用户名: 密码: 验证码:
光学电流互感器的抗磁场干扰技术和数字化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测量方法准确化、测量传输光纤化、测量输出数字化是电子式互感器的主要特征,也是互感器发展的必然趋势。光学电流互感器是满足上述特征的理想互感器,但是测量温漂和不能长期可靠运行这两大世界难题,阻碍了光学电流互感器的实用化进程。
     作者所在团队自主研制的基于Faraday磁光效应原理的光学电流互感器(OCT),具有良好的动态响应能力和绝缘性能,能够精确的测量非周期分量及各种交流谐波分量,并且无饱和现象,并利用自适应光学传感原理解决了阻碍光学电流互感器实用化的测量温漂问题,稳态测量精度达到0.2s级以上,能够满足现代电力系统发展的要求。本文通过深入研究光学电流互感器的抗磁场干扰技术,解决了光学电流互感器的长期运行可靠性问题,并深入研究了光学电流互感器的数字化问题。
     针对光学电流互感器的长期运行可靠性问题,为了期望获得抗磁场干扰能力,本文研究了基于光学电流互感器的抗磁场干扰理论。首次提出了螺线管三相磁场正交技术和御磁光路结构技术,并设计了御磁光学传感头。这种光学传感头实现了光路结构的彻底简化,使其长期运行可靠性得到了极大地提高;同时,御磁光学传感头能够满足在常规电力系统中的抗电磁干扰能力的要求,与偏振光围绕通电导体旋转具有条件对偶性。与螺线管聚磁光学传感头相比,御磁光学传感头体积减小,成本降低。在现场连续25个月的运行表明,采用这种结构的OCT能够在实际环境中长期可靠地运行。
     国际标准IEC60044-7/8规定了电子式互感器和二次设备的数字接口,首先提出了合并单元的定义。在变电站自动化标准IEC61850体系中,9-1和9-2规定了间隔层和过程层之间的通信,都涉及到合并单元的实现目标。对这三个标准进行深入的研究和比较,对于合并单元的实现及改进具有重要意义。本文从实现合并单元的角度,基于IEC61850-9-1标准将合并单元划分为三个功能模块。根据合并单元和光学电流互感器接口具有多任务并行处理的特点,利用FPGA实现了合并单元的样机制作,并通过测试,进而提出了构建光学测量系统的思想。
     电力系统的监视与控制正在从时间断面逐步走向时间过程,电力系统的保护与控制正在从电网的点和局部逐步走向系统全局。为了阻止破坏性越来越大的电力系统灾难事故,人们正在构建电力系统安全防御体系。以相角测量单元(PMU)为基础的提供电网准确动态过程测量数据的广域测量系统(WAMS)将成为电网保护控制的基础测量系统。铁磁线圈电流互感器不能准确反映电网动态过程,在发生故障时,由于非周期分量的存在,使铁磁线圈电流互感器迅速达到饱和,不能准确测量出故障点电流,这将直接导致PMU测量失准,从而影响整个广域测量系统的可靠性。而具有良好的动态响应能力的光学电流互感器的广泛应用将大大提高电网保护与控制的可靠性,基于光学电流互感器的上述特点,提出了构建广域光学测量系统的构想。
     利用法拉第磁光效应研制出的光学电流互感器克服了电磁式电流互感器和Rogowski线圈电流互感器的不足,具有宽广的动态测量范围和频率响应范围,不仅可以测量工频交流信号、各次谐波信号、直流量,而且可以高保真地复现电网暂态信号,具有良好的动态响应能力。利用此光学电流互感器可以完全得到线路全电流的特点,提出了基于光学电流互感器的超高压长线路全电流差动保护算法。
Measuring accurately, transmitting optical-fibredly, and output digitized are the three main features of electronic transducer, and it is also the development directions of transducer. OCT is the perfect transducer for these three features, but the temperature excursion problem and the no operating stability problem have baffled its utility in power system.
     The Optical Current Transducer following Faraday magneto-optic effect has been totally researched and developed only by our teams. OCT has no saturation phenomenon, has good dynamic response ability and insulating property, it also can measure the non-periodic component and the various alternating current harmonic components accurately. Aiming at the temperature excursion problem that OCT faced, the Adaptive Optical Transducing Principle has been presented to solve it, and the precision of steady state measurement can be upper to 0.2s degree, so that it can completely meet the demands of the development of modern power system. This paper has researched the defending magnetic-field interference principle of OCT to solve the question of no operating stability and has also studied the digitized technique of OCT.
     To obtain the ability of defending magnetic-field interference, this paper has put forward Solenoid Three Phases Magnetism Orthogonal Principle and Bucking Magnetism Optical Transducing Principle, and has designed bucking magnetism optical sensing head. This kind of sensing head has simplified light path structure thoroughly, the long time operation stability has been improved greatly. This sensing head can meet the demand of the ability of defending magnetic field interference in power system, and it is conditional duality with polarized light around electrify conductor. Compared with solenoid gathering magnetism optical sensing head, the volume is smaller and the cost is lower of bucking magnetism sensing head. 25 months continuous operation in field indicates that OCT which has used this structure can operate stably in practice.
     IEC60044-7/8 prescribes that merging unit is the digital interface of electronic transducer and secondary equipment. In the standard of substation automation IEC 61850, 9-1 and 9-2 prescribe the transmission of bay level and process level, they all relate to the implement goal of merging unit(MU). Comparing and studying these three standards deeply, it is very important to realize and improve merging unit. This paper divides MU to three function module based on IEC61850-9-1. According to the multitask parallel characteristic of MU and OCT interface, the scheme to realize MU used FPGA is confirmed, and the idea to set up optical measurement system(OMS) is put forward.
     Monitor and control of power system is moving from time section to time process, and protection and control of power system is moving from spot and local to global of electric network. To avoid the severe destroy of power system accident, safety defense system of power system has been set up. Wide area measurement system (WAMS) which based on phase measurement unit (PMU) supplies the accurate dynamic process datum to electric network, and will become the base measurement system of electric network protection and control. Ferromagnetic coil current transducer can’t measure dynamic process of electric network accurately, when accident comes, it saturates quickly because of non-periodic component, this induces PMU measures unsafely, the reliability of WAMS is descending. According to those characteristics of OCT, this paper has built up wide area optical measurement system (WAOMS).
     OCT based on Faraday magneto-optic effect conquers the shortcomings of electromagnetism current transducer and Pogowski coil current transducer, has wide dynamic measurement range and frequency response range, it can not only measure line-frequency alternating current signal, kinds of harmonic signals and non-periodic signal, but also recur transient signals of electronic network exactly, it has better dynamic response ability. This kind of OCT can get hold of the entire current of transmission lines completely, according to this characteristic, this paper put forward the entire current differential protection arithmetic of extra high voltage (EHV) base on OCT.
引文
1郭志忠.电子式电流互感器研究评述.继电器. 2005, 33(14): 11~16.
    2国家电力公司发输电运营部.预防110kV~500kV变压器(电抗器)和互感器事故措施汇编.国家电力. 1999: 203~209.
    3许继电力科学研究院.高科技产业化项目介绍——自适应光学电流互感器, 2006.
    4 Emerging Technologies Working Group & Fiber Optic Sensors Working Group. Optical Current Transducers for Power Systems: A Review. IEEE Trans. On P. D. . 1994, 9(4): 1778~1787.
    5尚勇,李洪杰,严璋.光学电流传感器研究的历史与现状.电力电容器. 2000, 1(3): 16~19.
    6王少奎.电子式电流互感器的发展现状及研制难点.变压器. 2003, 40(5): 20~25.
    7叶妙元,肖霞.光电互感器.专论. 1999, 8(10): 11~16.
    8 A J Rogers. Optical Methods for Measurement of Voltage and Current on Power Systems. Optics and Laser Technology. 1977, 6(12): 273~283.
    9 A M Smith. Optical Fibers for Current Measurement Applications. Optics and Laser Technology. 1980, 9(2): 25~29.
    10 IEC60044-8. Instrument Transformers-Part8: Electronic Current Transformers, 2002.
    11 H Aulich, W Beck, N Douklias. Magneto Optical Current Transformer 2. Components. Applied Optics. 1980, 19(22): 3735~3740.
    12 H Harms, A Papp. Magneto Optical Current Transformer 3. Measurements. Applied Optics. 1980, 19(22): 3741~3745.
    13张德塞,彭道军,彭剑.国内外光电式电流互感器研究现状.四川电力技术. 1999, 16(2): 53~60.
    14 T Mitsui, K Hosoe, H U sami. Development of Fiber Optic Voltage Sensors and Magnetic Field sensors. IEEE Trans Power Delivery. 1987, 2(1): 87~93.
    15 T W Cease, P Johnston. A Magneto-optical Current Transformer. IEEETrans Power Delivery. 1990, 5(5): 548~555.
    16 T D M afferone, T M M cClelland. 345kV Substation Optical Current Measurement System for Revenue Metering and Protective Relaying. IEEE Trans Power Delivery. 1991, 6(4): 1430~1437.
    17胡德民.介绍日本的几种互感器.变压器. 1981, 9(4): 20~24.
    18刘发胜.电流互感器的发展状况.电气时代. 2003, 17(8): 84~85.
    19李红斌,刘延冰,张卫军.用于110kV变电站的光学电流互感器.华中理工大学学报. 1995, 23(7): 6~10.
    20 Sato T, Sone I Hayashida H, et al. Development and Application of Bulk-optic Current Sensor. Tech. Digest, 11th OFS Conf.. 1996, 34(9): 130~133.
    21盛珑,高桦,张国庆,等.光学电流互感器系统的设计.高压电器. 1998, 5(9): 19~23.
    22盛珑,高桦,张国庆,等.光学电流互感器非线性问题的数值处理方法.电力自动化设备. 1998, 8(3): 13~15.
    23盛珑,高桦,张国庆,等.用于微机保护的光学电流互感器的开发.继电器. 1999, 27(3): 29~31.
    24盛珑,高桦,张国庆,等.光学电流传感器的输出特性分析.仪表技术与传感器. 1999, 11(2): 6~8.
    25李岩松,张国庆,于文斌,等.自适应光学电流互感器.中国电机工程学报. 2003, 23(11): 100~105.
    26李岩松,张国庆,于文斌,等.提高光学电流互感器准确度的组合方法.电力系统自动化. 2003, 27(19): 43~47.
    27李岩松,张国庆,于文斌,等.基于自适应滤波的光学电流互感器的信噪分离.电网技术. 2003, 27(11): 64~67.
    28于文斌,张国庆,李岩松,等.虚拟仪器在混合式光学电流互感器中的应用.电网技术. 2004, 28(16): 40~43.
    29于文斌,李岩松,张国庆,等.一种混合式光学电流互感器的设计.继电器. 2004, 32(4): 67~71.
    30胡林献,盛珑,郭志忠.光学电流互感器实用化技术研究.电测与仪表. 1996, 6(2): 3~7.
    31张国庆.光学电流互感器理论与实用化研究.哈尔滨工业大学博士论文, 2005.
    32李岩松,于文斌,张国庆,等.平方根Kalman自适应滤波及其在OCT中的应用.电力系统自动化. 2005, 29(11): 53~57.
    33尚秋峰,杨以涵,于文斌,等.光电电流互感器测试与校验方法.电力系统自动化. 2005, 29(9): 77~85.
    34于文斌,高桦,郭志忠.光学电流传感头的可靠性试验和寿命评估问题探讨.电网技术. 2005, 29(4): 55~59.
    35张国庆,李岩松,于文斌,等.独立量自适应光学电流传感原理及其应用.电网技术. 2005, 29(2): 34~37.
    36 M. Willsch, T. Bosselmann. Optical Current Sensor Application in the Harsh Environment of a 120 MVA Power Generator. Optical Fiber Sensors Conference Technical Digest. 2002, 17(3): 407~410.
    37乔卉,刘会金,王群峰.基于Rogowski线圈传感的光电电流互感器的研究.继电器. 2002, 30(7): 40~43.
    38李岩松.高精度自适应光学电流互感器及其稳定性研究.华北电力大学博士论文, 2004.
    39李岩松,郭志忠,杨以涵等.自适应光学电流互感器的基础理论研究.中国电机工程学报. 2005, 25(22): 21~26.
    40申烛,罗承沐.电子式电流互感器的新进展.电力系统自动化. 2001, 25(22): 59~63.
    41张贵新,赵清娇,罗承沐.电子式互感器的现状与发展前景.电力设备. 2006. 7(4): 108~109.
    42 Takahashi M. et al. Optical Current Sensor for DC Measurement. Transmision and Distribution Conference and Exhibition 2002, Asia Pacific. IEEE/PES. 2002, 9(1): 6~10.
    43 T.W. Cease, Driggans, Weikel. Optical Voltage and Current Sensors Used in a Revenue Metering System. IEEE Trans. on Power Delivery. 1991, 6(4): 1374~1379.
    44 Bohnert.K. Gabus.P. Optical Fiber Sensors for The Electric Power Industry Source. Optics and Lasers in Engineering. 2004 ,43(5): 511~526.
    45李岩松,郭志忠,杨以涵.提高光学电流互感器运行稳定的方法.电力系统自动化. 2006, 30(18): 61~64.
    46国家电网公司数字化变电站技术研讨会会议资料.北京, 2006.
    47任雁铭,秦立军,杨奇逊. IEC61850通信协议体系介绍和分析.电力系统自动化. 2000, 4(9): 62~65.
    48殷志良,刘万顺.变电站自动化系统过程层与间隔层串行通信研究.中国电力. 2004, (7): 29~32.
    49张永,罗苏南.数字式光电电流/电压互感器.电力自动化设备. 2002, 25(3): 47~49.
    50任雁铭,秦立军,杨奇逊. IEC61850通信协议体系介绍和分析.电力系统自动化. 2000, 3(4): 62~65.
    51葛荣良.数字化变电站技术与应用.上海电力. 2006, 5(6): 557~564.
    52李九虎,郑玉平,古世东.电子式互感器在数字化变电站的应用.电力系统自动化. 2007, 18(7): 94~97.
    53杨明.关于数字化变电站.供电技术. 2007, 11(1): 39~41.
    54 IEC61850-1. Communication Networks and Systems in Substations. Part1: Introduction and Overview, 2002.
    55万磊.数字式光电互感器合并单元及二次接口的研究.华中科技大学硕士论文. 2005: 1~29.
    56 IEC60044-8. Instrument Transformers-Part8: Electronic Current Transformers, 2002.
    57 IEC61850-9-1. Communication Networks and Systems in Substations, Part9-1: Specific Communication Service Mapping (SCSM)-Sampled Analogue Values Over Serial Unidirectional Multidrop Point to Point Link, 2002.
    58 IEC61850-9-2. Communication Networks and Systems in Substations, Part9-2: Specific Communication Service Mapping(SCSM)-For Process Bus, 2002.
    59 IEC61850-5 Communication networks and systems in substations- part 5: Communication requirements for functions and device models. 2003.
    60朱雷,盛春波.基于IEC 60044-8标准的电子式电流互感器数字输出编码块的FPGA实现.电力自动化设备. 2006, 2(8): 67~70.
    61张慧哲,李伟凯.基于IEC60044-8标准的电子式互感器数字输出接口的研究与设计.高压电器. 2005, 3(4): 286~291.
    62滕林,刘万顺,李贵存,贾清泉,李岩松.光学电流传感器及其在继电保护中的应用.电网技术. 2002, 26(1): 31~34.
    63 J. Song, P. G. Mclaren, D. J. Thomson. A Prototype Clamp-onMagneto-optical Current Transducer for Power System Metering and Relaying. IEEE Trans. On P. D. . 1995, 10(4): 1764~1770.
    64易本顺.光电式互感器的研究和发展及其在电力系统中的应用.武汉大学学报. 2002, 27(1): 57~62.
    65盛珑.光学电流传感器及其在电力系统中应用的研究.哈尔滨工业大学博士论文, 1999.
    66贺家李,宋从矩.电力系统继电保护原理.中国电力出版社. 1998: 432~470.
    67胡玉峰,陈德树.基于采样值差动的励磁涌流鉴别方法.中国电机工程学报. 2000, 20(9): 55~58.
    68陈德树,尹项根,张哲.再谈采样值差动保护的一些问题.电力自动化设备. 2000, 20(4): 1~3.
    69袁荣湘,陈德树,马天皓等.采样值电流差动保护原理的研究.电力自动化设备. 2000, 20(1): 1~3.
    70陈德树,马天皓,刘沛等.采样值电流差动微机保护的一些问题.电力自动化设备. 1996, 60(4): 3~8.
    71高厚磊.新型数字式分相电流差动保护的研究.天津大学. 1997, 31~56.
    72尹项根,陈德树,张哲等.故障分量差动保护.电力系统自动化. 1999, 23(11): 13~17.
    73 C. Rehtanz. Wide-area Measurement and Protection System for Emergency Voltage Stability Control. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. 2002, 16(2): 842~847.
    74高厚磊,江世芳.暂态故障分量电流的计算分析.山东工业大学学报. 2000, 30(2): 146~152.
    75张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原理研究——故障暂态过程分析及实现单端暂态量保护的可行性.电力自动化设备. 2001, 21(6): 1~5.
    76李红斌,张明明,刘延冰.几种不同类型电子式电流互感器的研究与比较.高电压技术. 2004, 30(1): 4~9.
    77陈秉乾,舒幼生,胡望雨.电磁学专题研究.高等教育出版社. 2001: 36~67.
    78贾起民,郑永令.电磁学.高等教育出版社. 2001: 80~112.
    79刘公强.磁光学.上海科学技术出版社. 2001: 25~38.
    80徐雁,向柯.一种基于FPGA&DSP的电子式互感器数字接口实现方案.高压电器. 2006, 7(3): 208~210.
    81贺志容,叶妙元,肖霞.基于CPLD的AOTV单光纤传输方案.高电压技术. 2004, 30(9): 32~33.
    82刘韬,楼兴华. FPGA数字电子系统设计与开发实例导航.人民邮电出版社. 2005: 31~66.
    83朱明程.现场可编程门阵列器件FPGA原理及应用设计.电子工业出版社. 1994: 16~47.
    84徐志军,徐光辉. CPLD/FPGA的开发与应用.电子工业出版社. 2002: 1~4.
    85吴继华,王诚.设计与验证Verilog HDL.人民邮电出版社. 2006: 1~8.
    86 CS8900A Product DataSheet. Cirrus Logic, Inc. 1999.
    87黄国刚,陈明,许海刚,赵宁.基于CS8900A的工业级嵌入式网络接口实现.新技术新仪器. 2005, 25(1): 16~17.
    88 Jian Zhang, Zhenhai Yuan, Yansong Li, et al. A New Method to Realize the Relay Protection of AOCT Following IEC61850. 2006 International Conference on Power System Technology, Chongqing City, China, 2006, 21(1): 127~128.
    89鞠平,郑世宇,徐群,等.广域测量系统研究综述.电力自动化设备. 2004, 24(7): 37~41.
    90王英涛.广域测量系统及其应用.中国电力科学研究院硕士学位论文, 2003.
    91郭志忠.电网自愈控制方案.电力系统自动化. 2005,29(10): 85~91.
    92 Kamwa. Wide-area Measurement Based Stabilizing Control of Large Power Systems-a Decentralized / Hierarchical Approach. IEEE Trans. on Power Systems. 2001, 16(1): 136~153.
    93 G. Phadke. Synchronized Phasor Measurements in Power Systems. IEEE Computer Applications in Power Systems. 1993, 4(1): 10~15.
    94 G. Phadke. Synchronized Phasor Measurements-a Historical Overview. Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. 2002,10(1): 6~10.
    95 Rehtanz, J. Bertsch. Wide Area Measurement and Protection System forEmergency Voltage Stability Control. Power Engineering Society Winter Meeting. 2002. IEEE, 2002,2(1): 27~31.
    96蔡运清,汪磊,郭志忠,等.广域保护(控制)技术的现状及展望.电网技术. 2004, 28(8): 20~25.
    97 S. H. Horowitz, A. G. Phadke. Boosting Immunity to Blackouts. Power and Energy Magazine, IEEE. 2003, 9(1): 47~53.
    98 G. T. Heydt, C. C. Liu, A. G. Phadke. Solutions for the Crisis in Electric Power Supply. Compu. App. In Power, IEEE. 2001,6(14): 22~30.
    99 C. Liu, J. Jung, G. T. Heydt. Conceptual Design of the Strategic Power Infrastructure Defense (SPID) System. IEEE Control Syst. 2000,3(8): 40~52.
    100 Amin. EPRI/DoD Complex Interactive Network/Systems Initiative: Self-Healing Infrastructure. Pro. 2nd DA RPA-JFACC Symp. Advances in Enterprise Control, IEEE Computer Soc. Press, Los Alamitos, Calif. , 2000.
    101 Amin. Toward Self-healing Energy Infrastructure Systems. IEEE Computer Applications in Power. 2000, 14(1): 20~29.
    102 H. You, V. Vittal, and Z. Yang,“Self-healing in Power System: an Approach using Islanding and Rate of Frequency Decline-based Load Shedding,”IEEE Transactions on Power Systems. 2003, 5(18): 174~181.
    103 C. Liu, J. Jung, V. Vittal. The Strategic Power Infrastructure Defense (SPID) System. IEEE Control Systems Magazine. 2000,8(3): 40~52.
    104 G. T. Heydt, C. C. Liu, A. G. Phadke. Crisis in the Electric Energy Supply-Solution for the Future. IEEE PES Computer Applications in Power. 2001,7(16): 22~30.
    105 C. Liu. Strategic Power Infrastructure Defense (SPID): A Wide Area Protection and Control System. Trans. And Distr. Conf. and Ex. 2002, IEEE/PES. 2002,10(1): 500~502.
    106 EPRI Technical Report. Conceptual Design of a Strategic Power Infrastructure Defense (SPID) System. 1999,11(15): 18~36.
    107 J. Jung, C. C. Liu. Multi-Agent Technology for Vulnerability Assessment and Control.IEEE. 2004,13(21): 101~108.
    108 W. Taylor. The Future in On-line Security Assessment and Wide AreaStability Control. IEEE Winter Meeting. 2000,1(5): 39~43.
    109 Kamwa, R. Gorndin. PMU Configuration for System Dynamic Performance Measurement in Large, Multi-area Power Systems. IEEE Trans. 2002,12(2): 385~394.
    110 Etzioni. Moving up the Information Food Chain: Deploying Softbots on the World Wide Web. Proceedings of the 13th National Conference on Artificial Intelligence, Porland. 2005,8(15): 4~8.
    111 N. Kosterev, C. W. Taylor, and W. A. Mittelstadt. Model Validation for the August 10, 1996 WSCC System Outage. IEEE Trans. Power Systems. 1999,14(3): 967~979.
    112伍叶凯,邹东霞,电容电流对差动保护的影响及补偿方案.继电器. 1997, 25(4): 4~8.
    113曾祥君,尹项根,陈浩.电力系统暂态过程同步记录的研究.电力系统及其自动化学报. 2001, 13(1): 1~4.
    114 R. Boyle,“The Tennessee V alley Authority’s Experience and Action Plan Swith Freestanding Oil-filled Current Transformer”. IEEE Trans. on PWRD. 1983, 3(4): 1769~1775.
    115 T revor W. M acDougall, Development of A Fiber Optic Current Sensor for Power System , IEEE Trans. on PWRD. 1992, 7(2) : 848~852.
    116易本顺,刘延冰,阮芳.光学电流传感器现场运行性能分析.中国电机工程学报. 1997, 2(17): 3~8.
    117高厚磊,江世芳.负荷电流对电流差动保护动作性能影响的分析.继电器. 1999, 27(1): 14~16.
    118贺家李.电力系统继电保护技术的现状与发展.中国电力. 1999, 4(10): 38~40.
    119郭征,贺家李.输电线纵联差动保护的新原理.电力系统自动化. 2004, 28(11): 1~5.
    120文明浩,陈德树,尹项根,等.超高压长线相量差动保护的研究.电力系统自动化. 2000, 24(20): 37~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700