用户名: 密码: 验证码:
生物修复技术在人工土快滤处理中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工土快滤处理技术是在原快滤处理系统上采用人工土作为多孔介质代替原有的自然土壤的污水土地处理技术。该技术不仅能取得良好的处理效果,受自然条件的限制小,而且大大减少了原系统的占地面积。但当进水中有机物浓度不断增大或灌水量增大时,会加重处理系统的有机负荷,使有机物质在系统中积累,导致系统过滤介质的堵塞,直接影响滤床的水力负荷、气体交换及生物降解能力。
     本研究通过在人工土快滤床上运用生物修复技术,从植物修复、微生物修复、土壤动物修复三方面着手,在人工土柱中分别种植对污水具有较好净化效果的植物、接种对污水降解能力较强的优势菌群和养殖蚯蚓。定期测定出水水质和土柱各层有机质、氮、磷含量,研究它们对人工土柱的出水水质和有机质、氮、磷养分分布状况的影响。从而在生物修复技术中找到既可以提高系统对污水的处理能力和处理效果,又能够解决人工土快滤系统中有机质积累和堵塞问题。
     研究结果表明在植物修复方面,一些植物如水葫芦和万寿菊对污水具有较强的净化能力,对污水中的有机污染物有一定降解能力。BOD_5、COD、NH_4~+—N的去除率达80%以上,T-P的去除率达55%以上;微生物修复方面,试验中筛选出10株对污水COD的去除率50%以上或TN的去除率高于20%、TP去除率高于45%的菌作为优势菌系统,其中的好氧菌、兼氧菌以及厌氧菌等混合微生物在人工土不同深度占据不同的主导地位,通过微生物的氧化分解能力实现有机污染物的净化降解功能,BOD_5、COD、NH_4~+—N的去除效果与植物修复效果接近,且从各层土壤有机质含量随实验周期的变化情况来看,受外界环境(降雨、气温、湿度等)的影响较大的只在土表层,随着土层深度增加,有机质变化受外界环境的影响越小;土壤动物修复方面,选取多种砂土比的人工土作为试验材料,并采取对污水的处理效果和处理能力以及蚯蚓生存均较好的砂土比(9:9)进行试验,经过6个月的灌水实验发现,在人工土柱中加入蚯蚓可使系统对NH_4~+—N的去除率达到90%以上。
     人工土柱中有机质和氮磷的分布规律相似,均是随着土层深度逐层降低。但
    
    有机物质和氮磷因为淋失而在60~SOcm土层有不同程度的积累现象。随着灌水
    周期的延长土柱中的有机质含量不断升高,尤其是在土柱表层;而土柱中的氮磷
    则会随着土壤吸附饱和而趋于稳定。在人工土快滤床上种植植物、接种优势微生
    物群、养殖蛆酬均能相应降低系统土壤中的有机质,缓解系统有机质积累的问题。
    种植植物对土柱中的氮的反硝化作用和磷的固定均有一定积极作用。种植植物时
    应考虑植物不同生长期对营养物质的需求,可以考虑种植多年生木本植物。
    物修复对于土柱中的氮的反硝化作用有一定促进作用,
    动物修复对于系统氮的去除和磷的固定几乎没有影响。
    但对磷的影响不大。
    微生
    土壤
    在植物修复和微生物修复
    的人工土快滤系统的运行方式上选择湿干比1:5、配水周期为2天的运行方式,
    虽然有机质的积累速率较快,但水力负荷大且更为经济,同时也可以取得较好出
    水水质。而对养殖蛆叫的人工土快滤系统来说,选择湿干比1:8运行周期3天的
    运行方式更为合理。
Artificial soil rapid infiltration (ASRI) is a kind of newly advanced technology using artificial soil instead of natural soil as porous filter media in the rapid infiltration system. It has a better sewage treatment effect, local available and a lesser land areas requirement than that of traditional land treatment. However, given high organic matter concentration or heavy inlet flow, hydraulic loading rate of the system, oxygen transfer and biodegradation capability will be reduced due to the accumulation of organic matter in the system. And then the filter media will be clogged. There are two methods to resolve this problem presently: one is to prolong the drying period; the other is to scrape off the surface bio-film and infill with new filter media. But the former could reduce the treatment capability of the system and waste time, the later could affect the microbe constitute and lead to outflow reduction.
    ASRI is a friendly way for sewage treatment, but organic matter accumulation and its clogging are one of the most important problems of ASRI. In order to find a way to improve removal efficiency of the system and to solve the problem above, bioremediation technology such as phyto-remediation, micro-remediation and animal remediation were applied in this research. Vegetables, microbes and earthworm that have high sewage purification capability were used separately in columns. In order to find out the effect of these methods on effluent quality and the distribution of nutrient, the effluent quality, the organic matter, nitrogen and phosphorous in soil columns have been investigated. The results show as follows:
    (1) Water hyacinth and chysanthemum have high capability to purify sewage than that of other tested plants. In this study 22 strains were separated from the soil columns, and 10 strains were screened out to be
    
    
    
    superior strains. The rate of sand to soil was 9:9 when earthworms were brood in soil columns.
    (2) To plant vegetable or to inoculate superior bacterium could improve the effluent quality. The average removal rates of BOD5, COD, NH4+-N, and TP were 80%, 80%, 80%, and 50%, respectively. But the removal rate of TN was at low level due to nitrogen leaching. The removal rate of NH4+-N was above 90% after earthworms being brood in soil columns.
    (3) With the depth of soil layer increasing, the content of organic matter, nitrogen, and phosphorous declined. But the organic matter, nitrate, and phosphorous will be leached more or less by coinage. The content of organic matter increased gradually as the process of irrigating, especially at the soil surface.
    (4)Planted vegetables or inoculated microbes or brood earthworm could decline the content of organic matter in soil column correspondingly, and postpone the organic matter accumulating in the system.
    (5) Planted vegetable in the system has advantages on nitrification and phosphorous adsorption. Microbes remediation could accelerate nitrification process, but had no obvious affect on phosphorous adsorption. Earthworms had no evident effect on nitrite and phosphorous removal.
    (6) 1:5 w/d and 2 days operation regime was more economic and met with the need of social for sewage treatment, despite of high organic matter accumulating rate. Whereas, 1:8 w/d and 3 days operation regime was reasonable when earthworms were brood in the system.
引文
(1) 崔理华,白瑛,张祖锡等.1997.城市污水人工快滤处理后回用的环境效应研究.农业环境保护.16(4):153~157
    (2) 李国学,何建平,张建华等.1999.城市污水人工土快滤处理与利用系统.北京.中国农业科技出版社.
    (3) 李国学.1999.城市生活污水人工土快滤处理与绿地灌溉效果.城市与节水.3:10~12
    (4) 完颜华.1994.适合西北地区城镇废水处理的新技术—土地处理系统。甘肃环境研究与监测.7(4):18~22
    (5) 郭笃发,陈友云.1994.污水土地处理系统的研究现状.山东师大学报.9(2):85~88
    (6) 汪金舫.1990.模拟土柱处理城市污水的研究.土壤.22(2):78~82
    (7) 成徐洲,吴天宝,陈天柱等.1999.土壤渗滤处理技术研究现状与进展.环境科学研究.12(4):33~36
    (8) 吴永锋,王继堂,曹文炳等.1996.生活污水快速渗滤处理现场试验研究.环境科学学报.16(3):282~286
    (9) 吴永锋,汪民,钟佐焱.1995.有机废水快速渗滤处理系统中氧化还原环境特征。环境保护科学.21(4):32~35
    (10) 何江涛,马振民.2001.污水快速渗滤土地处理系统存在问题的讨论.华东地质学院学报.24(1):45~47
    (11) 何江涛,钟佐,汤明等.2001.污水土地处理技术与污水资源化.地学前缘.8(1):155~161
    (12) 何江涛,钟佐焱,汤明皋.2001.解决污水快速渗滤土地处理系统占地突出的新方法。现代地质.15(3):339~345
    (13) 金传圣,龄江,刘鸿志.1999.土地处理也是城市污水集中处理的方法之一.环境保护.
    
    18(5):510~515
    (14) 张金炳,陈鸿汉,马明生等.2001.人工快速渗滤复合系统处理洗浴污水的试验研究.水文地质工程地质.6:30~32,42
    (15) 崔理华,朱夕珍,马梅.2000.化粪池出水人工快滤与水培蔬菜复合处理系统的研究.农业环境保护.19(1):43~45
    (16) 田光明.1992.人工土滤床降解有机污染物综合指标COD的机制探讨.北京农业大学硕士论文
    (17) 崔理华,朱夕珍,李国学等.2000.北京西郊城市污水人工快滤处理与利用系统.中国环境科学.20(1):45~48
    (18) Kristiansen R. 1981. Sand-filter Trenches for Purification of Septic Tank Effluent: Ⅰ Theclogging mechanism and soil physical environment. J. EVIRON QUAL. 10: 353~357
    (19) Yberg P M F N. 1989. Infiltration of Wastewater in a Newly Started Pilot Sand-filter System:ⅡDevelopment and Distribution of The Bacterial Population. J EVIRON QUAL. Vol 18:457~462
    (20) 刘志强,苗群,毕学军等.1995.复合快速渗滤系统的研究.青岛建筑工程学院学报.16(3):37~44,55
    (21) 余贵芬,青长乐.1998.重金属污染土壤治理研究现状.农业环境与发展.(4):22~24
    (22) 吴洁,俞剑莹,陈芳.1999.微生物对环境污染物的降解作用。21(增):83~84
    (23) 夏立江,李楠,沈德中等.1998.原位生物修复治理汞害的机制及作用.环境科学进展.6(3):48~51
    (24) 沈振国,陈怀满.2000.土壤重金属污染生物修复的研究进展.农村生态环境.16(2):39~44
    (25) Sakadevan K, Bavor H J. 1998. Phosphate Adsorption Characteristics of Soils, Slags and Zeolite to Be Used as Substrates in Constructed Wetland Systems.
    
    War. Res. Vol32. No2: 393~399
    (26) Hunt P G, Stone KC, Humenik F J etc. 1999. In-Stream Wetland Mitigation of Nitrogen Contamination in a USA Coastal Plain Stream. J. ENVIRON QUAL. Vol28. JAN-FEB: 249~255
    (27) 李金玲.1989.城市污水土地处理——人工土层系统中微生物的研究.北京农业大学硕士论文
    (28) 韩力平,王建龙,施汉昌等.1999.生物强化技术在难降解有机物处理中的应用.环境科学.20(6):100~102
    (29) Koottatep T, Polprsert C. 1997. Role of Plant Uptake on Nitrogen Removal in Constructed Wetlands Located in The Tropics. War. Sci. Tech. Vol36. No12: 1~8
    (30) May R. 1997. Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Enviro. sci& Technol. 31(9): 2626~2633
    (31) Kozub D D, Liehr S K. 1999. Assessing Denitrification Rate Limiting Factors in A Constructed Wetland Receiving Landfill Leachate. Wat. Sci. Tech. Vol40. No3: 75~82
    (32) 桑伟莲,孔繁翔.1999.植物修复研究进展.环境科学进展.7(3):40~44
    (33) 范昌发,贾敬芬.1999.植物整治研究现状.环境科学进展.7(5):107~111
    (34) 沈德中.1998.污染土壤的植物修复.生态学杂志.17(2):59~64
    (35) Pilon-Smits E A H, Souza M P, Hong G etc. 1999. Selenium Volatilization and Accumulation by Twenty Aquatic Plant Species. J. EVIRON QUAL. Vol28. MAY-JUNE: 1011~1018
    (36) 齐明亮,王有乐,敬宪科等.1999.土地快速渗滤系统的水力负荷研究.甘肃环境研究与监测.12(4):169~175
    (37) 龚月桦,王俊儒,高俊凤.1998.植物修复技术及其在环境保护中的应用.农业环境保护.17(6):268~270
    
    
    (38) Baker L A. 1998. Design Considerations and Applications for Wetland Treament of High-Nitrate Waters. Wat. Sci. Tech. Vol38. No1: 389~395
    (39) 金国贤,张莘民.2000.植物根圈污染生态研究进展.农村生态环境.16(3):46~50
    (40) Tanner C C, Sukias J P S, Upsdell M P. 1999. Substratum Phosphorus Accumulation During Maturation of Gravel-Bed Constructed Wetlands. Wa t. Sci. Tech. Vol40. No3: 147~154
    (41) 吴晓磊.2000.人工湿地废水处理机理.环境科学.16(3):83~86
    (42) 吴晓磊.1994.污染物质在人工湿地中的流向.中国给水排水.10(1):40~43
    (43) Verhoeven J T A, Meuleman A F M. 1999. Wetlands for Wastewater Treament: Opportunities and Limitations. Ecological Engineering. 12: 5~12
    (44) Pant H K, Reddy K R. 1999. Hydrologic Influence on Stability of Organic Phosphorous in Wetland Detritus. J. EVIRON QUAL. Vol28. JAN-FEB: 225~231
    (45) 崔理华,朱夕珍,汤连茂等.2000.城市污水人工土快滤床与水生植物复合处理系统.中国环境科学.20(5):432~435
    (46) 郭笃发,姜爱霞.1995.污水土地处理系统的应用分析.环境科学进展.3(6):64~70
    (47) 罗固源,朱晓帆.1995.蚯蚓有机废水土地处理试验研究.四川环境.14(1):10~13
    (48) 罗固源,朱晓帆.1996.蚯蚓在污水土壤处理中的生存条件.成都科技大学学报.89(1):36~42
    (49) 罗固源,周健,吉方英等.1997.污水蚯蚓土地处理与资源回归.重庆环境科学.19(2):27~29
    (50) 罗固源.1997.有机污水蚯蚓土地处理.中国给水排水.13(2):40~42
    (51) 张宝贵.1997.蚯蚓与微生物的相互作用.生态学报.17(5):556~560
    
    
    (52) 吉方英,罗固源,周健等.1998.蚯蚓与污水土地处理试验研究.重庆环境科学.20(4):12~15
    (53) 邱江平.2000.蚯蚓及其在环境保护上的应用Ⅲ.蚯蚓在处理有机废弃物和生活污水上的应用.18(1):53~58,66
    (54) 杨健,施鼎方.2000.城镇污水处理绿色技术及其进展.工程与技术.8:15~18
    (55) 于衍真.1994.小型城镇水污染控制与治理措施.山东建材学院学报.8(3):43~46
    (56) 刘剑彤,丘昌强,陈珠金等.1998.复合生态系统工程中高效去除磷、氮植被植物的筛选研究.水生生物学报.22(1):1~8
    (57) 傅金祥,马黎明,金成清等.1994.污水土地处理除磷脱氮原理探讨.沈阳建筑工程学院学报.10(1):30~35
    (58) 劳善根,石蓉,张永珍.1999.土壤栽培系统处理人工土养鳖废水和生活污水.农业环境保护.18(3):121~123,129
    (59) 刘忠翰.1995.污水慢速渗滤土地处理对土壤理化性质的影响.云南环境保护.12(4):3~6
    (60) 刘忠翰.1999.污水芦苇碎石床处理出水养鱼回用技术研究.农业环境保护.18(1):14~18
    (61) 王亚男,王红旗,舒艳.2001.含磷污水淋滤条件下土壤中磷迁移转化模拟实验.环境科学学报.21(6):737~741
    (62) 崔理华,朱夕珍,白瑛等.1997.北京西郊城市污水人工快滤处理系统的技术参数分析.华南农业大学学报.18(3):67~71
    (63) 俞大秡,李季轮.1985.微生物学.北京.科学出版社.
    (64) 刘德啟,彭波,唐乃红等.1995.污灌系统氮素在土壤中的转化与渗漏污染.西北师范大学学报.31(2):57~60
    (65) Brye K R, Norman J M,. Bundy L G. 2001. Nitrogen and Carbon Leaching in
    
    Agroecosystems and Their Role in Denitrification Potential. J. ENVIRON QUAL. Vol30. JEN-FEB:58~70
    (66) Sakadevan K, Bavor H J. 1999. Nutrient Removal Mechanisms in Constructed Wetlands and Sustainable Water Management. Wat. Sci. Tech. Vol40. No2: 121~128
    (67) Douglas J S, William J M. 2000. The Effect of Season and Hydrologic and Chemical Loading on Nitrate Retention in Constructed Wetlands: Acomparison of Low-and High-Nutrient Riverine Systems. Ecological Engineering. 14: 77~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700