用户名: 密码: 验证码:
医用镁合金力学性能与腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对医用可降解镁合金,本文选择具有生物相容性的Mn和Zn元素制备了Mg-Mn系和Mg-Zn-Mn系合金,用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、XRD、万能材料试验机、电化学测试系统和体外浸泡试验系统,研究了Mn和Zn对铸态合金微观组织、力学性能和腐蚀行为的影响规律、并对比研究了直接挤压和热处理后挤压对Mg-Zn-Mn系合金微观组织、力学性能和腐蚀行为的影响。最后对Mg-Zn-Mn合金进行动物体内植入试验,评价体内降解和力学性能衰退。得到如下结果:
     对铸态合金的微观组织和力学性能的研究发现:Mn能够细化镁合金的组织,并提高合金的拉伸强度,当Mn含量为1.48wt.%时,Mg-Mn合金的拉伸强度得到明显提高。Zn可以进一步细化铸态Mg-Mn合金的组织,并且在合金中形成Mg7Zn3相,铸态Mg-Zn-Mn系合金的拉伸强度、屈服强度和伸长率随Zn含量增加而增加,当Zn含量为3wt.%时,达到最高值,拉伸强度为218.6MPa,屈服强度为66.1MPa,伸长率为15.5%。
     挤压显著细化了Mg-Zn-Mn系合金的晶粒尺寸,显著提高了合金的拉伸强度和屈服强度。挤压后,Mg-1Zn-1Mn合金的拉伸强度为280.3MPa,屈服强度为246.5 MPa,伸长率为21.8%。随Zn含量增加,晶粒尺寸降低,当Zn含量增至3wt.%时,晶粒尺寸下降至3μm-5μm之间。合金的晶界处出现亚微米级的Mg7Zn3和MgZn相,拉伸强度和屈服强度进一步提高,但伸长率下降。挤压前均匀化热处理使挤压态合金的晶粒尺寸粗化,拉伸强度和屈服强度降低。
     腐蚀实验结果表明:Mn加入不会提高镁合金的耐蚀性能,但是当Mn含量达到1.48wt.%时,合金的耐蚀性能降低。Zn可以显著提高铸态Mg-Zn-Mn系合金的耐蚀性能,但当Zn含量达到3wt.%时,合金的耐蚀性能明显降低,挤压变形可以显著降低Mg-Zn-Mn系合金的腐蚀速率,使合金的自腐蚀电位正移,极化电阻提高;随着合金中的Zn含量增加,合金的耐蚀性能降低,腐蚀形式由点蚀转化为严重的晶界腐蚀。挤压前均匀化热处理可以降低高Zn含量(3wt.%)合金的腐蚀速率,使晶界处腐蚀得到减轻。通过对腐蚀机制的研究可知,由于凝固特性形成的Zn元素分布状态不同是造成铸态Mg-Zn-Mn系合金腐蚀形式不同的主要原因,而通过挤压的方法可以改变Zn元素的分布,减轻因Zn元素微观偏析所引起的腐蚀。
     动物体植入实验表明,镁合金植入3天后有较轻的炎症现象,两周后炎症现象消失。血液生化检测表明:植入3个月后,动物的肝功能和肾功能没有异常反应。在对镁合金植入体和骨结合界面的研究中发现:与骨组织接触的镁合金表面生成含有Ca和P的降解产物层。随着镁合金的降解,表面生成新生组织层,逐渐转化为新生骨组织,合金与骨组织结合良好。镁合金的抗弯强度随植入时间延长而降低,植入1个月后,抗弯强度为257.7MPa,约为原来的60%,植入3个月后,仍保持在113.6MPa,约为原来的30%,接近于人体骨皮质的抗弯强度。
Aimed at bio-degradable magnesium alloys for medicine application, biocompatable Mn and Zn elements were selected to develop Mg-Mn and Mg-Zn-Mn alloys. Influences rule of Mn and Zn on the as-cast microstructure, mechanical properties and corrosion behaviour of the magnesium alloys were investigated by the use of optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), XRD, mechanical properties testing, electrochemical measurement and in-vitro evaluations. Influence of extrusion and homogenization on the microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Mn alloys were also investigated. Implantation test was conducted to evaluate the in vivo degradation and mechanical properties reduction of magnesium implant. The results are summarized as follows:
     Microstructure observation and mechanical properties test showed that Mn can refine magnesium alloy, but also improve the tensile strength, and that significant increase in strength was found at 1.48wt.% Mn. Zn element can further refine the microstructure of the as-cast Mg-Mn alloy by forming Mg7Zn3 phase. The tensile strength, the elongation and the yield strength of the as-cast Mg-Zn-Mn alloys increased with increase in Zn content, and the highest properties was obtained at 3.0 wt% Zn, e.g. the ultimate tensile strength, yield strength and elongation were 218.6 MPa, 66.1MPa and 15.5%, respectively.
     The grain size of Mg-Zn-Mn alloys was refined remarkably and the tensile strength and the yield strength of the alloy were increased greatly after extrusion. The tensile strength, the yield strength and the elongation of the extruded Mg-1Zn-1Mn were 280.3 MPa, 246.5 MPa and 21.8%, respectively. With the increasing of Zn content, the grain size decreased, e.g. the grain size was 3-5μm at 3wt.% Zn. Sub micron Mg7Zn3 and MgZn phases appeared at grain boundary further increased the ultimate tensile strength and yield strength, but reduced the elongation. Homogenization treatment before the extrusion coarsened the grain size and reduced the tensile strength and yield strength.
     The corrosion testing showed that Mn could not improve the corrosion resistance. On the contrary, the corrosion resistance was reduced when Mn content exceeded 1.48 wt%. The corrosion resistance of the as-cast Mg-Zn-Mn alloys increased remarkably with Zn addition. However, the corrosion resistance decreased when Zn content was over 3wt.%. Extrusion treatment can significantly reduce the corrosion rate of Mg-Zn-Mn alloy, move the corrosion potential toward more noble and increase the corrosion resistance. With the increasing of Zn content the corrosion mode transformed from pitting corrosion to severe grain boundary corrosion. Homogenization heat treatment before extrusion can reduce the grain boundary corrosion and in turn reduce the corrosion rate of the alloy with high Zn content, such as 3wt.% Zn. The study on the corrosion mechanism showed that the segregation of Zn due to the different casting conditions contributed mainly to the different corrosion modes of the as-cast alloy. Extrusion treatment homogenized the distribution of Zn, therefore, reduced the corrosion rate.
     In vivo experiment showed the inflamma-tion appeared 3 days postimplantation, and disappeared 2 weeks postimplantation. Blood biochemistry analysis showed that no disorder was tested in the liver function and kidney function within 3 months implantation. Microstructure observation showed that a Ca-and P-containing degradation product layer was found at the interface between magnesium alloy implant and bone tissue. With the degradation of magnesium implant, newborn tissue layer formed on the surface of the magnesium implant and then transformed into newborn bone tissue gradually. The alloy and the newborn bone had good conjunction. The bending strength of the magnesium implant decreased with implantation time. The bending strength after 1 month implantation was 257.7 MPa, reduced by 40% in comparison with the original value, and 113.6 MPa after 3 months implantation, reduced by 70 %. However, the bending strength of the magnesium implant after 3 months postimplantation was still as high as the strength of natural bone.
引文
1 R. W. Cahn.非铁合金的结构与性能.丁道云等译.科学出版社, 1999: 111-212
    2 B. L. Mordike, T. Ebert. Magnesium properties, applications, potential. Materials Science and Engineering A. 2001, 302: 37-45
    3陈振华,镁合金.化学工业出版社, 2004: 80-82
    4 M. P. Staigera, A. M. Pietaka. Magnesium and its alloys as orthopedic biomaterials: A review . Biomaterials. 2006, 27 (9): 1728-1734
    5李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报. 2003, 11(10): 32-33
    6 F. Witte, J. Fischer, J. Nellesen. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006, 27(7) :1013-1018
    7 A. Lambotte. Lutilisation du magnesium comme materiel perdu danslosteosynthese. Bull Mem Soc Nat Chir. 1932, 28: 1325-1334
    8马培华.中国盐湖资源的开发利用与科技问题.地球科学进展. 2000, (4): 365-375
    9宋彭生.盐湖及相关资源开发利用进展.盐湖研究. 1998, (8): 50-68
    10宋雨来.稀土改性AZ91镁合金组织与腐蚀性能.吉林大学博士论文. 2007: 2-3
    11左铁镛. 21世纪轻质结构材料-镁及镁合金发展.新材料产业. 2007, 12: 21-24
    12 G. Ben-Hamu, D. Eliezer, S. K. Shin, S. Cohen. The relation corrosion behavior of Mg-Y-RE-Zr alloys. Journal of Alloys and Compounds. 2007, 431(1): 269-276
    13周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展.材料导报. 2003, 11(11): 16-17
    14 W. J. Kim, J. D. Park, U. S. Yoon. Superplasticity and superplastic forming of Mg-Al-Zn alloy sheets fabricated by strip casting method. Journal of Alloys and Compounds. 2008, 464(1): 197-204
    15陈振华.变形镁合金.化学工业出版社, 2003: 23-25
    16 S. R. Agnew, M. H. Yoo, N. C. Tomé. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materialia. 2001, 49: 4277-4289
    17 A. Sanschagrin, R. Tremblay, R. Angers, D. Dubé. Mechanical properties and microstructure of new magnesium-lithium base alloys. Materials Science and Engineering A. 1996, 220(1): 69-77
    18 S. S. Park, G. T. Bae, D. H. Kang, I. Jung, K. S. Shin, N. J. Kim. Microstructure and tensile properties or twin-roll cast Mg-Zn-Mn-Al alloys.. Scripta Materialia. 2007, 57: 793-796
    19 M. Michael, B. H. Avedesian. ASM Specialty Handbook Magnesium and Magnesium Alloys. The Materials Information Society. 1999: 12-13
    20俞耀庭,张兴栋.生物医用材料.天津大学出版社, 2000: 58-59
    21雷明凯,潘巨利.生物医用金属材料的腐蚀.生物医学工程学杂志. 2001, 18 (4): 624-628
    22窦光宇.人体健康需要镁.金属世界. 2005, (4): 42-43
    23 S. Adel, F. Al-Jurf. Magnesium balance and distribution during total parentetal nutrition Effect of calcium additives. Clinica Chimica Acta. 2000, 294: 1-26
    24 T. Okuma. Magnesium and bone strength. Nutrition. 2001, 17: 679-680.
    25 R. J. Elin. Magnesium metabolism in helth and health and disease. Disease-a-Month, 1988. 34(4): 166-218
    26 F. I. Wolf, A. Cittadini. Chemistry and biochemistry of magnesium. Molecular Aspects of Medlcine. 2003, 24: 3-9.
    27 A. Hartwig. Role of magnesium in genomic stability Mutat Res/Fund. Mol Mech Mutagen. 2001, 475: 113-121
    28 L. C. Li, J. C. Gao, Y. Wang. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface & Coatings Technology. 2004. 185: 92-98
    29黄晶晶,任伊宾,张炳春,杨柯.镁及镁合金的生物相容性研究.稀有金属材料与工程. 2007, 36 (6): 1103-1105
    30张广道,黄晶晶,杨柯,张炳春,艾红军.动物体内植人镁合金的早期实验研究. 2007, 43(11): 1187-1188
    31 V. V. Troitskii, D. N. Tsitrin. The resorbing metallic alloy‘Osteosinthezit’asmaterial for fastening broken bone. Khirurgiia. 1944, 8: 41-44.
    32 M. S. Znamenskii. Metallic osteosynthesis by means of an apparatus made of resorbing metal. Khirurgiia. 1945, 12:60-63
    33 E. D. McBride. Absorbable metal in bone surgery. Joumal of the American Podiatrc Medical Association. 1938, 111:2464-2467
    34 F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005, 26: 3557-3563.
    35 F. Witte, H. Ulrich, M. Rudert, E. Willbold. Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. Journal of Biomedical Materials Research. 2007, 81(3): 748-756.
    36徐丽萍,张二林,杨柯.医用可降解镁合金体外体内的降解.中国材料研究学会2006年会论文集.北京, 2006: 345-346
    37于国宁,张二林,徐丽萍.骨组织对镁合金植入材料的骨反应.中国材料研究学会2006年会论文集.北京, 2006: 331-332
    38 Z. J. Li, X. Gu, S. Q. Lou, Y. F. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008, 29: 1329-1344
    39许涛,贺春宝.元素镁概论.微量元素与健康研究. 2004, 1(3): 60-61
    40 N. Saris. Magnesium: an update on physiological, clinical and analytical aspects. Clinica Chimica Acta. 2000, 294:1-26
    41 J. Vormann. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine. 2003, 24: 27-37
    42左禹,黄建中.材料的耐蚀性和腐蚀数据.化学工业出版社, 2002: 307-308
    43宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为.物理化学学报. 2006, 22(10): 1222-1226
    44王勇,高家诚,张艳.纯镁在模拟体液中的腐蚀机理.中国有色金属学报. 2007, 17(12): 1982-1984
    45 C. L. Liu, Y. C. Xin, G. Y. Tang, P. K. Chu.Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid.Materials Science and Engineering A. 2006,456(1): 350-357
    46黄晶晶,杨柯.镁合金的生物医用研究.材料导报. 2006, 20(4): 68-69.
    47 P. Zartner, R. Cesnjevar, H. Singer. First successful implantation of a biode gradable metal stent into the left pulmonary artery of a preterm baby. Catheterization and Cardiovascular Lnterventions. 2005, 66:590-596
    48 B. Heublein, R. Rohde, V. Kaese. Bio-corrosion of magnesium alloys: a new principlein cardiovascular implant technology? Heart. 2003, 89(6): 651-656
    49耿芳,谭丽丽,张炳春,郑丰,杨柯.多孔镁作为新型骨组织工程材料的研究探索.材料导报. 2007, 21(5): 76-79
    50樊东辉,徐政,李世普,闫玉华,陈晓明.多孔β-TCP材料的生物降解性能及相关机理研究.中国医学康复杂志. 2003, 18(3): 166-168
    51 J. C. Wataha, C. T. Hanks, R. G. Craig. The in vitro effects of metal cations on eukaryotic cellmetabolism. Journal of Biomedical Materials Research. 1991, 25: 1133-1134
    52 L. D. Dorr, R. Bloebaum, J. Emmanual . Histological, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clinical Orthopedics Related Research. 1990, 261: 82-85
    53王益志.杂质对高纯镁合金耐蚀性的影响.铸造. 2001, 50(2): 61-65
    54李冠群,吴国华,樊昱.镁合金的腐蚀研究现状与防护途径.材料导报. 2005, 19(11): 60-61
    55尹冬松,张二林,曾松岩. Zn对铸态Mg-Mn合金的力学性能和腐蚀性能的影响.中国有色金属学报. 2008, 18(3): 388-390
    56 G. L. Song. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science. 2007, 49: 1696-1701
    57 J. C. Gao, S. Wu, L. Y. Qiao, Y. Wang. Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluid. Transactions Nonferrous Metals Society of China. 2008, 18: 589-590
    58 K. M. Bobby, R. K. Singh. In vitro degradation and mechanical integrity of calcium-containin magnesium alloys in modified-simulated body fluid. Biomaterials. 2008. 9: 2306-2314
    59 E. L. Zang, L. P. Xu, K. Yang. Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Materialia. 2005, 53(5): 523-527.
    60 Y. Z. Wang, G. Y. Xiong, H. L. Luo. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Applied Surface Science. 2008, 254: 5514-5516
    61 X. P. Zhang, Z. P. Zhao, F. M. Wu . Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. Journal of Materials Science. 2007, 42(20): 8523-8528
    62王亚明,王福会,雷廷权.镁合金表面生物陶瓷涂层在模拟体液中的腐蚀性能.热处理技术与装备. 2007, 12(6): 7-9
    63 P. Shi, W. F. Ng, M. H. Wong. Improvement of corrosion resistance of pure magnesium in Hank’s solution by microarc oxidation with sol-gel TiO2 sealing. Journal of Alloys and Compounds. 2008 ( Available online)
    64黄晶晶,任伊宾,张炳春.可降解镁植入材料表面涂层的制备及其性能.中国有色金属学报. 2007, 17(9): 1466-1468
    65 Y. W. Song, D. Y. Shan, E. H. Han. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters. 2008, 62: 3276-3279
    66任伊宾,黄晶晶,杨柯.纯镁的生物腐蚀研究.金属学报. 2005, 41(11): 1128-1130
    67 H. Wang, Y. Estrin, Z. Zuberov. Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters. 2008, 62: 2476-2479
    68 Q. Yan, N. Cao, N. F. Yu. Research on the properties of laser welded joints of aluminum killed cold rolled steel. China Welding. 2002, 11(2): 143-145
    69 L. J. Polmer. Mggnesium alloys and applications [J ]. Materials Science and Technology. 1994, 10(1): 79 - 85
    70 D. Y. Maeng, T. S. Kim. Microstructure and strength of rapidly solidified and extruded Mg - Zn alloys. Scripta Mater, 2000, 43: 385 - 389
    71邹宏辉,曾小勤,翟春泉,丁文江.镁合金的强韧化进展.机械工程材料2004, 28(5): 1-2
    72王斌,方西亚,易丹青,周玲伶,罗文海.稀土元素钇和铈对Mg-Zn-Zr系合金组织和性能的影响.机械工程材料. 2004, 29(5): 17-18.
    73张菊梅,蒋百灵,王志虎,袁森.镁合金强韧化的研究现状及发展.热加工工艺. 2006, 35 (8): 65-68
    74李萍. Nd对镁合金AZ91力学性能的影响.有色金属. 2008, 60 (1): 23-24
    75朱伟民,王大平,熊建义.骨组织工程支架材料的生物学特征及临床应用.中国组织工程研究与临床康复. 2007, 48(11): 9782-9784.
    76 C. E. Wen, Y. Yamada, K. Shimojima. Compressibility of porous magnesium foam: dependency on porosity and pore size. Materials Letters. 2004, 58 : 357-358
    77 Y. Yamada. Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05g/ cm3. Joumal Materials Science Letters. 1999, 18 :1477
    78沈剑,凤仪,王松林.多孔生物镁的制备与力学性能研究.金属功能材料. 2006, 13(3): 9-10
    79孙红霞.多孔镁的制备及镁合金表面磷酸钙深层的研究.兰州理工大学硕士论文. 2005: 47-49
    80倪中华,易红,王跃轩,顾兴中.预防心血管再狭窄纳米颗粒载药涂层支架的研究.东南大学学报(自然科学版). 2004, 34(6): 790-791
    81粟爽,李万甫.三种不同材料血管内支架的生物相容性.中国组织工程研究与临床康复. 2008, 17(12): 3293-3295
    82皇甫强,于振涛,罗丽娟,牛金龙,张亚峰,袁思波,王莹.钛合金血管内支架研究进展. 2007, 24(1): 30-33
    83 P. Peeters, M. Bosiers, J. Verbrist. Preliminary results after application of absorbable metal stents in patients with critical limb is chemia. Journal of Endovascular The rapy. 2005, 12 (1) : 125-128
    84申祥,倪中华.生物可降解镁合金支架的扩张性能.东南大学学报(自然科学版). 2008, 38(1): 50-53
    85 R. Waksman, R. Pakala, P. K. Kuchulakanti. Safety and efficacy of bioabsorbable magnesium alloy stents in porcinecoronary arteries. Cathete rization and Cardiovascular Interventions. 2006, 68 (4) : 607-617
    86 C. D. Mario, H. Griffiths, O. Goktekin. Drug-elu-ting bioabsorbable magnesium stent. Journa of Interventiona Cardiology. 2004, 17 (6): 391-395
    87 P. Cao , M. Qian, D. H. StJohn. Effect of manganese on grain refinement of Mg-Al based alloys. Scripta Materialia. 2006, 54: 1853-1858
    88 B. Clarkj, L. Zabfyr, Z. Moser. Binary alloy phase diagrams. American society for metals, 1986: 1563- 1566
    89 A. Singh, A. P. Tsai. Structural characteristics ofβprecipitates in Mg-Zn based alloys. Scripta Materialia. 2007, 57(10): 941-944
    90 X. Gao, J. F. Nie. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy. Scripta Materialia. 2007, 57(7): 655-658
    91周海涛,曾小勤,刘文法,丁文江.稀土铈对AZ61变形镁合金组织和力学性能的影响.中国有色金属学报. 2004, (1): 102-103
    92钟培道.失效分析.理化检验-物理分册. 2005, 41(8): 429-430
    93 M. Easton, D. StJohn. Grain refinement of Al alloys: Part I. The nucleant and solute paradigms-A Review of the Literature. Metallurgical and Materials Transactions A. 1999, 30(6): 1613-1623
    94许晓嫦,刘志义,党朋.室温强塑性变形下回溶和再析出的机理研究.材料科学与工艺. 2005, 13(2): 178-181
    95党朋,许晓嫦,刘志义,于文斌,宁爱林,曾苏民.铝合金等径角挤压和多向压缩变形中析出相的回溶研究.材料热处理学报. 2007, 28(5): 83-85
    96 A. Belyakov, W. Gao, H. Miura. Strain-induced grain evolution in polycrystalline copper during warm deformation. Metallurgical and Materials Transaction A. 1998, 29A(12): 2957-2965
    97 A. Belyakov, T. Miura, H. ine-grained. Structure formation in Austenitic stainless steel under multiple deformation at 0.5 Tm. Materials Transaction, 2000, 41(4): 476-484
    98 Z. F. Li, J. Dong, X. Q. Zeng, C. Lu, W. J. Ding. Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg-9Al-1Zn alloy. Materials Science and Engineering A. 2007, 466: 134–139
    99 F. J. Humphreys. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Metallurgica. 1977, 25(11): 1323-1344
    100 S. E. Ion, F. J. Humphreys, S. H. White. Dynamic recrystallization and development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica. 1982, 30(10): 1909-1919
    101 R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King, T. R. Mcnelley, H. J. Mcqueen, A. D. Rollett. Current Issnes in Recrystallization: a Review. Materials Science and Engineering A. 1997, 238: 219–274
    102崔忠圻.金属学与热处理.机械工业出版社, 1993: 182-183.
    103 C. H. Worner, A. Cabo. On the grain growth inhibition by second phase particles. Acta Metallurgica. 1987, 35(11): 2801-2804
    104 X. Y. Song, M. Rettenmayr. Modeling recrystallization in a materialcontaining fine and coarse particles. Computational Materials Science. 2007, 40: 234-245
    105 Y. Zhang, X. Q. Zeng, L. F. Liu, C. Lu, H. T. Zhou, Q. Li, Y. P. Zhu. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr. Materials Science and Engineering A. 2004, 373: 320–327
    106吕炎.锻件的组织与性能.国防工业出版, 1983: 177-179
    107 Z. Yang, Y. C. Guo, J. P. Li, F. He, F. Xia, M. X. Liang. Plastic deformation and dynamic recrystallization behaviors of Mg–5Gd–4Y–0.5Zn–0.5Zr alloy. Materials Science and Engineering A. 2008, 485: 487-491
    108 S. Kobayashi, T. Takasugi.Grain refinement of a Fe3Al-based alloy using k-Fe3AlC precipitate particles stimulating nucleation of recrystallization. Intermetallics. 2007, (15) : 1659-1665
    109潘青林. Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究.中南大学博士论文. 2000: 39-41
    110 S. S.葛列里克.金属和合金的再结晶.仝健民译.机械工业出版社, 1985: 351-360
    111毛卫民.金属的再结晶与晶粒长大.冶金工业出版社, 1994: 84-93
    112 B. Genevieve, P. Nadine. The corrosion of pure magnesium sulphate solutions. Corrosion Science. 2001, 43(3): 471-473
    113 H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, T. Aizawa Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Materials Transactions. 2001, 42(7): 1317-1321
    114张德康.不锈钢的局部腐蚀.科学出版社. 1982: 78-80
    115 A. Arutunow, K. Darowicki. DEIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion. Electrochimica Acta. 2008, 53: 4387-4395
    116 M. Teradaa, D. M. Escribab, I. Costaa, E. Materna-Morrisc, A. F. Padilhab. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing at 600°C. Materials Characterization. 2008, 59: 663-668
    117曾荣昌.镁合金的腐蚀与腐蚀疲劳.中国科学院金属研究所博士论文. 2003: 94-97
    118陈际达,王远亮,蔡绍皙,曹颖.仿真骨科材料制备的新方法.高技术通讯. 2001, (8): 22-24
    119刘文成,关凯,时述山.骨传导材料及其作用.颈腰痛杂志. 2004, (2):18-19
    120温靖,顾为望,杨海英. SPF级新西兰兔血液生理生化指标的测定.动物医学进展. 2005, 26(1): 81-83
    121李增强,孙淑华,孟金萍,王艳蓉,杨旭,张琨,刘云波. SPF级与普通级新西兰兔血液学参数的比较.中国比较医学杂志. 2008, 18(4): 52-54
    122张玲,赖炳森,孙泰英.新西兰雄兔部分血液生化指标正常值测定.实验动物科学与管理. 2001, 18(4): 42-43
    123黄占杰,陈小平,朱光明,李彦,刘苏欣.可切削生物活性陶瓷及其在颔面整形外科的应用.中国生物医学工程学报. 2000, 19(1): 66-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700