629-634.
    [229]高宝玉,岳钦艳,王淑仁.含铝离子聚硅酸絮凝剂的研究[J].环境科学,1990,11(5):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700