用户名: 密码: 验证码:
基于PDMS的自组装及转移印刷制备微结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,器件微型化成为目前诸多领域的关注重点。作为传统微结构加工技术的光刻技术,能够加工微纳米级特征尺寸的大规模集成电路,在工业生产和科学研究中得到广泛应用。然而光刻技术需要昂贵的光学曝光设备、苛刻的加工环境、复杂的工艺流程和仪器维护,并且仅能在少数光刻胶、半导体和金属等材料上制备微结构。而微流控芯片、生物芯片、有机电子器件、微全分析系统等新兴领域和分析化学、生命科学、物理等传统领域都需要基于非半导体材料的微结构,同时要求加工技术简单而快捷,具有高效费比。因此研究基于非半导体材料的微结构加工技术对上述领域具有重要的理论和实用价值。
     聚合物材料以其微纳尺度的分子链结构、稳定而可控的合成反应、简易而低价的操作工艺、功能多样化等性能使其在很多领域都有广泛应用,尤其是制备微纳米尺度的图形结构。目前已出现了很多基于聚合物材料的非传统的微结构加工技术,如纳米压印技术、软印刷技术、自组装技术等。而目前最为有效的途径是将现有的光刻技术和这些基于聚合物材料的微结构加工技术的优点结合起来,制备出具有特定功能的图形结构。本文研究了聚二甲基硅氧烷(PDMS)的性能,提出了基于PDMS的自组装和转移印刷制备微结构的方法,为实现微纳图形结构的制备提供了一种经济可靠的手段。
     本文对PDMS的化学结构、合成反应和应用领域进行了分析。并用纳米压痕法对PDMS的机械性能进行了表征。实验结果表明,从10:1至1:1的范围内,配比为6:1的PDMS具有最大的弹性模量和硬度。用PDMS复制模铸纳米压痕阵列和AFM机械刻划图案,研究了该材料复制复杂二维和三维图形结构的精度和质量,为其作为模具材料提供了保证。
     利用PDMS与金属薄膜之间的热膨胀系数和弹性模量的巨大差异,在PDMS表面热沉积Au膜,而后冷却收缩自发形成复杂的褶皱图案。对其平面上热沉积Au膜形成的褶皱图案进行了理论分析和实验研究,提出了预防、减弱或消除褶皱图案的方法。针对复杂而有序的褶皱图案,建立了基于傅立叶变换和灰度共生矩阵的自组装褶皱图案的评价方法,从而实现了褶皱图案的排列方向、周期有序性等方面的定量分析。
     利用光刻技术和超精密切削技术制备了硬质模板,经复制模铸转至PDMS表面,进而调控出规则有序的褶皱图案。由于PDMS基体表面形貌和褶皱图案之间的相互关系,得到了两种不同的复合微结构。利用光刻图案和超精密切削图案中的光栅结构调控出锯齿状褶皱图案,并分析了锯齿状褶皱图案形成的主要原因。
     建立了基于PDMS粘附作用的转移印刷技术,制备了Au/Ti/PDMS复合图形结构。利用纳米划痕技术对电子束蒸发和离子溅射沉积Au膜的膜基结合强度进行了定量表征,得到了利用AFM力曲线对不同配比PDMS的粘附力进行了定性表征,为建立基于PDMS粘附作用的转移印刷提供了实验和理论指导。选择电子束蒸发在Si表面光刻图形上沉积纳米厚度的Ti/Au双层膜,以及超精密切削图形复制而来的PDMS图形化表面,利用PDMS的粘附作用和Ti粘结层,实现了Ti/Au双层膜图形结构转移至图形化PDMS表面。
With the development of science and technology, miniaturization has become major concern in many fields. As a conventional technique for fabricating microstructures, photolithography has manufactured ultra-large scale integrated circuits from the micro- to nanoscale with high precision, which has been widely used in industrial production and scientific research. But common photolithophography needs expensive optical exposure equipments and its maintenance, rigid circumstances, complex processes, and only used to fabricate semiconductor, metal, and several photosensitive resist. Microstructures fabricated by non-conventional lithography with low cost, high efficiency and simple process based on non-semiconductor are urgently required in some emerging fields such as microfluidics, biologic chips, chip on a lab, micro total analysis system and organic electronics, as well as in conventional field such as analytical chemistry, life science and physics. Therefore, study on microfabricaiton based on non-semiconductor is of great significance to the above mentioned fields whatever in theory or in application.
     Because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated, polymers are widely used in many areas, especially fabricating patterns in micro- and nanoscale. At present numerous non-lithographic technologies based on polymers are under development to fabricate patterns in micro- and nanoscale, for example, nanoimprint lithography, soft lithography, and self-assembly. As we know, the most effective approach is integration with these developed technologies to fully utilize each advantage to fabricate functional pattern based on polymers. In this thesis, polydimethylsiloxane (PDMS) was investigated in quality. And the techniques based on self assembly and transfer printing were developed to fabricate microstructures based on PDMS, which provided a reliable and economical route to pattern in micro- and nanoscale. The detailed contents of this thesis contain:
     Chemical construction, synthetic reaction and main characteristic of PDMS were investigated to study its potential application. Nanoindentation was used to measure elastic modulus and hardness of PDMS with different mixing ratio. Experimental result indicated that PDMS with mixing ratio of 6:1 had maximal elastic modulus and hardness from 10:1 to 1:1. Nanopatterns made by nanoindentation and machanical scratch based on AFM diamond tip were replicated to PDMS surface. By replication of 2D and 3D microstructures with complex morphology, resolution and quality factor of replica molding were investigated to ganrantee the performance of PDMS as a mold material.
     Due to the large thermal expansion mismatch, a thin metal film thermally deposited on a thick compliant elastomer substrate undergoes compression strain when the system is cooled. And then the metal film buckles spontaneously into complex, ordered structures with distinctive features. Theoretical analysis and experimental research about wrinkle patterns in a metal film deposited on a thick PDMS substrate were both studied to establish effective steps which could prevent, reduce or avoid wrinkle formation. The specification and evaluation criteria for typical wrinkle morphology was established, whick was based on two dimensional Fast Fourior Transfer (FFT) and gray level co-occurance matrix. The distribution, direction and order of wrinkle patterns can be exactly judged by this criterion.
     Depend on patterned PDMS surface replicated from hard masters fabricated by photolithography and ultra-precision machining technique, ordered wrinkle patterns were modulated. Owing to interrelation between wrinkle and substrate in characteristic size, two different modulated patterns were obtained. Herringbone wrinkles were achieved by stripe substrates which were replicated from etched Si wafers and tooth marks in Al samples manufactured by ultra-precision turning. Foramation mechanics of herringbone wrinkle was investigated.
     A transfer printing technique based on PDMS adhesion was established to fabricate Au/Ti/PDMS composite patterns. By nanoscratch experiements, the quantitative measurement was implemented to estimate and compare adhesion strength of coating-substrate deposited respetively by electron beam evaporation and ion sputtering. And the qualitative measurement was performed to evaluate adhesion force of PDMS with different mixing ratio. Aboved mentioned measure results provided experimental foundation for transfer printing. A Ti/Au bilayer in nanoscale was first deposited on a patterned Si wafer by electron beam evaporation, and then placed onto the PDMS relief surface replicated from tooth marks in Al samples without applied pressure. Due to strong adhesion between PDMS and Ti/Au, Au/Ti bilayer on contact regions could be transferred from the Si wafer to PDMS surface.
引文
1 J.X.Shi,H.Li,P.S.He.Micro-and Nano-Patterning of Polymers.Chinese Science Bulletin.2004,49(14):1431-1436
    2 H.Ito,E.Rerchmanis,O.Nalamasn.Polymers for Microand Nano-Patterning Science Technology,Acs Symp.Series.1998,706:262-275
    3 K.E.Peterson.Silicon as a Mechanical Material.Proc.IEEE.1982,70(5):420-457
    4 S.R.Quake,A.Scherer.From Micro-to Nanofabrication with Soft Materials.Science.2000,290(5496):1536-1540
    5 H.W.Li,W.T.S.Huck.Polymers in Nanotechnology.Current Opinion in Solid State & Materials Science.2002,6(1):3-8
    6 J.Bardeen,W.H.Brattain.Physical Principles Involved in Transistor Action.Physical Review.1949,75(8):1208-1225
    7 J.S.Kilby.Invention of the Integrated Circuit.IEEE Transactions on Electron Devices.1976,23(7):648-654
    8 崔铮.微纳米加工技术及其应用.高等教育出版社,2005:3-6
    9 王阳元,康晋锋.硅集成电路光刻技术的发展与挑战.半导体学报.2002,23(3):225-237
    10 G E.Moore.Cramming More Circuits on Chips.Electronics.1965,19(4):114
    11 黄璇,黄德欢.微电子学技术发展的瓶颈和出路.科学.2002,54(6):7-10
    12 S.Y.Chou,P.R.Krauss,P.J.Renstrom.Imprint of Sub-25 Nm Vias and Trenches in Polymers.Applied Physics Letters.1995,67(21):3114-3116
    13 S.Y.Chou,P.R.Krauss,P.J.Renstrom.Nanoimprint Lithography.Journal of Vacuum Science & Technology B.1996,14(6):4129-4133
    14 S.Y.Chou,P.R.Krauss,P.J.Renstrom.Imprint Lithography with 25-Nanometer Resolution.Science.1996,272(5258):85-87
    15 P.Ruchhoeft,M.Colburn,B.Choi,et al.Patterning Curved Surfaces:Template Generation by Ion Beam Proximity Lithography and Relief Transfer by Step and Flash Imprint Lithography.Journal of Vacuum Science & Technology B.1999,17(6):2965-2969
    16 T. Bailey, B. J. Choi, M. Colburn, et al. Step and Flash Imprint Lithography: Template Surface Treatment and Defect Analysis. Journal of Vacuum Science & Technology B. 2000, 18(6):3572-3577
    17 S. Y. Chou, C. Keimel, J. Gu. Ultrafast and Direct Imprint of Nanostructures in Silicon. Nature. 2002, 417(6891):835-837
    18 S. I. A. International Technology Roadmap for Semiconductors. 2003
    19 S. Zankovych, T. Hoffmann, J. Seekamp, et al. Nanoimprint Lithography: Challenges and Prospects. Nanotechnology. 2001, 12(2):91-95
    20 W. W. Hu. Nanoimprint Lithography: Capabilities, Applications, and Challenges. Abstracts of Papers of the American Chemical Society. 2006, 231:93
    21 A. Kumar, G. M. Whitesides. Features of Gold Having Micrometer to Centimeter Dimensions Can Be Formed through a Combination of Stamping with an Elastomeric Stamp and an Alkanethiol "Ink"Followed by Chemical Etching. Applied Physics Letters. 1993, 63(14):2002-2004
    22 Y. Xia, E. Kim, X. M. Zhao, et al. Complex Optical Surfaces Formed by Replica Molding against Elastomeric Masters. Science. 1996, 273(5273):347-349
    23 X. M. Zhao, Y. Xia, G. M. Whitesides. Fabrication of Three-Dimensional Micro-Structures: Microtransfer Molding. Advanced Materials. 1996, 8(10):837-840
    24 E. Kim, Y. Xia, X. M. Zhao, et al. Solvent-Assisted Microcontact Molding: A Convenient Method for Fabricating Three-Dimensional Structures on Surfaces of Polymers. Advanced Materials. 1997, 9(8):651-654
    25 Y. S. Kim. Fabrication of Three-Dimensional Microstructures by Soft Molding. Applied Physics Letters. 2001, 79(14):2285-2287
    26 K. J. Hsia, Y. Huang, E. Menard, et al. Collapse of Stamps for Soft Lithography Due to Interfacial Adhesion. Applied Physics Letters. 2005, 86:154106
    27 W. Zhou, Y. Huang, E. Menard, et al. Mechanism for Stamp Collapse in Soft Lithography. Applied Physics Letters. 2005, 87:251925
    28 Y. G. Y. Huang, W. X. Zhou, K. J. Hsia, et al. Stamp Collapse in Soft Lithography. Langmuir. 2005, 21(17):8058-8068
    29 Y.Xia,G.M.Whitesides,Soft Lithography.Angewandte Chemie-International Edition.1998,37:550-575
    30 G.M.Whitesides,B.Grzybowski.Self-Assembly at All Scales.Science,2002,295(5564):2418-2421
    31 李恒,石锦霞,何平笙.亚观尺度的自组装.化学通报.2005,68(2):100-105
    32 M.Park,C.Harrison,P.M.Chaikin,et al.Block Copolymer Lithography:Periodic Arrays of Similar to 10(11) Holes in 1 Square Centimeter.Science.1997,276(5317):1401-1404
    33 J.Y.Cheng,A.M.Mayes,C.A.Ross.Nanostructure Engineering by Templated Self-Assembly of Block Copolymers.Nature Materials.2004,3(11):823-828
    34 J.Y.Cheng,C.A.Ross,H.I.Smith,et al.Templated Self-Assembly of Block Copolymers:Top-Down Helps Bottom-Up.Advanced Materials.2006,18(19):2505-2521
    35 J.Y.Cheng,C.A.Ross,E.L.Thomas,et al.Templated Self-Assembly of Block Copolymers:Effect of Substrate Topography.Advanced Materials.2003,15(19):1599-1602
    36 D.Sundrani,S.B.Darling,S.J.Sibener.Guiding Polymers to Perfection:Macroscopic Alignment of Nanoscale Domains.Nano Letters.2004,4(2):273-276
    37 M.A.Poggi,E.D.Gadsby,L.A.Bottomley,et al.Scanning Probe Microscopy.Analytical Chemistry.2004,76(76):3429-3443
    38 黄德欢.纳米技术与应用.中国纺织大学出版社,2001:6-103
    39 袁哲俊.纳米科学与技术.哈尔滨工业大学出版社,2005:14-183
    40 A.A.Tseng,A.Notargiacomo,T.P.Chen.Nanofabrication by Scanning Probe Microscope Lithography:A Review.Journal of Vacuum Science &Technology B.2005,23(3):877-894
    41 M.A.McCord,R.F.W.Pease.Lift-Off Metallization Using Poly(Methyl Methacrylate) Exposed with a Scanning Tunneling Microscope.Journal of Vacuum Science & Technology B.1988,6(1):293-296
    42 H.J.Mamin.Thermal Writing Using a Heated Atomic Force Microscope Tip.Applied Physics Letters.1996,69(3):433-435
    43 P. Vettiger, G. Cross, M. Despont, et al. The "Millipede"-Nanotechnology Entering Data Storage. IEEE Transactions on Nanotechnology. 2002, 1(1):39-55
    44 H. Pozidis, W. Haberle, D. Wiesmann, et al. Demonstration of Thermomechanical Recording at 641 Gbit/in/Sup 2. Magnetics, IEEE Transactions on Nanotechnology, 2004, 40(4):2531-2536
    45 A. A. Tseng, A. Notargiacomo, T. P. Chen. Nanofabrication by Scanning Probe Microscope Lithography: A Review. Journal of Vacuum Science & Technology B. 2005, 23(3):877-894
    46 E. Schaffer, T. Thurn-Albrecht, T. P. Russell, et al. Electrically Induced Structure Formation and Pattern Transfer. Nature. 2000, 403(6772):874-877
    47 T. R. Hendricks, I. Lee. Wrinkle-Free Nanomechanical Film: Control and Prevention of Polymer Film Buckling. Nano Letters. 2007, 7(2):372-379
    48 杜星文,王长国,万志敏.空间薄膜结构的褶皱研究进展.力学进展.2006,36(2):187—189
    49 J. Genzer, J. Groenewold. Soft Matter with Hard Skin: From Skin Wrinkles to Templating and Material Characterization. Soft Matter. 2006, 2(4):310-323
    50 N. Bowden, S. Brittain, A. G. Evans, et al. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer. Nature. 1998, 393(6681): 146-149
    51 N. Bowden, W. T. S. Huck, K. E. Paul, et al. The Controlled Formation of Ordered, Sinusoidal Structures by Plasma Oxidation of an Elastomeric Polymer. Applied Physics Letters. 1999, 75(17):2557-2559
    52 C. Harrison, C. M. Stafford, W. H. Zhang, et al. Sinusoidal Phase Grating Created by a Tunably Buckled Surface. Applied Physics Letters. 2004, 85(18):4016-4018
    53 M. Watanabe, H. Shirai, T. Hirai. Wrinkled Polypyrrole Electrode for Electroactive Polymer Actuators. Journal of Applied Physics. 2002, 92(8):4631-4637
    54 X. M. Lu, Y. N. Xia. Electronic Materials - Buckling Down for Flexible Electronics. Nature Nanotechnology. 2006, 1(3): 163-164
    55 D. Y. Khang, H. Q. Jiang, Y. Huang, et al. A Stretchable Form of Single- Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science. 2006, 311(5758):208-212
    56 W. M. Choi, J. Z. Song, D. Y. Khang, et al. Biaxially Stretchable "Wavy" Silicon Nanomembranes. Nano Letters. 2007, 7(6): 1655-1663
    57 Y. G. Sun, W. M. Choi, H. Q. Jiang, et al. Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics. Nature Nanotechnology. 2006, 1(3):201-207
    58 C. Jiang, S. Singamaneni, E. Merrick, et al. Complex Buckling Instability Patterns of Nanomembranes with Encapsulated Gold Nanoparticle Arrays. Nano Letters. 2006, 6(10):2254-2259
    59 M. Watanabe. Preparation of Polypyrrole Film with Well-Ordered Corrugation. Synthetic Metals. 2006, 156(7-8):597-601
    60 T. Ohzono, M. Shimomura. Simple Fabrication of Ring-Like Microwrinkle Patterns. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006, 284:505-508
    61 W. X. Qian, R. B. Xing, X. H. Yu, et al. Highly Oriented Tunable Wrinkling in Polymer Bilayer Films Confined with a Soft Mold Induced by Water Vapor. Journal of Chemical Physics. 2007, 126(6):064901
    62 S. J. Kwon, P. J. Yoo, H. H. Lee. Wave Interactions in Buckling: Self-Organization of a Metal Surface on a Structured Polymer Layer. Applied Physics Letters. 2004, 84(22):4487-4489
    63 T. Ohzono, S. I. Matsushita, M. Shimomura. Coupling of Wrinkle Patterns to Microsphere-Array Lithographic Patterns. Soft Matter. 2005, 1(3):227-230
    64 P. J. Yoo, K. Y. Suh, S. Y. Park, et al. Physical Self-Assembly of Microstructures by Anisotropic Buckling. Advanced Materials. 2002, 14(19):1383-1387
    65 P. J. Yoo, S. Y. Park, S. J. Kwon, et al. Microshaping Metal Surfaces by Wave-Directed Self-Organization. Applied Physics Letters. 2003, 83(21):4444-4446
    66 T. Ohzono, M. Shimomura. Geometry-Dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns. Langmuir. 2005, 21(16):7230-7237
    67 T. Ohzono, M. Shimomura. Effect of Thermal Annealing and Compression on the Stability of Microwrinkle Patterns. Physical Review E. 2005, 72(2):025203
    68 K. Efimenko, M. Rackaitis, E. Manias, et al. Nested Self-Similar Wrinkling Patterns in Skins. Nature Materials. 2005, 4(4):293-297
    69 M. Watanabe. Striped-Pattern Formation of a Thin Gold Film Deposited onto a Stretched Elastic Silicone Substrate. Journal of Polymer Science Part B: Polymer Physics. 2005, 43(12): 1532-1537
    70 M. Watanabe. Wrinkles Formed on a Thin Gold Film Deposited onto Stretched Elastic Substrates. Polymers for Advanced Technologies. 2005, 16(10):744-748
    71 T. Ohzono, M. Shimomura. Ordering of Microwrinkle Patterns by Compressive Strain. Physical Review B. 2004, 69(13): 132202
    72 K. Efimenko, W. E. Wallace, J. Genzer. Surface Modification of Sylgard-184 Poly(Dimethyl Siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science. 2002, 254(2):306-315
    73 T. Ohzono, M. Shimomura. Simulation of Strain-Induced Microwrinkle-Pattern Dynamics with Memory Effect. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2005, 44(2): 1055-1061
    74 M. W. Moon, S. H. Lee, J. Y. Sun, et al. Wrinkled Hard Skins on Polymers Created by Focused Ion Beam. Proceedings of the National Academy of Sciences of The United States of America. 2007, 104(4): 1130-1133
    75 庄可,肖珂,王国杰.热诱导金属/聚合物膜系图案化控制的研究.高等学校化学学报.2004,25(1):157—158
    76 W. T. S. Huck, N. Bowden, P. Onck, et al. Ordering of Spontaneously Formed Buckles on Planar Surfaces. Langmuir. 2000, 16(7):3497-3501
    77 C. M. Stafford, C. Harrison, K. L. Beers, et al. A Buckling-Based Metrology for Measuring the Elastic Moduli of Polymeric Thin Films. Nature Materials. 2004, 3(8):545-550
    78 P. C. Lin, S. Yang. Spontaneous Formation of One-Dimensional Ripples in Transit to Highly Ordered Two-Dimensional Herringbone Structures through Sequential and Unequal Biaxial Mechanical Stretching. Applied Physics Letters. 2007, 90(24):241903
    79 C. M. S. Torres. Alternative Lithography. Kluwer Academic Publishers, 2002:169-204
    80 J. R. Anderson, D. T. Chiu, R. J. Jackman, et al. Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in Pdms by Rapid Prototyping. Science. 1993,273:895-899
    81 A. Kumar, H. A. Biebuyck, G. M. Whitesides. Patterning Self-Assembled Monolayers: Applications in Materials Science. Langmuir. 1994, 10(5):1498-1511
    82 D. C. Duffy, J. C. McDonald, O. J. A. Schueller, et al. Rapid Prototyping of Microfluidic Systems in Poly (Dimethylsiloxane). Analytical Chemistry. 1998, 70(23):4974-4984
    83 J. C. McDonald, D. C. Duffy, J. R. Anderson, et al. Fabrication of Microfluidic Systems in Poly (Dimethylsiloxane). Electrophoresis. 2000, 21(1):27-40
    84 J. C. McDonald, G. M. Whitesides. Poly (Dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35(7):491-499
    85 M. K. Chaudhury, G. M. Whitesides. Direct Measurement of Interfacial Interactions between Semispherical Lenses and Flat Sheets of Poly (Dimethylsiloxane) and Their Chemical Derivatives. Langmuir. 1991, 7(5):1013-1025
    86 罗运军,桂红军.有机硅树脂及其应用.化学工业出版社,2001:6—17
    87 J. E. Mark. Polymer Data Handbook. Oxford University Press,1999:411-435
    88 H. Takao, M. Okoshi, N. Inoue. Swelling and Modification of Silicone Surface by F 2 Laser Irradiation. Applied Physics A. 2004, 79(4-6): 1571-1574
    89 D. B. Wolfe, J. B. Ashcom, J. C. Hwang, et al. Customization of Poly (Dimethylsiloxane) Stamps by Micromachining Using a Femtosecond-Pulsed Laser. Advanced Materials. 2003, 15(1):62-65
    90 C. A. Coenjarts, C. K. Ober. Two-Photon Three-Dimensional Microfabrication of Poly (Dimethylsiloxane) Elastomers. Chemistry of Materials. 2004, 16(26):5556-5558
    91 G. M. Pharr, W. C. Oliver. Measurement of Thin Film Mechanical Properties Using Nanoindentation.MRS Bull.1992,17(7):28-33
    92 M.R.VanLandingham,J.S.Villarrubia,W.F.Guthrie,et al.Nanoindentation of Polymers:An Overview.Macromolecular Symposia.2001,167:15-43
    93 J.G Swadener,J.Y.Rho,G M.Pharr.Effects of Anisotropy on Elastic Moduli Measured by Nanoindentation in Human Tibial Cortical Bone.Journal of Biomedical Materials Research.2001,57(1):108-112
    94 W.C.Oliver,G M.Pharr.An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments.Journal of Materials Research.1992,7(6):1564-1583
    95 D.Armani,C.Liu,N.Aluru.Re-Configurable Fluid Circuits by Pdms Elastomer Micromachining.Micro Electro Mechanical Systems,1999.MEMS'99.Twelfth IEEE International Conference.1999:222-227
    96 F.Carrillo,S.Gupta,M.Balooch,et al.Nanoindentation of Polydimethylsiloxane Elastomers:Effect of Crosslinking,Work of Adhesion,and Fluid Environment on Elastic Modulus.Journal of Materials Research.2005,20(10):2820-2830
    97 S.Gupta,F.Carrillo,C.Li,et al.Adhesive Forces Significantly Affect Elastic Modulus Determination of Soft Polymeric Materials in Nanoindentation.Materials Letters.2007,61(2):448-451
    98 夏加飞,孙涛,闫永达等.基于原子力显微镜(Afm)的微加工系统.光学精密工程.2003,11(2):125-129
    99 孙涛,闫永达,高党忠等.激光聚变靶球充气微孔扫描探针加工技术研究.中国科学E辑.2004,34(3):305-310
    100 铁摩辛柯,盖莱.弹性稳定理论.科学出版杜,1958:366-368
    101 Z.Y.Huang,W.Hong,Z.Suo.Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate.Journal of The Mechanics and Physics of Solids.2005,53(9):2101-2118
    102 X.Chen,J.W.Hutchinson.Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates.Journal of Applied Mechanics-Transactions of the Asme.2004,71(5):597-603
    103 X.Chen,J.W.Hutchinson.A Family of Herringbone Patterns in Thin Films. Scripta Materialia.2004,50(6):797-801
    104 Z.Y.Huang,W.Hong,Z.Suo.Evolution of Wrinkles in Hard Films on Soft Substrates.Physical Review E.2004,70(3):030601
    105 R.Huang,S.H.Im.Dynamics of Wrinkle Growth and Coarsening in Stressed Thin Films.Physical Review E.2006,74(2):026214
    106 张志龙,李吉成,沈振康.局部傅里叶变换系数各阶矩的纹理鉴别性能分析.中国图象图形学报.2006,11(1):33-40
    107 曹永智.嵌段共聚物薄膜自组装有序纳米微结构的研究.博士论文,2006:36-39
    108 谷春静,蒋大林.图像处理中皮肤纹理评价方法的研究.仪器仪表学报.2005,26(z2):404-406,415
    109 张腊梅,王国喜,庄雪晶.薄膜褶皱的纹理特征分析.哈尔滨工业大学学报.2006,38(9):1419-1421
    110 白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究.哈尔滨工业大学学报.2005,37(12):1667-1670
    111 靳宏磊,王兴松.基于纹理分析的表面粗糙度等级识别.中国图象图形学报:A辑.2000,7:612-615
    112 周.冯建,于文英等.基于灰度共生矩阵的表面粗糙度研究.光学与光电技术.2007,5(2):39-41
    113 R.M.Haralick,I.Dinstein,K.Shanmugam.Textural Features for Image Classification.IEEE Transactions on Systems,Man,and Cybernetics.1973,3:610-621
    114 R.M.Haralick.Statistical and Structural Approaches to Texture.Proceedings of the IEEE.1979,67(5):786-804
    115 薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析.电子学报.2006,34(1):155-158
    116 C.Kim,P.E.Burrows,S.R.Forrest.Micropatterning of Organic Electronic Devices by Cold-Welding.Science.2000,288(5467):831-833
    117 A.L.Thangawng,M.A.Swartz,M.R.Glucksberg,et al.Bond-Detach Lithography:A Method for Micro/Nanolithography by Precision Pdms Patterning.Small.2007,3(1):132-138
    118 Z.Wang,R.B.Xing,J.Zhang,et al.Micropatterning of Metal Films Coated on Polymer Surfaces with Epoxy Mold and Its Application to Organic Field Effect Transistor Fabrication. Applied Physics Letters. 2004, 85(5):831-833
    119 N. Stutzmann, T. A. Tervoort, K. Bastiaansen, et al. Patterning of Polymer-Supported Metal Films by Microcutting. Nature. 2000, 407(6804):613-616
    120 S. H. Hur, D. Y. Khang, C. Kocabas, et al. Nanotransfer Printing by Use of Noncovalent Surface Forces: Applications to Thin-Film Transistors That Use Single-Walled Carbon Nanotube Networks and Semiconducting Polymers. Applied Physics Letters. 2004, 85(23):5730-5732
    121 J. Zaumseil, M. A. Meitl, J. W. P. Hsu, et al. Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing. Nano Letters. 2003,3:1223-1227
    122 L. R. Bao, L. Tan, X. D. Huang, et al. Polymer Inking as a Micro-and Nanopatterning Technique. Journal of Vacuum Science & Technology B. 2003,21:2749-2754
    123 C. Kim, M. Shtein, S. R. Forrest. Nanolithography Based on Patterned Metal Transfer and Its Application to Organic Electronic Devices. Applied Physics Letters. 2002, 80(21):4051-4053
    124 C. Kim, S. R. Forrest. Fabrication of Organic Light-Emitting Devices by Low-Pressure Cold Welding. Advanced Materials. 2003, 15(6):541-545
    125 Y. L. Loo, R. L. Willett, K. W. Baldwin, et al. Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in Plastic Electronics. Applied Physics Letters. 2002, 81(3):562-564
    126 Y. L. Loo, R. L. Willett, K. W. Baldwin, et al. Interfacial Chemistries for Nanoscale Transfer Printing. Journal of the American Chemical Society. 2002, 124(26):7654-7655
    127 C. D. Schaper. Patterned Transfer of Metallic Thin Film Nanostructures by Water-Soluble Polymer Templates. Nano Letters. 2003, 3(9): 1305-1309
    128 A. Rar, J. N. Zhou, W. J. Liu, et al. Dendrimer-Mediated Growth of Very Flat Ultrathin Au Films. Applied Surface Science. 2001, 175:134-139
    129 L. A. Baker, F. P. Zamborini, L. Sun, et al. Dendrimer-Mediated Adhesion between Vapor-Deposited Au and Glass or Si Wafers. Analytical. Chemistry. 1999, 71(19):4403-4406
    130 H. Schmid, H. Wolf, R. Allenspach, et al. Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing.Advanced Functional Materials.2003,13(2):145-153
    131 E.Menard,L.Bilhaut,J.Zaumseil,et al.Improved Surface Chemistries,Thin Film Deposition Techniques,and Stamp Designs for Nanotransfer Printing.Langmuir.2004,20(16):6871-6878
    132 朱晓东,米彦郁.膜基结合强度评定方法的探讨——划痕法,压入法,接触疲劳法测定的比较.中国表面工程.2002,15(4):28-31
    133 李恒德,肖纪美.材料表面与界面.清华大学出版社,1990:139-162
    134 张泰华.微/纳米力学测试技术及其应用.机械工业出版社,2004:80-83
    135 J.Song,D.J.Srolovitz.Adhesion Effects in Material Transfer in Mechanical Contacts.Acta Materialia.2006,54(19):5305-5312
    136 徐宗伟.原子力显微镜碳纳米管探针的制备及其检测性能研究.博士论文.2007:52-56
    137 华杰,徐盛明.原子力显微镜测定力—距离曲线的原理和应用.金属矿山.2003.1:25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700