用户名: 密码: 验证码:
氧化铈基纳米材料的介孔结构合成,形貌控制及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CeO_2是一类重要的稀土氧化物,在现代高科技领域有着巨大的发展潜力。纳米化后的CeO_2具有特殊的性质及应用,相应地在多孔结构的实现,及微观形貌的要求也越来越高。因此,纳米CeO_2的孔结构与形貌控制及其应用研究成为迫切需要解决的课题。本文研究了不同介孔结构、微观形貌的纳米CeO_2合成方法和过程机理,并探索了其在CO转化、染料废水降解的催化氧化性能。主要研究内容和成果概括如下:
     1.以柠檬酸为整合剂,CTAB为模版剂,利用改进的溶剂挥发诱导自组装(EISA)方法合成了高比表面积的介孔CeO_2。考察了Ce~(3+)与CTAB的摩尔比以及煅烧温度对介孔CeO_2粉体比表面与孔径的影响,结果表明柠檬酸、CTAB与硝酸铈的摩尔比为1:1:1,煅烧温度为300℃下得到的介孔CeO_2的比表面积最大(205 m~2·g~(-1))、孔道相对规则,其催化活性最高。在介孔CeO_2的合成过程中发现随着煅烧温度升高,比表面积减小,介孔逐渐被破坏,相应地催化活性降低。
     2.以乙酸铈为无机源,P123(或F127)嵌段共聚物为模版剂,利用溶剂挥发诱导自组装的方法首次合成得到了孔壁晶粒高度定向排列的介孔介晶CeO_2。In-situTEM原位观测表明,在600℃至800℃高温加热状态下,孔壁完整性仍然得到了很好的维持,在于晶粒取向高度一致的条件下晶粒的无序长大受到了很好的抑制,从而避免了孔道的塌陷。当ZrO_2掺杂摩尔份数x小于等于0.3时,Ce_(1-x)Zr_xO_2仍为固溶的单一立方相,且孔壁的定向排列未受影响,暴露晶面仍以{200}为主,当x超过0.3后,四方相开始析出,使得孔壁晶粒逐渐向无序取向转化,并最终成为立方相CeO_2与四方相ZrO_2的复合态。CO氧化探针反应表明,由于介孔介晶Ce_(0.7)Zr_(0.3)O_2维持了高活性面{200}.的暴露,且比表面积达到最大,显示了最低的T_(50)值,当掺杂量进一步升高后,T_(50)值也相应升高,归因于晶粒取向杂乱后的活性位减少与比表面积的降低。
     3.在水热条件下以硝酸铈和六次甲基四胺(HMT)为原料首次合成出了棱柱状形貌的介晶CeO_2,研究了反应浓度比、反应温度、溶剂类型对CeO_2形貌结构的影响。提出棱柱状形貌的介晶CeO_2的形成机制遵循相临晶界面一致原则,纳米晶粒沿着轴向定向聚集形成。相对于普通块状CeO_2粉体,介晶CeO_2粉体的紫外吸收特征峰发生了红移,其光子带隙E_g=3.02eV,小于块状CeO_2粉体光子带隙(E_g=3.19eV),推测跟棱柱状形貌的介晶CeO_2存在的孪晶等缺陷有关。
     4.以自制碳球为模板,HMT为沉淀剂,通过层层自组装的方法制得了CeO_2/碳球复合材料,经煅烧处理后得到了CeO_2空心球,其中空直径约为250 nm,外壳厚度约为20 nm。研究了硝酸铈与碳球的质量比与煅烧温度对空心结构的影响。CeO_2空心球和无孔CeO_2标样对CO催化氧化比较后,发现CeO_2空心球由于具有良好的气体通透性与吸附性,催化活性得到明显提升。
     5.以嵌段共聚物P123为表面活性剂,水热合成了管径约为20nm左右,长度为500nm-1μm的CeO_2纳米管。研究了水热反应时间、反应温度、表面活性剂浓度对形貌演化的影响,研究表明,以六方晶系的Ce(OH)_3为晶种,纳米管的形成遵循“溶解-异向生长-自卷曲”机制。探索了不同形貌CeO_2催化氧化处理亚甲基蓝染料废水的降解效果,研究发现CeO_2纳米管相对于CeO_2纳米颗粒和CeO_2纳米棒,对染料的脱色率有明显提高,归因于其良好的中空通透结构对有机大分子的吸附,及其高活性面{220}的暴露引起的高氧化还原活性。
     6.首次以改性的天然凹凸棒石为模板成功合成了管径为20-40 nm的CeO_2纳米管。由于ATP可以通过热酸反应完全转化为外表面富含有羟基的活性SiO_2纳米棒,容易吸附Ce~(3+)并与其发生置换,在加入HMT加热发生Ce~(3+)/OH~-/Ce~(3+)/OH~-…交替沉积的层层自组装反应。研究表明硝酸铈的加入量是合成可用前驱体的关键,硝酸铈与活性SiO_2纳米棒的质量比为3:1时包覆效果最好。脱除硬模版后,产物的煅烧温度也是一个关键因素,在500℃热处理下,晶面之间的晶面转角错位最小,晶粒熔接性最好。
CeO_2 is an important type of rare earth material, and has widely applications in modern high-tech areas. The application of nanosized CeO_2 is largely depended on its micro-structure and morphologies. In this dissertation, we report the synthesis and characterization of mesostructured and morphology controlled ceria based nanomaterials, as well as their catalytic properties in CO oxidation and degradation of organic pollutants.
     1. Mesoporous CeO_2 particles with high surface area were synthesized via a modified evaporation-induced self assembly(EISA) method using citric acid as complexing agent, CTAB as surfactant respectively. The effects of Ce~(3+)/CTAB molar ratio as well as calcination temperature on the surface area of mesoporous CeO_2 were investigated. It was found that the cerium oxide/surfactant mixture gave rise to pure and fluorite-structured CeO_2 after calcination at 300℃. Moreover, the textural analysis revealed high specific surface area (205 m~2·g~(-1)) and mesoporous structure of the sample. The catalytic performances of mesoporous CeO_2 heated at various temperatures for CO oxidation were examined. The catalytic tests exhibited that the product had enhanced catalytic efficiency compared with the decomposed ceria.
     2. Novel mesoporous mesocrystal CeO_2 were synthesized using acetate salt as inorganic species and P123 as surfactant. Transmission electron microscopy revealed that the wall framework consists of a single phase based on the face-centered cubic CeO_2 and the polycrystalline crystals were highly oriented with the crystal axis [001] parallel to the pore channel if the Zr~(4+) molar fraction x was 0.3 or less, In-situ TEM demonstrated that the integrity of the framework could be maintained as high as 800℃on account that the random growth of the grains was suppressed. However, when the Zr~(4+) molar fraction was larger than 0.3, a mixture of cubic and tetragonal phases formed and the preferential crystal orientation disappeared as revealed by XRD and Raman measurements. It was proposed that the hydrophilic segments of P123 and the acetate group acted cooperatively and lead to the preferred crystals attachment facilitated by the strong dipole-dipole interactions following the manner of coherent interface. The N_2 sorption measurement suggested that the single phase solid solution at Zr~(4+) molar fraction 0.3 had the largest BET surface area and it consequently demonstrated the best catalytic performance for CO conversion due to the unique mesoporous mesocrystal structure with dominant exposure of highly active {200} planes and an enhanced redox property caused by adequate Zr~(4+) incorporation.
     3.Prism-like mesocrystal CeO_2 was synthesized for the first time via hydrothermal method without any surfactant. The effect of the molar ratios of HMT to Ce(NO_3)_3·6H_2O , reaction temperature and solvent type on the morphology of the product was investigated. A plausible formation mechanism was put forward that the nanocrystals aggregated along with the epitaxial orientation following the manner of coherent interface .The UV-visible adsorption spectrum exhibited the red-shift phenomenon (E_g=3.02eV) compared with bulk CeO_2 particles (E_g=3.19eV) , presumably due to the existence of considerable defects in particular twin boundaries in this unique structure.
     4. Hollow spherical CeO_2 were prepared via a layer-by-layer (LBL) method using self-made carbon spheres as sacrificial template, HMT as precipitant respectively. CO conversion was used as a catalytic test reaction. The obtained products exhibit well-defined hollow spherical structure with a diameter of ca. 250 nm as well as the thin shell about ca. 20 nm composed of various-oriented polycrystals. Catalytic test revealed that the activity of the hollow spherical products in CO oxidation were substantially higher than for a non-hollow sample, the hollow structure was believed to provide substantial space for the adsorption and desorption of gas molecules
     5. CeO_2 nanotubes were synthesized by a hydrothermal reaction assisted by P123. The effects of the reaction time, reaction temperature, and the surfactants concentration on the morphology evolution of the products were investigated. The formation of CeO_2 nanotube can be rationalized by the dissolution-anisotropic growth-rolling up mechanism. The experimental results showed that CeO_2 nanotube had enhanced efficient catalytic activity on degradation of methylene blue compared with nanoparticles and nanorods, which was ascribed to the tubular structure owning excellent adsorption capability with dye moleculars , as well as the dominant exposure of high-energy surface of {220}.
     6. CeO_2 nanotubes were synthesized facilely with a layer-by-layer deposition route templated by modified attapulgite for the first time. As a natural clay, attapulgite can be completely converted into amorphous SiO_2 nanorods with surface functionalized by-OH groups and acted as promising template. The obtained CeO_2 nanotubes had a uniform diameter ranging from 20-40 nm with a bundle-like structure. Under slow hydrolyzing of HMT, the oppositely-charged OH~- was released in the solution, and consequently Ce~(3+)/OH~-/Ce~(3+)/OH~-…deposited onto the carbon sphere following a layer-by-layer assembly. Appropriate calcination at 500℃was found to be crucial to solidify the framework on account of the well-fused neighboring crystals caused by the reduction of interfacial energy. This synthesis strategy by taking advantage of natural clay as hard template implies a simple and inexpensive way to prepare oxide nanotubes on a large scale for modern chemical synthesis.
引文
[1]C.T.Kresge, M.E.Leonowicz, W.J.Roth et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992,359, 710.
    [2]徐如人,庞文琴等.分子筛与多孔材料化学[M].科学出版社,2004.
    [3]赵丽,余家国,赵修建等,介孔纳米结构材料的研究与发展。稀有金属材料与工程,2004,33(1):5-10.
    [4]Lu,Y, Ganguli.R, Drewienf.C.A, Anderson.M.T, et al. Continuous formation of supported cubic and hexagonal films by sol-gel dip-coating, Nature, 1997, 389,364-368.
    [5]B.Tian, X.Liu, D.Zhao, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-based pairs.Nature Materials, 2003,2,159.
    [6]Y. Wan, H.Yang, D.Zhao.Host-guest chemistry in the synthesis of ordered non-siliceous mesoporous materials. Accounts of chemical research, 2006, 39,423-435.
    [7]D.Li, H.Zhou, I.Honma, Design and synthesis of self-ordered mesoporous nanocomposite through in-situ crystallization.Nature materials, 2004,3,65.
    [8]Fan, J; Boettcher, S.W; Stucky, G.D. Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem.Mater. 2006, 18, 6391-6396.
    [9]M. Tiemann. Repeated Templating[J]. Chem. Mater., 2008,20 (3):961-971.
    [10]Y. Wan, Y.F. Shi, D.Y. Zhao. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons[J]. Chem. Mater., 2008,20(3):932-945.
    [11]Song, H; Rioux, R.M; Hoefelmeyer, J.D, et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J.Am.Chem.Soc. 2006,128,3027-3037.
    [12]Tsai M S. Formation of Nanocrystalline Cerium Oxide and Crystal Growth [J ] . J. Cryst. Growth ., 2005 , 274(3 - 4) : 632 - 637.
    [13]L. Limousy, H. Mahzoul, J.F. Brilhac, P. Gilot, F. Garin, G. Maire SO_2 sorption on fresh and aged SOx traps [J] Applied Catalysis B: Environmental 42 (2003) 237-249
    [14]Shinae Jun, Sang Hoon Joo, Ryong Ryoo, Michal Kruk, Mietek Jaroniec, Zheng Liu, Tetsu Ohsuna, and Osamu Terasaki. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure[J]. J. Am. Chem. Soc., 2000,122 (43): 10712-10713..
    [15]F.Jiao, A.Harrison, A.Hill, P.Bruce. Mesoporous Mn_2O_3 and Mn_3O_4 with crystalline walls. Advanced materials, 2007,19,4063-4066.
    [16]Yashima M, Morimoto, Ishizawa N, et al. Zirconnia-Ceria solid solutions synthesis and temperature -time-transformation diagram of the 1:1 composition[J]. J.Am.Ceram.Soc., 76(1993) 1745-1750.
    [17]Lou X W, Archer LA, Yang Z C. Hollow Micro-/Nanostructures: Synthesis and Applications[J]. Adv. Mater. 2008,20:1-33.
    [18]Caruso F, Caruso M A, MEhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J].Science,1998,282:1111-1114.
    [19]Wang Y J, Alexandra S, Caruso F, et al. Template synthesis of Nanostructured Materials via Layer-by-Layer Assembly[J]. Chem Mater, 2008,20 (3), 848-858.
    [20]Caruso R A, Susha A, Caruso F, et al. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres [J]. Chem. Mater. 2001,13:400-409.
    [21]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks[J]. Chem. Mater. 2000, 12: 2832-2834.
    [22]Chen G C, Kuo C Y, Lu S Y. A general process for preparation of core-shell particles of complete and smooth shells[J]. J. Am. Ceram. Soc. 2005, 88, 277-283.
    [23]Caruso F, Shi X Y, Caruso R A. Hollow titania spheres from layered precursor deposition on sacrificial colloidal core[J]. Adv Mater, 2001,13 (10): 740-744.
    [24]Martinez C J, Hockey B, Montgomery C B, et al, Porous tin oxide nanostructured microspheres for sensor applications[J]. Langmuir,2005, 21: 7937-7944.
    [25]Liang Z J, Susha A, Caruso F, Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof[J].Chem. Mater. 2003,15,3176-3183.
    [26]Caruso F, Spasova M, Susha A, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem.Mater. 2001,13,109-116.
    [27]Correa-Duarte M A, Kosiorek A. Kandulski W, et al. Layer-by-Layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids[J]. Chem. Mater. 2005,17, 3268-3272.
    [28]Kim S W, Kim M, Lee W Y ,et al, Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. [J]. J. Am. Chem. Soc., 2002.124:7642-7643.
    [29]Wang Y, Su F B, Lee J Y, et al. Crystalline Carbon Hollow Spheres, Crystalline Carbon-SnO_2 Hollow Spheres, and Crystalline SnO_2 Hollow Spheres: Synthesis and Performance in Reversible Li-Ion Storage[J]. Chem. Mater., 2006,18:1347-1353.
    [30]Knez M, Nielsch K, Niinisto L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition[J]. Adv. Mater. 2007,19: 3425-3438.
    [31]Zoldesi C I, Imhof A. Synthesis of monodisperse colloidal spheres, capsules and microballoons by emulsion templating[J]. Adv. Mater., 2005,17: 924-928.
    [32]Imhof A, Pine D J. Observation of Bulk Phase Separation and Coexistence in a Sheared Micellar Solution[J]. Nature, 1997, 389:948-951.
    [33]Buchold D H M, Feldmann C. Nanoscale g-AlO(OH) Hollow. Spheres: Synthesis and Container-Type Functionality[J]. Nano Lett. 2007, 7: 3489-3892.
    [34]Miyao T, Minoshima K, Naito S. Remarkable hydrogen occlusion ability of hollow Ir-SiO_2 nanoparticles prepared by reversed micelle techniques[J]. J. Mater. Chem. 2005, 15:2268-2270.
    [35]Joncheray T J, Audebert P, Schwartz E, et al. Electrochemical and Spectroscopic Characterization of Organic Compound Uptake in Silica Core-Shell Nanocapsules[J]. Langmuir 2006, 22, 8684-8689.
    [36]Fowler C E, Khushalani D, Mann S. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chem. Commun., 2001:2028-2029.
    [37]Joncheray T J, Audebert P, Schwartz E, et al. Electrochemical and Spectroscopic Characterization of Organic Compound Uptake in Silica Core-Shell Nanocapsules[J]. Langmuir 2006, 22, 8684-8689.
    [38]Fowler C E, Khushalani D, Mann S. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chem. Commun., 2001:2028-2029.
    [39]Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres[J]. Angew. Chem. Int. Ed. 2003,42: 3027-3030.
    [40]Han Y S, Hadiko G, Fuji M, et al. A Novel Approach to Synthesize Hollow Calcium Carbonate Particles[J]. Chem. Lett. 2005:152-153.
    [41]Fan X, Zhang Z, Li G, et al. Effect of air bubble rigidity on quartz attachment onto its surface[J]. Chem. Eng. Sci. 2004, 59:2639-2645.
    [42]Smigelskas A D, Kirkendall E O. The effects of oxygen plasma on the chemical composition[J].Trans. Am. Inst. Min. Metall. Pet. Eng., 1947,171:130-142.
    [43]Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J].Science 2004, 304: 711-714.
    [44]Ostwald W. Stoechiom. Verwandtschaftsl[J]. Z. Phys. Chem. 1900, 34:495-503.
    [45]Ostwald W. Lehrbuch der Allgemeinen Chemie.Leipzig, Germany: Engelmann, 1896: Vol. 2, Part 1.
    [46]Terrible ,D; Trovarelli, A; Leitenburg, C.de, et al. Unusual oxygen storage/redox behavior of high-surface-area ceria prepared by a surfactant-assisted route. Chem. Mater, 1997, 9:2676-2678.
    [47]Lyons, D.M; Ryan, K.M; Morris, M.A. Preparation of ordered mesoporous ceria with enhanced thermal stability. J.Mater.Chem, 2002, 12: 1207-1212.
    [48]Lundberg, M; Skarman, B; Cesar, F, et al. Mesoporous thin films of high-surface-area crystalline cerium dioxide. Microporous and mesoporous materials, 2002, 54: 97-103.
    [49]Corma, A; Atinzar, P; Garcia, H; Chane-Ching, J.Y. Hierarchically mesostructured doped CeO_2 with potential for solar-cell use. Nature. Mater.2004, 3, 394-397.
    [50]Brezesinski, T; Antonietti, M; Groenewolt, M, et al. The generation of mesostructured crystalline CeO_2, ZrO_2 and CeO_2-ZrO_2 films using evaporation-induced self-assembly. New J.Chem, 2005, 29,237-242
    [51]S.Pavasupree, Y.Suzuki, S.Pivsa-Art, S.Yoshikawa. Preparation and characterization of mesoporous MO_2 (M=Ti, Ce, Zr, and Hf) nanopowders by a modified sol-gel method. Ceramica international.31 (2005) 959-963.
    [52]G.Xiao, S.Li, H.Li, et al.Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous and mesoporous materials 120 (2009)426-431.
    [53]M.Teng, L.T. Luo, X.M. Yang. Synthesis of mesoporous Ce_(1-x)Zr_xO_2 (x=0.2-0.5) and catalytic properties of CuO based catalysts. Microporous and mesoporous materials 119 (2009) 158-164.
    [54]A.K.Sinha, K.SuZuki. Preparation and characterization of novel mesoporous ceria-titania, J.Phys.Chem. B 2005,109,1708-1714.
    [55]S.C. Laha, R. Ryoo. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates[J]. Chem.Comm.2003, 2138-2139.
    [56]Caruso F, Caruso M A, M(?)hwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J].Science,1998,282:1111-1114.
    [57]Weihua Shen, Xiaoping Dong, Yufng Zhu. Mesoporous CeO_2 and CuO-loaded mesoporous CeO_2: Synthesis, characterization, and CO catalytic oxidation property[J]. Microporous and Mesoporous Materials, 2005,85(1-2): 157-162.
    [58]Q. Yuan, Q. Liu, W.G Song, W. Feng, W.L. Pu, L.D. Sun, Y.W. Zhang, C.H. Yan. Ordered Mesoporous Ce_(1-x)Zr_xO_2 Solid Solutions with Crystalline Walls[J]. J. Am. Chem. Soc, 129(2007) 6698-6699.
    [59]P. Yang, D.Zhao, D.Margolese, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 396 (1998)152.
    [60]Vantomme A, Yuan Z Y, Du G H, et al.Surfactant-Assisted Large-Scale Preparation of Crystalline CeO_2 Nanorods[J]. Langmuir,2005,21(3):1132-1135.
    [61]Sun C W, Li H, Zhang H T, et al.Controlled synthesis of CeO_2 nanorods by a solvothermal method[J].Nanotechnology.2005,16:1454-1463.
    [62]Zhou K B, Yang Z Q, Yang S.Highly Reducible CeO_2 Nanotubes[J]. Chem. Mater., 2007,19:1215-1217.
    [63]Zhang Y J, Hu Q X, Fang Z Y, et al.Self-assemblage of Single/Multiwall Hollow CeO_2 Microspheres through Hydrothermal Method[J]. Chem. Lett.,2006,35(8):944-945.
    [64]Zhang Y J, Cheng T, Hu Q X, et al.Study of the preparation and properties of CeO_2 single/multiwall hollow microspheres[J]. J. Mater. Res., 2007,22(6):1472-1478.
    [65]Kaneko K, Inoke K, Freitag B, et al.Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis[J]. Nano Lett., 2007,7(2):421-425.
    [66]Bai J G, Xu Z D, Zheng Y F, et al.Shape control of CeO_2 nanostructure materials in microemulsion systems[J]. Mater. Lett.,2006, 60:1287-1290.
    [67]Sun C W , Xie Z, Xia C R,et al. Investigations of mesoporous CeO_2-Ru as a reforming catalyst layer for solid oxide fuel cells[J]. Electrochem. Commun.. 2006, 8:833-838.
    [68]Sun C W, Li H, Chen L Q.Study of flowerlike CeO_2 microspheres used as catalyst supports for CO oxidation reaction[J]. J. Phys. Chem. Solids,2007, 68 :1785-1790.
    [69]Zhang Y L, Kang Z T, Dong J, et al.Self-assembly of cerium compound nanopetals via a hydrothermal process: Synthesis, formation mechanism and properties[J]. J. Solid State Chem., 2006,179:1733-1738.
    [70]Zhang D E, Zhang X J, Ni X M, et al.Fabrication of novel threefold shape CeO_2 dendrites: Optical and electrochemical properties[J]. Chem. Phys. Lett.,2006,430:326-329.
    [71]X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y.D. Li. Formation of CeO_2-ZrO_2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect[J]. J. Am. Chem. Soc., 2008, 130 (9): 2736-2737.
    [72]杨春生 陈建华 氧化铈和氧化镧在汽车尾气净化催化剂中的作用[J] 中国稀土学报 2003年02期129-132
    [73]白屏,黄荣光,卢军,等.稀土钙钛矿型复合氧化物在汽车尾气催化转化器中的作用[J].贵金属,2004,25(1):68-71.
    [74]王敏炜,魏文龙.,罗来涛..CeO_2的制备及其在催化剂载体中的应用研究进展[J].化工进展,2006,25(5):517-519.
    [75]王建兵,杨少霞,祝万鹏,等.催化湿式氧化法处理废水的研究进展[J].化工环保,2007,27(4):295-300.
    [76]Lin S S.Chen C L,Chang D J,et al.Catalytic wet air oxidation of phenol by various CeO_2 catalysts[J].Water Res,2002,36(12):3009 - 3014.
    [77]Campo B, Mar(?)a V, Ivanova S, et al.Selective hydrogenation of crotonaldehyde on Au/HAS-CeO_2 catalysts [J]. J. Catal. 2006 (242): 162-171.
    [78]KhaodeeW,Jongsomjit B,Assabumrungrat S,et al.Investigation of isosynthesis via CO hydrogenation over ZrO_2 and CeO_2 catalysts: Effects of crystallite size, phase composition and acid-base sites[J]. Catal. Commun.,2006 (8): 548-556.
    [79]王少成,陈庚,曹勇,等.纳米氧化铈催化苯甲酸甲酯催化氢化合成苯乙酮[J].复旦学报(自然科学版),2004,43(4):615-620.
    [80]李霞章,陈杨,陈志刚等.纳米CeO_2颗粒的制备及其化学机械抛光性能研究[J].摩擦学学报,2007,27(1):1-5.
    [81]张丽娟 王国良 索继栓 李树本 氧化铈纳米微粒的制备及其在金属钒钝化中的应用[J] 化学研究2000,4:24-27
    [82]J. M. Vohs., T. Feng, G. S. Wong Comparison of the reactivity of high-surface area, monolayer vanadia/ceria catalysts with vanadia/CeO_2 (1 1 1) model systems [J] Catalysis Today 85 (2003) 303-309
    [83]徐宏.刘剑洪.蔡弘华等纳米氧化铈的制备及其催化性能研究 深圳大学学报(理工版) 2002,19(2)13-16
    [84]Salvatore Scir(?), Simona Minic(?), Carmelo Crisafulli, Cristina Satriano, Alessandro Pistone Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts [J] Applied Catalysis B:Environmental 40(2003) 43-49
    [85]王丽萍.李宝芳.洪广言.江龙.CeO_2纳米晶修饰的细菌视紫红质薄膜M态寿命的研究[J]感光科学与光化学2002,20(2) 126-130
    [86]王长生 于宗汉 李全安等 氧化铈添加量对M80S20激光涂敷层的显微组织和摩擦学性能的影响[J]摩擦学学报1997,17(1) 17-24
    [87]杜利平 梁二军 陈长青 雒江涛 CeO_2对镍基碳化钨激光熔覆层性能的影响[J] 激光技术 2002 26(5):354-356
    [88]吴磊 田保红 王顺兴 郑世安 柴岩锋 激光熔覆镍基WC层的耐蚀性能研究[J]热加工工艺 1997年02期 8-10
    [89]何建平 骆心怡 李顺林 纳米氧化铈微粒对锌镀层结构和耐蚀性能的影响[J] 稀土 2003 24(1) 24-27
    [90]骆心怡 何建平 朱正吼 李顺林 卢翔 纳米氧化铈颗粒对电沉积锌层耐蚀性的影响[J] 材料保护2003,36(1):1-4
    [91]Kunitsugu Aramaki Treatment of zinc surface with cerium (Ⅲ) nitrate to prevent zinc corrosion in aerated 0.5M Nad [J] Corrosion Science 43 (20001) 2201-2215
    [92]Kunitsugu Aramaki Cerium (Ⅲ) chloride and sodium octylthiopropionate as an effective inhibitor mixture for zinc corrosion in 0.5 M NaCl [J] Corrosion Science 44 (2002) 1361-1374
    [93]袁泽喜 谭平 余宗森 徐庭栋 氧化铈在钢表面气相渗碳时的催化作用[J] 稀土 22(1):27-30
    [94]查少武 中温固体氧化物燃料电池的关键材料制备和电化学性能表征[博十论文]2002 中国科技大学
    [94]C.M. Abreu, M.J. Cristobal, X.R. Novo, G. Pena, M.C. Perez, R.J. Rodriguez Modifications of the stainless steels passive film induced by cerium implantation [J] Surface and Coatings Technology 158 -159 (2002) 582-587
    [95]Lian, Y. Xue, Q. Wang, H. The tribological behavior of GCr15 bearing steel implanted with cerium [J] Surface and Coatings Technology Volume: 73, Issue: 1-2, July, 1995, pp. 98-104
    [96]N. Mora, E. Cano, J.L. Polo, J.M. Puente,J.M. Bastidas Corrosion protection properties of cerium layers formed on tinplate [J] Corrosion Science 46 (2004) 563-578
    [97]Yasunori Hasegawa, Nobuhito Imanaka and Gin-ya Adachi Cerium ion conducting solid electrolyte [J] Journal of Solid State Chemistry 171 (2003) 387-390
    [98]S.K. Tadokoro, T.C. Porf '(?)rio, R. Muccillo, E.N.S. Muccillo. Synthesis, sintering and impedance spectroscopy of 8 mol% yttria-doped ceria solid electrolyte [J] Journal of Power Sources 130 (2004) 15-21
    [99]查少武 中温固体氧化物燃料电池的关键材料制备和电化学性能表征[博士论文]2002 中国科技大学
    [100]徐应明.金家志.戴晓华.孙国红用于水体中氟净化的活性氧化铈/介孔分子筛除氟剂的制备[J] 农业环境保护 2000,19(5):293-295
    [101]颜秀茹.宋宽秀._乇建萍.胡留长.杨朝辉.CeO_2-TiO_2/siO_2的制备及除氟性能研究[J] 中国稀土学报 1998,16(6):149-153
    [102]徐应明.戴晓华.金家志.活性氧化铈/介孔分子筛除氟剂对环境水体的脱氟行为研究[J] 农业环境保护 2001,20(1):48-50
    [1]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T-W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L J. A new family of mesoporous molecular sieves prepare with liquid crystal templates[J]. J. Am. Chem. Soc., 1992, 114:10834.
    [2]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [3]Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework[J]. Chem. Mater. 1999,11: 2813.
    [4]Fan J, Boettcher S, Stucky G D. Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol-gel Process[J]. Chem. Mater., 2006, 18: 6391.
    [5]Wan Y, Yang H F, Zhao D Y. "Host-Guesf" Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials[J]. Acc. Chem. Res., 2006, 39(7): 423.
    [6]Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissi(?)re C, Antonietti M, Sanchez C. Highly Crystalline Cubic Mesoporous TiO_2 with 10-nm Pore Diameter Made with a New Block Copolymer Template[J]. Chem. Mater., 2004, 16: 2948.
    [7]Lu D L, Katou T, Uchida M, Kondo J N, Domen K. In Situ TEM Observation of Crystallization of Amorphous Ordered Mesoporous Nb-Ta and Mg-Ta Mixed Oxides[J]. Chem. Mater., 2005,17: 632.
    [8]Ferdi S. Non-siliceous Mesostructured and Mesoporous Materials[J]. Chem. Mater. 2001,13: 3184.
    [9]Summers J C, Ausen S A. Interaction of cerium oxide with noble metals[J]. J. Catal., 1979,58: 131.
    [10]Trovarelli A. Catalytic properties of ceria and CeO_2-containing[J]. Catal. Rev. Sci. Eng., 1996, 38: 439.
    [11]Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L. Mesoporous CeO_2 and CuO-loaded mesoporous CeO_2: Synthesis, characterization, and CO catalytic oxidation property. [J] Microporous Mesoporous Mater, 2005,85: 157.
    [12]Noriya I, Woosuck S, Norimit su M , et al. Resistive oxygen gas sensors based on CeO_2 fine powder prepared using mist pyrolysis [J]. Sensors and Actuators B, 2002, 87 : 95-98.
    [13]Toshiyuki M , John D , Wang Y R , et al . Influence of nanost ructure on elect rolytic properties in CeO_2 based system[J ]. Journal of Thermal Analysis and Calorimetry, 2002, 70 : 309-319.
    [14]Puma E S. Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells[J]. Langmuer, 1995,11:4832.
    [15]Terribile D, Trovarelli A, Leitenburg C D, Dolcetti G. Unusual Oxygen Storage/Redox Behavior of High-Surface-Area Ceria Prepared by a Surfactant-Assisted Route[J]. Chem. Mater., 1997, 9: 2676.
    [16]Lundberg M, Sk(?)rman B, Wallenberg L R. Crystallography and porosity effects of CO conversion on mesoporous CeO_2[J]. Microporous Mesoporous Mater, 2004, 69:187.
    [17]杨卫亚,郑经堂,张艳姝,等.模板法制备三维有序大孔CeO_2[J].中国稀土学报,2006,24:128-131.
    [18]赵修松,王清遐,徐龙讶等.中孔沸石新材料MCM-41-Ⅰ.合成、酸性及稳定性.催化学报,1995,16(5):415-419.
    [1]F. Schüth. Non-siliceous Mesostructured and Mesoporous Materials[J]. Chem. Mater., 2001,13(10):3184-3195.
    [2]M. Tiemann. Repeated Templating[J]. Chem. Mater., 2008,20 (3):961-971.
    [3]J.N. Kondo, K. Domen. Crystallization of Mesoporous Metal Oxides[J].Chem. Mater., 2008,20(3):835-847.
    [4]H.R. Chen, J.L. Gu, J.L. Shi, Z.C. Liu, J.H. Gao, M.L. Ruan, D.S. Yan. A Composite Surfactant Route for the Synthesis of Thermally Stable and Hierarchically Porous Zirconia with a Nanocrystallized Framework[J]. Adv. Mater., 2005,17(16): 2010-2014.
    [5]H.P. Zhou, Y.W. Zhang, R. Si, L.S. Zhang, W.G. Song, C.H. Yan, Dimension-Manipulated Ceria Nanostructures (0D Uniform Nanocrystals, 2D Polycrystalline Assembly, and 3D Mesoporous Framework) from Cerium Octylate Precursor in Solution Phases and Their CO Oxidation Activities[J]. J. Phys. Chem. C. 2008,112(51): 20366-20374.
    [6]J.N. Kondo, K. Domen. Crystallization of Mesoporous Metal Oxides[J].Chem. Mater., 2008,20(3):835-847.
    [7]Y. Wan, Y.F. Shi, D.Y. Zhao. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons[J]. Chem. Mater., 2008,20(3):932-945.
    [8]B. Lee, D. Lu, J.N. Kondo, K. Domen. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure [J].Chem. Commun, 2001, 2118-2119.
    [9]B.Lee, T. Yamashita, D. Lu, J.N. Kondo, K. Domen. Single-Crystal Particles of Mesoporous Niobium-Tantalum Mixed Oxide[J]. Chem. Mater., 2002,14(3):867-875.
    [10]D. Lu, T. Katou, M. Uchida, J.N. Kondo, K. Domen. In Situ TEM Observation of Crystallization of Amorphous Ordered Mesoporous Nb-Ta and Mg-Ta Mixed Oxides[J]. Chem. Mater., 2005,17 (3) :632-637.
    [11]W.B. Yue, W.Z. Zhou. Synthesis of Porous Single Crystals of Metal Oxides via a Solid-Liquid Route [J]. Chem. Mater., 2007,19 (9) :2359-2363.
    [12]X. W. Lou, D. Deng, J.Y. Lee, L.A. Archer. Thermal formation of mesoporous single-crystal Co_3O_4 nano-needles and their lithium storage properties[J]. J. Mater.Chem.2008, 18 (37): 4397-4401.
    [13]H. C(?)lfen, M. Antonietti. Angew. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment[J].Chem. Int. Ed. 2005,44 (35) :5576-5591.
    [14]T. X. Wang, H. Colfen, M. Antonietti. Calcite Mesocrystals: Morphing Crystals by a Polyelectrolyte [J]. Chem. Eur. J. 2006,12 (22):5722-5730.
    [15]Q. Zhang, S.J. Liu, S.H. Yu. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future[J].J. Mater. Chem. 2009,19 (2):191-207.
    [16]M.S. Mo, S.H. Lim, Y.W. Mai, R.K. Zheng, S.P. Ringer. In Situ Self-Assembly of Thin ZnO Nanoplatelets into Hierarchical Mesocrystal Microtubules with Surface Grafting of Nanorods: A General Strategy towards Hollow Mesocrystal Structures[J].Adv. Mater., 2008,20 (2) :339-342.
    [17]Z.H. Li, A. Geβner, J.P. Richters, J. Kalden, T. Voss, C. Kübel, A. Taubert. Hollow Zinc Oxide Mesocrystals from an Ionic Liquid Precursor (ILP)[J]. Adv. Mater., 2008,20(7) 1279-1285.
    [18]D. Terrible, A. Trovarelli, C. Leitenburg. Unusual Oxygen Storage/Redox Behavior of High-Surface-Area Ceria Prepared by a Surfactant-Assisted Route [J]. Chem. Mater.,1997,9 (12) :2676-2678.
    [19]D.M. Lyons, K.M. Ryan, M.A. Morris. Preparation of ordered mesoporous ceria with enhanced thermal stability[J]. J. Mater. Chem. 12 (2002) 1207-1212.
    [20]M. Lundberg, B. Skarman, L.R. Wallenberg. Crystallography and Porosity Effects of CO Conversion on Mesoporous CeO2[J]. Micropor. Mesopor. Mater, 69(2004)187-195.
    [21]S.C. Laha, R. Ryoo. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates[J]. Chem.Comm.2003, 2138-2139.
    [22]I.M. Hung, H.P. Wang, W.H. Lai, K.Z. Fung, M.H. Hon. Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell[J]. Electrochimica Acta, 2004, 50(2-3): 745-748.
    [23]Weihua Shen, Xiaoping Dong, Yufng Zhu. Mesoporous CeO_2 and CuO-loaded mesoporous CeO_2: Synthesis, characterization, and CO catalytic oxidation property[J]. Microporous and Mesoporous Materials, 2005, 85(1-2): 157-162.
    [24]P.F. Ji, J.L. Zhang, F. Chen, M. Anpo. Ordered Mesoporous CeO_2 Synthesized by Nanocasting from Cubic Ia3d Mesoporous MCM-48 Silica: Formation, Characterization and Photocatalytic Activity[J]. J. Phys. Chem. C. 2008,112 (46): 17809-17813.
    [25]T. Brezesinski, M. Antonietti, M. Groenewolt, N. Pinna, B. Smarsly. The generation of mesostructured crystalline CeO_2, ZrO_2 and CeO_2-ZrO_2 films using evaporation-induced self-assembly [J].New. J. Chem. 2005,29 (1):237-242.
    [26]R. Si, Y. W Zhang, C. X. Xiao, S.J. Li, B.X. Lin, Y. Kou, C.H. Yan. Non-template hydrothermal route derived mesoporous Ce0.2Zr0.8O2 nanosized powders with blue-shifted UV absorption and high CO conversion activity [J]. Phys. Chem. Chem. Phys. 2004,6 (5) :1056-1063.
    [27]Chaoying Ni, Xiazhang Li, Zhigang Chen. Oriented polycrystalline mesoporous CeO_2 with enhanced pore integrity[J]. Microporous and Mesoporous Materials, 2008,115(3): 247-252.
    [28]X.D. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik, T. Sayle, Y. Yang, Y. Ding, X.D. Wang, Y.S. Her. Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanosphers[J].Science. 312(2006)1504-1508.
    [29]K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S.Ohara, T. Adschiri. Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis[J]. Nano Lett. 2007,7 (2) :421-425.
    [30]Z.L Wang, X.D. Feng. Polyhedral Shapes of CeO_2 Nanoparticles[J]. J. Phys. Chem. B. 2003, 107 (49): 13563-13566.
    [31]C.Y. Ni, P. A. Hassan, E.W. Kaler. Structural Characteristics and Growth of Pentagonal Silver Nanorods Prepared by a Surfactant Method [J].Langmuir. 2005,21(8):3334-3337.
    [32]Q. Yuan, Q. Liu, W.G Song, W. Feng, W.L. Pu, L.D. Sun, Y.W. Zhang, C.H. Yan. Ordered Mesoporous Ce_(1-x)Zr_xO_2 Solid Solutions with Crystalline Walls[J]. J. Am. Chem. Soc, 129(2007) 6698-6699.
    [33]J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatakeyama, T. Adschiri. Colloidal Ceria Nanocrystals: A Tailor-Made Crystal Morphology in Supercritical Water[J]. Adv. Mater., 2007, 19(2): 203-206.
    [34]S.W. Yang, L. Gao. Controlled Synthesis and Self-Assembly of CeO2 Nanocubes[J]. J. Am. Chem. Soc. 2006,128 (29): 9330-9331.
    [35]Yashima M, Morimoto, Ishizawa N, et al. Zirconnia-Ceria solid solutions synthesis and temperature -time-transformation diagram of the 1:1 composition[J]. J.Am.Ceram.Soc., 76(1993) 1745-1750.
    [36]Yashima M, Morimoto K, Ishizawa N, et al. Diffusionless tetragonal-cubic transformation temperature in zirconia-ceria solid solutions [J]. J. Am. Ceram. Soc, 76(1993) 2865-2868.
    [37]X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y.D. Li. Formation of CeO_2-ZrO_2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect[J]. J. Am. Chem. Soc., 2008,130 (9): 2736-2737.
    [38]Chengsi Pan, Dengsong Zhang, Liyi Shi. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO_2 nanoplatcs, nanotubes, and nanorods[J].2008,181(6):1298-1306.
    [1]Guo Z Y, Du F L, Li G ,et al. Synthesis and Characterization of Single-Crystal Ce(OH)CO_3 and CeO_2 Triangular Microplates[J].IInorg.Chem. 2006,45,4167-4169.
    [2]Zhang D S, Fu,H X Shi,L Y.Synthesis of CeO_2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol Inorg. Chem. 2007,46, 2446-2451.
    [3]Zhou K B,Wang X ,Sun X M.et al..Enhancedc atalytica ctivity of ceria nanorods from well-defined reactive crystal planes[J].J Carol, 2005, 229:206-212.
    [4]Huang P X,Wu F,Zhu B L,et al. CeO_2 nanorods and gold nanocrystals supported on CeO_2 nanorods as catalyst[J]. J Phys Chem B,2005,109:19169-19174.
    [5]Colfen H,Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures[J]. Angew,Chem.Int.Ed.Engl. 2003,42:2350-2365.
    [6]Niederberger M.,.C(?)lfen H, Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly[J].Phys. Chem.Chem.Phys., 8(2006)3271-3287.
    [7] Mo, M.S..Lim S.H,.Mai Y.W,et al. In Situ Self-Assembly of Thin ZnO Nanoplatelets into Hierarchical Mesocrystal Microtubules with Surface Grafting of Nanorods: A General Strategy towards Hollow Mesocrystal Structures Adv. Mater.,2008,20:339-342.
    [8] Li,Z.H. GePner A., Richters J.P., et al.Hollow Zinc Oxide Mesocrytals from an Ionic Liquid Precursor(ILP)[J]Adv.Mater., 2008,9999:1-6.
    [9] Han Z.H., Qian Y., Yu S. et al.Hydrothermal Evolution of the Thiourea-Cerium(Ⅲ) Nitrate System: Formation of Cerium Hydroxycarbonate and Hydroxysulfate[J], Inorg. Chem., 2000,39 :4380-4385.
    [10] Wang,Z.L. Feng X.D., .Polyhedral Shapes of CeO2 Nanoparticles [J]J.Phys.Chem.B. , 2003107:13563-13566.
    [11] Qi Y.X., Tang K.B., Zeng S.Y., et al.Template-free one-step fabrication of porous CuInS2 hollow microspheres[J].Micro.Mesopo.Matter.,2008, .114:395-400.
    [12] S Ri,ZhangY W ,You L P, Self-organized monolayer of nanosized ceria colloids stabilized poly(vinylpyrrolidone) [J]. J Phys Chem B, 2006,110:5994-6000.
    [13] Oshiro K,Akai K,Matsuura, M. Size dependence of polaronic effects on an exciton in a spherical quantum dot[J].Phys. Rev.B. 1999, 59:10850-10855.
    [14] Zhang D.S., Fu H.X., Shi L.Y. et al Synthesis of CeO2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol[J].46(2007), 2446-2451.
    [1] Yang H. G., Zeng H. C. Creation of Intestine-like Interior Space for Metal-Oxide Nanostructures with a Quasi-Reverse Emulsion Angew. Chen. Int. Ed.[J], 2004, 43(39): 5206-5209.
    [2] Bao J. C., Liang Y. Y., Xu Z., et al. Facile Synthesis of Hollow Nickel Submicrometer Spheres. Adv. Mater.[J], 2003, 15(21): 1832-1835.
    [3] Wu C. Z., Xie Y., Lei L.Y., et al. Synthesis of New-Phased VOOH Hollow Dandelions and Their Application in Lithium-Ion Batteries. Adv. Mater.[J], 2006,18(13): 1727-1732.
    [4]Ma Y. R., Qin L. M., Ma J. M., et al. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir[J], 2003,19(9): 4040-4042.
    [5]TONG Wei-Jun (仝维鋆), GAO Chang-You (高长有). Layer-by-Layer Assembled Microcapsules: Fabrication, Stimuli-responsivity, Loading and Replease(层组装微胶囊的制备及其智能响应与物质包埋释放性能)[J].Chem.J.Chinese Universities(高等学校化学学报),2008,29(7):1285-1298.
    [6]LI Xiao-Zhang, CHEN Yang, CHEN Zhi-Gang, et al. Preparation of CeO_2 Nanoparticles and Their Chemical Mechanical Polishing as Abrasives[J].Tribology(摩擦学学报), 2007, 27(1): 1-4.
    [7]Mori T., Drennan J., Wang Y. R., et al.. J. Therm. Spray Technol.[J], 2002, 70(2): 309-319.
    [8] Kang Z. C., Wang Z. L.. Novel Oxides for Cycled Hydrogen Production from Methane and Water Using a Temperature Swing. Adv. Mater.[J], 2003, 15(6): 521-526.
    [9]Salgueirino-maceira V., Spasova M., Farle M. Water-Stable, Magnetic Silica-Cobalt/Cobalt Oxide-Silica Multishell Submicrometer Spheres. Adv. Funct. Mater.[J], 2005, 15(6): 1036-1040.
    [10]Kondo Y., Yoshikawa H., Awaga k., et al. Preparation, Photocatalytic Activities, and Dye-Sensitized Solar-Cell Performance of Submicron-Scale TiO2 Hollow Spheres. Langmuir[J], 2008, 24(2): 547-550.
    [11]Lu W., Chen M., Wu L. Easy method for preparing nanocrystalline CdS hollow spheres using miniemulsion droplets as templates[J]. J. Colloid Interface Sci., 2008, 324(1-2): 220-224.
    [12]Huang C. C., Liu T. Y., Su C. H., et al. Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles. Chem. Mater.[J], 2008, 20(12): 3840-3848.
    [13]Sun X. M., Li Y. D. Ga2O3 and GaN Semiconductor Hollow Spheres. Angew. Chem. [J], 2004, 43(29): 3827-3831.
    [14]Sun X. M., Li Y. D. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chem. [J], 2004, 43(5): 597-601.
    [15]Li X. L., Lou T. J., Sun X.M., et al. Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorg. Chem.[J], 2004, 43(17): 5442-5449.
    [16]Bruinsma P. J., Kim A .Y., Liu Let al..Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres. Chem. Mater. [J],1997,9(11): 2507-2512.
    [17]Guo C. W., Cao Y, Xie S. H., et al.. Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. Chem. Commun.[J], 2003(6): 700-701.
    [18]Yajun W., Alexandra S., Caruso F.,et al. Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. Chem Mater.[J], 2008, 20 (3): 848-858.
    [19]Caruso F., Caruso M. A., MEhwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science,1998,282:1111-1114.
    [20] Wang Q., Li H., Chen L.Q,, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14): 2211-2214.
    [21] Wang Z.L, Feng X.D., Polyhedral Shapes of CeO_2 Nanoparticles[J]. J. Phys. Chem. B, 2003, 107(49):13563-13566.
    [22] Zhang D.S., Fu D. X., Shi L. Y., et al. Carbon nanotube assisted synthesis of CeO2 nanotubes. [J]. J. Solid State Chem., 2007, 180(2): 654-660.
    [23] A. Corma, J. Y. Chane-Ching, M. Airian, C. Martinez. Synthesis and catalytic properties of thermally and hydrothermally stable, high-surface-area SiO2-CeO2 mesostructured composite materials and their application for the removal of sulfur compounds from gasoline[J]. J. Catal. 2004, 224 (2):441-448.
    [24] C.Y. Ni, X. Z. Li, Z, G. Chen, H. li, X. Q. Jia, I. Shah, J.Q. Xiao. Oriented polycrystalline mesoporous CeO2 with enhanced pore integrity[J]. Micropo. Mesopor. Mater. 2008, 115(3): 247-252.
    [25] Y. H.Cong, G. L.Wang, M. H.Xiong, Y. J.Huang, Z.YHong, D. L.Wang, J. J.Li, L. B. Li, A Facile Interfacial Reaction Route To Prepare Magnetic Hollow Spheres with Tunable Shell Thickness [J]. Langmuir. 2008,24(13) 6624-6629.
    [26] Z. X.Wang, M.Chen, L. M.Wu, Synthesis of Monodisperse Hollow Silver Spheres Using Phase-Transformable Emulsions as Templates[J]. Chem.Mater. 2008, 20(10):3251-3253.
    [27] Zhang D. S., Fu H. X., Shi L. Y., et al.. Carbon nanotube assisted synthesis of CeO_2 nanotubes [J]J. Solid State Chem., 2007, 180: 654-660.
    [28] Abi-aad E., Bechara r., Grimblot J., et al.. Preparation and characterization of ceria under an oxidizing atmosphere. Thermal analysis, XPS, and EPR study[J]. Chem. Mater., 1993, 5(6): 793-797.
    [1]La R J, Hua Z A, Li H L,et al. Template synthesis of CeO_2 Ordered nanowire arrays[J ].Mat Sci Eng A ,2004,368:14 5-148.
    [2]Sun C W ,Li H,Wang Z X,et al.Synthesis and charetacterization of polycrystalline CeO_2 nanowires[J].Chem Lett,2004,33:662-663.
    [3]Han W Q, Wu L J, Zhu Y M. Formation and oxidation state of CeO_(2-x) nanotubes[J].J Am Chem Soc,2005,127:12814-12815.
    [4]Tang C C, Bando Y, Liu B D, et al.Cerium oxide nanotubes prepared from cerium hydroxide Nanotubes[J] Adv Mater,2005,17:3005-3009.
    [5]Zhou K B,Yang Z Q ,YangS.Highly reducible CeO_2 nanotubes[J].Chem Mater, 2007,19:1215-1217.
    [6]Zhang D S,Pan C S,Shi L Y, et al.A highly reactive catalyst for CO oxidation:CeO_2 nanotubes synthesized using carbon nanotubes as removable templates[J]. Microporous Mesoporous Mater.2009,117:193-200.
    [7]王建兵.高效稳定湿式氧化催化剂的研制及反应机理的探讨[D].北京:清华大学,2007.
    [8]M Triki, Z Ksibi, A Ghorbel, et al. Preparation and characterization of CeO_2-TiO_2 support for Ru catalysis: Application in CWAO of p-hydroxybenzoic acid[J]. Microporous and Mesoporous Materials. 2009, 117,431.
    [9]Yan Z G,Yan C H.Controlled synthesis of rare earth nanostructures[J]. J.Mater. Chem.,2008, 18,5046-5059.
    [10]Tsunekawa S, Fukuda T. Blue shift in ultraviolet absorption spectra of monodisperse CeO_(2-x)J ]J Appl Phys,2000,87:1318-1321.
    [11]Martin P,Parker S C,Sayle D C,et al.Atomistic modeling of multilayered ceria nanotubes[J]. Nano Lett.2007,7:543-546.
    [12]Wang,Z.L. Feng X.D., .Polyhedral Shapes of CeO_2 Nanoparticles [J]J.Phys. Chem.B. , 2003107:13563-13566.
    [1] Lee S B, Mitchell D T, Trofin L, Nevanen T K, S(?)derlund H, Martin C R. Antibody-based bio-nanotube membranes for enantiomeric drag separations[J]. Science, 2002, 296: 2198.
    [2] Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P. DNA Translocation in Inorganic Nanotubes[J]. Nano. Lett., 2005,5:1633.
    [3] Park J, Kim H S, Bard A J. Novel Carbon-Doped TiO_2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano. Lett., 2006, 6:24.
    [4] Bae C D, Yoo H J, Kim S Y, Lee K G, Kim J Y, Sung M M, Shin H J. Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications[J]. Chem.Mater., 2008, 20: 756.
    [5] Christ, C. L. Palygorskite: new X-ray data[J]. Am. Miner., 1969,54:198.
    [6] Gonzalez F, Pesquera C, Benito I. Thermal investigation of acid-activated attapulgites: influence of isomorphic substitution in the octahedral sheet[J]. Thermochimica Acta, 1992, 194: 239.
    [7]Barrios M S, Gonzalezl V F, Rodriguezm A V. Acid activation of a palygorskite with HC1: Development of physico-chemical, textural and surface properties[J]. Appl. Clay. Sci., 1995,10: 247.
    [8]陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报,2003,31(10):959-964
    [9]代伟伟,刘义新.安徽明光凹凸棒土盐酸改性前后的矿物学特征及其孔结构[J].矿物学报,2005,25(4):393-398.
    [10]Kosuge K, Shimada K, Tsunashima A. Preparation and characterization of porous silica materials obtained from serpentinite by acid treatment[J]. Nippon Kagaku Kaishi, 1993, 4: 335.
    [11]Latif A N, Weaver E C. Kinetics of acid-dissolution of palygorskite (attapulgite) and sepiolite[J]. Clays. Clay. Miner., 1969,17:169.
    [12]陈天虎,徐惠芳,彭书传,汪家权,徐晓春.凹凸棒石与酸反应纳米尺度研究——反应机理和表面积变化[J].高校地质学报,2004,10(1):98-105.
    [13]陈天虎,徐晓春,岳书岳.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社,2004:145-160.
    [14]Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L. Mesoporous CeO_2 and CuO-loaded mesoporous CeO_2: Synthesis, characterization, and CO catalytic oxidation property[J]. Micropor. Mesopor. Mater., 2005, 85:157.
    [15]DushkinC D, Kralchevsky P A, Yoshimura H, Nagayama K. Lateral Capillary Forces Measured by Torsion Microbalance[J]. Phys. Rev. Lett., 1995, 75: 3454.
    [16]Huis M A, KunnemanL T, Overgaag K, Xu Q, Pandraud G, Zandbergen H W, Vanmaekelbergh D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy [J]. Nano. Lett., 2008, 8(11): 3959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700