用户名: 密码: 验证码:
基于RNA干扰技术的加工番茄抗CMV、ToMV的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病毒病是近年来严重危害加工番茄的主要病害之一,这与加工番茄种植面积不断扩大、栽培时间持续和重茬地大面积增加密切相关。黄瓜花叶病毒(Cucumbermosaic virus,CMV)和番茄花叶病毒(Tomato mosaic virus,ToMV)是严重危害加工番茄的两个主要病毒。在实际生产中,这两种病毒往往复合侵染加工番茄,使加工番茄上出现严重的条斑坏死症状,果实则表现为僵小畸形,表面易形成褐色斑块。严重影响加工番茄的产量和品质。
     多年来,人们一直都在努力地寻找解决病毒病对农作物的危害方法,而抗病毒育种是目前解决这一难题的主要策略,由于传统育种方法费时费力等局限性,从而大大地限制了育种工作的进程。近年来,随着植物基因工程技术的快速发展,尤其是RNAi技术的发展为解决这一难题开辟了一条新的途径。
     本研究以从加工番茄上分离出来的黄瓜花叶病毒分离物NS0-4和番茄花叶病毒分离物SCS-2的全长基因序列设计干扰靶序列,利用RNAi技术构建了一条抗CMV和ToMV加工番茄的技术体系。本文的主要研究内容如下:
     1. RNAi载体的构建:利用软件对CMV分离物NS0-4和ToMV分离物SCS-2全长基因序列进行分析,设计干扰片段,通过同位酶(BamHI/BglII)将两个干扰片段的序列进行拼接,同时以一段大小为266bp的核苷酸序列为内含子,构建了4个RNAi载体(pBi35STC4、pBi35STC9、pBi35STC12和pBi35STC14)。
     2.烟草遗传转化的研究:分别将4个重组质粒通过电击的方法导入农杆菌GV3101中,通过菌落PCR鉴定,表明重组质粒已被成功导入到农杆菌中。然后利用农杆菌介导的叶盘法转化普通烟(Nicotiana tabacum),经过卡那霉素(50mg/L)筛选及PCR鉴定,结果表明在转pBi35STC4的56株再生烟草植株中,有32株为转基因烟草;在转pBi35STC9的44株再生烟草植株中,有28株为转基因烟草;在转pBi35STC12的58株再生烟草植株中,有35株为转基因烟草;在转pBi35STC14的50株再生烟草植株中,有30株为转基因烟草。
     3.烟草上RNAi效果的初步评价:将转基因烟草、野生型烟草进行如下3种处理:第一种处理只接种CMV;第二种处理只接种ToMV;第三种处理同时接种CMV和ToMV。通过症状观察及RT-PCR检测,结果显示在接种20d野生型烟草100%均表现出了不同程度的病毒症状,在接种30d,转pBi35STC9烟草中近50%表现出了不同程度的病毒症状,而其余50%的烟草在40d后也表现出不同的病毒症状;而转pBi35STC4、pBi35STC12和pBi35STC14烟草中,有10%~30%则在接毒40d表现出了病毒症状,结果表明在T0代转基因烟草中,转pBi35STC4、pBi35STC12和pBi35STC14烟草可延迟病毒发生,抗病毒效果比转pBi35STC9烟草好。经过对转基因烟草的RNAi效果的初步评价为转化加工番茄奠定了基础。
     4.加工番茄遗传转化的研究:经过烟草的初步筛选,筛选出抗性较好的3个含重组质粒(pBi35STC4、pBi35STC12和pBi35STC14)的农杆菌,并将其转化加工番茄红番3号,通过卡那霉素(50mg/L)筛选及PCR鉴定,结果显示从1200个加工番茄子叶外植体中,获得27株转pBi35STC4加工番茄再生植株,经过PCR检测,其中有14株为转基因植株,转化效率为1.16%;从1500个加工番茄子叶外植体中,获得33株转pBi35STC12加工番茄再生植株,经过PCR检测,其中有19株为转基因植株,转化效率为1.26%;从1000个加工番茄子叶外植体中,获得23株转pBi35STC14加工番茄再生植株,经过PCR检测,其中有13株为转基因植株,转化效率为1.30%。
     5.加工番茄上RNAi效果的初步评价:将转基因加工番茄植株与转基因烟草一样分为3组做3种处理,通过机械摩擦接种病毒,随后观察症状和RT-PCR检测。结果显示野生型加工番茄在接毒25d时100%表现出病毒症状,而转pBi35STC4、pBi35STC12和pBi35STC14加工番茄在接毒40d仅有0%~20%表现出病毒症状。转pBi35STC12和pBi35STC14加工番茄延迟病症的发生20~25d;而转pBi35STC4加工番茄则只能延迟5~10d。总之,转pBi35STC12和pBi35STC14加工番茄对病毒的干扰效果要比转pBi35STC4加工番茄要好。这为获得抗多种病毒加工番茄奠定了基础。
In recent years, virus disease is one of the serious diseases endangering the processingtomato in xinjiang. This is due to planting area expand of processing tomato, long cultivationand continuous cropping areas to increase. Cucumber mosaic virus (CMV) and Tomatomosaic virus (ToMV) are two main viruses which causes serious damage to processing tomato.In actual production, processing tomato plants are mixed infection by two viruses, processingtomato branches appear seriously streak necrosis, while it generated brown patches and jiangsmall defects on the fruit surface.The yields and quality of the processing tomato are seriouslyaffected.
     Over the years, it has been difficult to find a solution to control crop virus diseaseeffectively, and anti-virus breeding becomes the main strategy to solve this problem. Beacusethe traditional breeding method takes long time, the progress of breeding work was limitedgreatly. In recent years, with rapid development of plant gene engineering technology,especially the development of RNAi technology, it provides a new way to solve this difficultproblem.
     Interefence target fragments were designed based on the full-length sequences of CMVNS0-4and ToMV SCS-2isolated from processing tomato and technology system for breedingprocessing tomato against CMV and ToMV were constructed by RNAi.
     1. The construction of RNAi expression vectors: The full-length sequence of the isolateof CMV NS0-4and ToMV SCS-2were analysised using the software, respectively. Twointerfence fragments were designed and joined with enzyme (BamHI/BglII), using a266bpnucleotide for introns. Four RNAi vectors (pBi35STC4、pBi35STC9、pBi35STC12andpBi35STC14) were constructed. Through a series of enzyme digestion and sequencing, theRNAi vectors were successfully constructed.
     2. The research of tobacco genetic transformation: The four recombinant plasmids weretransformed into Agrobacterium GV3101by electric shock respectively and successfullyintroduced by PCR identification, then transformed into Nicotiana tabacum by leaf discmethod. Through kanamycin (50mg/L) screening and PCR detection, the results showed that32plants were transgenic tobacco plants with pBi35STC4in56regenerated tobacco plants,28plants were transgenic tobacco plants with pBi35STC9in44regenerated tobacco plants,35plants were transgenic tobacco plants with pBi35STC12in58regenerated tobacco plantsand30plants were transgenic tobacco plants with pBi35STC14in50regenerated tobaccoplants. A further sign of purpose fragments successfully were introduced to the genome ofNicotiana tabacum.
     3. The preliminary evaluation of RNAi effects on tobacco: Transgenic tobacco and wildtype tobacco were processed3kinds of treatments which is inoculation by CMV only, byToMV only and by CMV and ToMV at the same time. The results showed that100%of wildtype tobacco showed a different degree of symptoms of the virus20d after inoculation, nearly50%of transgenic tobacco with pBi35STC9showed different levels of the symptoms30dafter inoculation, while the remaining50%of the tobacco also showed different symptoms40d after inoculation.10%~30%of the transgenic tobacco plants with pBi35STC4,pBi35STC12and pBi35STC14showed symptoms40d after inoculation. This suggests thatamong T0generation of transgenic tobacco with pBi35STC4, pBi35STC12and pBi35STC14can delay the symptoms and antiviral effect is better than pBi35STC9. After a preliminaryevaluation of the effect of RNAi transgenic tobacco has paved the way to transformprocessing tomato.
     4. The research of processing tomato genetic transformation: Through the preliminaryscreening of tobacco, three recombinant plasmids (pBi35STC4, pBi35STC12andpBi35STC14) of high resistance were introduced to processing tomato Hongfan3byAgrobacterium-mediated transformation. The results showed that27regenerated plants wereobtained from1200callus of processing tomato,14of them were identified to be thetransgenic plants by PCR and the transformational rate was1.16%.33regenerated plantswere obtained from1500callus of processing tomato,19of them were identified to be thetransgenic plants by PCR and the transformational rate was1.26%.23regenerated plantswere obtained from1000callus of processing tomato,13of them were identified to be thetransgenic plants by PCR and the transformational rate was1.30%. A further sign of purposefragments were successfully introduced to the genome of the processing tomato.
     5. The preliminary evaluation of RNAi effects on processing tomato: The transgenictomato plants and wild type tomato plants were divided into3groups and they wereincoulated by mechanical friction. Then by observation of the symptom and RT-PCRdetection,the results showed that100%of wild type processing tomato plants showed adifferent degree of symptoms25d after inoculation, while0%~20%of the transgenicprocessing tomato plants with pBi35STC4, pBi35STC12and pBi35STC14showed symptoms40d after inoculation.The results showed transgenic processing tomato plants withpBi35STC12and pBi35STC14could delay the happening of the disease20~25d, Whiletransgenic processing tomato plants with pBi35STC4could only delay5~10d. Anyhow, theeffect pBi35STC12and pBi35STC14on virus interference is better than pBi35STC4. Thismethod laid a solid foundation for processing tomato to improve resistance against viruses.
引文
陈保善,高乔婉,骆学海等.广东省烟草花叶病病原病毒的鉴定[J].病毒学报,1986,2:166-175
    陈集双,盛方镜,李德葆.一串红花叶病及其病原研究[J].浙江农业大学学报.1995,21(1):5-10
    陈集双,吴林福,周雪平等.美人蕉黄瓜花叶病毒研究[J].浙江农业学报.1994,6(4):272-275
    陈丽萍,张丽华,程智慧.加工番茄离体再生体系的建立[J].西北农业学,2007,16(1):162-167
    陈炯,陈剑平.植物抗病毒基因工程研究进展[J].浙江农业学报,1999,11(2):101-108
    陈军,王兰岚,刘澄清,等.用激光微束穿刺法转化甘蓝型油菜小孢子的研究[J].激光生物学报,1998,7(2):103-107
    成卓敏,夏光敏.应用基因枪法获得抗大麦黄矮病毒转基因小麦[J].植物病理学报,2000,30(2):116-121
    成卓敏,夏光敏.应用基因工程创造抗黄矮病毒转基因小麦新种质[J].植物保护,1996,22(3):18-20
    程宁辉,杨金水,濮祖芹等.宁沪杭地区黄瓜花叶病毒(CMV)株系群划分的初步研究[J].病毒学报,1997,13(2):180-184
    丁辛顺,朱亚英,徐伟惟等.上海郊区番茄的黄瓜花叶病毒株系[J].上海农业学,1986,2(4):13-20
    董槿,何震天.抗小麦黄花叶病毒转基因小麦的获得及病毒诱导的基因沉默[J].科学通报,2002,47(10):763-767
    冯兰香,蔡少华,郑贵彬等.我国番茄病毒病的主要毒原种类和番茄上烟草花叶病毒株系的鉴定[J].中国农业科学.1987,20(3):60-66
    姜国勇,杨仁崔.番茄Tm-22基因在烟草中的表达及其对番茄花叶病毒(ToMV)的特异抗性.病毒学报,2003,19(4):365-370
    寇晓虹,罗云波,田慧琴,等.多聚半乳糖醛酸酶(PG)反义基因转化加工番茄[J].食品科学,2007,28(3):187-191
    雷海英,孙毅,王志军,等.病毒复制酶基因介导玉米抗矮花叶病的研究[J].华北农学报,2008,23(5):114-117
    刘佳,吴忠义,张秀海,等.植物抗病毒基因工程研究进展[J].中国农学报,2009,25(01):30-38
    刘晓玲,宋云枝,刘红梅.马铃薯X病毒25kD运动蛋白基因和外壳蛋白基因介导的抗病性研究.作物学报,2005,31:827-832
    刘小红,张红伟,谭振波,等.利用基因枪法将玉米矮花叶病毒外壳蛋白基因导入玉米优良自交系[J].玉米科学,2003,11(2):16-18
    卢爱兰,正华,孔令洁,等.抗芜菁花叶病毒转基因甘蓝型油菜的研究[J].遗传学报,1996,23(1):77-83
    彭细桥,戴良英,刘红艳.番茄离体再生体系优化研究[J].湖南农业大学学报,自然科学版,2004,30(6):506-509
    田苗英,吴茂森.大麦黄矮病毒缺失复制酶基因植物表达载体的构建及转基Nd,麦的获得[J].中国农业科学,1999,32(5):49-54
    田如燕,冯兰香,蔡少华.北京地区辣椒病毒病毒原种类及黄瓜花叶病毒株系鉴定[J].植物保护,1989,4:9-11
    谢联辉,林奇英,谢莉妍等.福建烟草病毒种群及其发生频率的研究[J].中国烟草学报,1994,2(1):25-32
    徐惠君, STEINBISS H H, SOHN A,等.用基因枪将欧洲小麦梭条花叶病毒外壳蛋白基因(WSSMV-CP)导入小麦[J].云南大学学报,1999,21:26-27
    燕义唐,王晋芳.浮细胞再生表达外壳蛋白的转基因Indica水稻对水稻条纹病毒的抗病性[J].中国病毒学,1997,12(3):260-269
    姚伟,余爱丽,徐景升,等.转ScMV-CP基因甘蔗的分子生物学分析与鉴定[J].分子植物育种,2004,2(1):13-18
    于慧敏,石竹,杨俊杰.番茄的不同基因型对组培植株再生能力的影响[J].山东师范大学学报,2007,22(4):120-130
    余延年,吴定华,陈竹君.番茄遗传学.长沙:湖南科学技术出版社,1999,51
    张恭,刘立峰,马峙英.RNA干扰及其植抗病毒应用[J].中国农学通报,2007,23(1):42-45
    张海燕,党本元,周亦华,等.用激光微束穿刺法将PAP cDNA导入油菜获得抗病毒转基因植株[J].中国激光,1999,26(11):1053-1056
    张丽华,程智慧,李海燕,等.加工番茄子叶和下胚轴离体植株再生的研究[J].西北农林科技大学学报,自然科学版,2006,34(7):106-109
    周雪平,李德葆.抗病毒基因工程与转基因植物释放的环境风险评估[J].生命科学,2000,12(1):4-6
    周雪平,薛朝阳,刘勇等.番茄花叶病毒分离物与烟草花叶病毒蚕豆分离物生物学,血清学比较及PCR特异性检测.植物病理学报.1997,(27):53-58
    朱常香,宋云枝,张松,等.抗芜菁花叶病毒转基因大白菜的培育[J].物病理学报,2001,31(3):257-264
    邹新慧,何平.植物抗病毒基因工程研究进展及存在的问题[J].江西农业学报,2002,14(4):59-65
    王苏燕,叶寅,赵淑珍等.转基因油菜中核酶介导的对花椰菜花叶病毒的高度抗病性.中国科学,1997,27:426-431
    王文静,王富荣,石秀清,等.现代分子生物学技术在植物抗病毒育种中的作用[J].山西农业科学,2002,30(3):76-79
    Aoki K, Aoki M, Sugai M.et al. Chromosomal instability by β-catenin/TCF transcription inAPC or β-catenin mutant cells. Oncogene,2007,26:3511-3520
    Baker B, Zambryski P, Staskawicz B, et al. Singaling in plant Microbe Interactions.Science,1997,276:726-733
    Baumberger N, Baulcombe DC.Arabidopsis ARGONAUTE1is an RNA Slicer thatselectively recruits microRNAs and short interfering RNAs. Proceedings of theNational Academy of Sciences of the United States of America,2005,102:11928-11933
    Baulcombe D C, Saunders G R, Revan M W, et al. Expression of biologically active viralsatellite RNA from the nuclear genome of transformed plants.Nature,1986,321:446-449
    Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in theinitiation step of RNA interference. Nature,2001,409:363-366
    Bird C R, Smith C J S, Ray J A, et al. The tomato polygalacturonase gene and ripeningspecific expression in transgenic plants[J]. Plant Molecular Biology.1988,11:651-662
    Boccard F, Baulcombe D.C. Mutational analysis of cis-acting sequences and gene function inRNA3of Cucumber mosaic virus [J].Virology,1993,193:563-578
    Bohmert K, Camus I, Bellini C, et al.AGO1defines a novel locus of Arabidopsis controllingleaf development.Embo Journal,1998,17:170-180
    Borsani O, Zhu J, Verslues PE, et al. Endogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123:1279-1291
    Braun C, Hemenway C. Expression of amino-terminal portions or full length viral replicasegenes in transgenic plants confers resistance to potato virus X infection [J]. Plant Cell,1992,4:735-744
    Brigneti G, Voinnet O, Li W.X. et al.Viral pathogenicity determinants are suppressors oftransgene silencing in Nicotiana benthamiana.Embo Journal,1998,17:6739-6746
    Buck K. W. Comparison of the replication of positive-stranded RNA viruses of plants andanimals. Advances in Virus Research.1996,47:159-251
    Buck K W. Replication of tobacco mosaic virus RNA. Philosophical Transactions of theRoyal Society of London series B Biological Sciences.1999,354:613–627.
    Calder V L, Palukaitis P. Nucleotide sequence analysis of the movement genes of resistancebreaking strains of tomato mosaic virus.Journal of General Virology,1992,73(Pt1):165-168
    Canto T, Prior D A, Hellwald K H, et al. Characterization of Cucumber mosaic virus[J].Virology,1997,237:237-248
    Carolina Cortina, Francisco A. Culi′a ez-Maci`a. Tomato transformation and transgenic plantproduction[J].The Plant Cell, Tissue and Organ Culture,2004.76:269-275
    Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation inArabidopsis thaliana. Nature Reviews Genetics,2005,6:351-360
    Chyi Y S, Phillips G C. High efficiency Agrobacterium-mediated transformation of Lycopers-icon based on conditions favorable for regeneration [J]. Plant Cell Reports,1987,6:105-108
    Cooper B, Lapidot M, Heick J A, et al. A defective movement protein of TMV in transgenicplants confers resistance to multiple viruses whereas the functional analog increasessusceptibility [J]. Virology,1995,206:307-313
    Dai C X, Mertz D, Lambeth V N. Effect of seedling age, orientation and genotype ofhypocotyl and cotyledon explants of tomato on shoot and root regeneration[J]. Genetic.Manipulation in Crops Newsletter.1988,4:26-35
    Dangl J L.Plant pathogens and integrated defence responses to infection. Nature,2001,411:826-833
    Diaz-Pendon J A, Li F, Li W. X. et al. Suppression of antiviral silencing by Cucumber mosaicvirus2b protein in Arabidopsis is associated with drastically reduced accumulation ofthree classes of viral small interfering RNAs. Plant Cell,2007,19:2053-2063
    Ding B, Li Q, Nguyen L, et al. Cucumber mosaic virus3a protein potentiates cell-to-celltrafficking of CMV RNA in tobacco plants [J]. Virology,1995,207:345-353
    Edwardson J R, Christie R G. Cucumoviruses, CRC handbook of viruses infecting legumes[M]. Boca Raton, Fla: CRC Press,1991,293-319
    Ehrenfeld N, Romano E,Seano C. Replicase mediated resistance against potato leaf roll virusin potato desiree plants.Biological Research,2004,37:71-82
    Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediatingefficient RNAi in Drosophila melanogaster embryolysate. Embo Journal.2001,20:6877-6888
    Ellul P, Garcia-Sogo B, Pineda B, et al.The ploidy level of transgenic plants inAgrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentumL. Mill.) is genotype and procedure dependent[J]. Theoretical and Applied Genetics.2003,106(2):231-238
    Fillatti J J, Kiser J, Ronald R, et al. Efficient transfer of glyphosate tolerance gene into tomatousing a binary Agrobacterium tumefaciens vector[J]. Nature Biotechnology,1987,5:726-730
    Finnegan EJ, Margis R, Waterhouse P M. Posttranscriptional gene silencing is notcompromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, ahomolog of Dicer-1from Drosophila. Current Biology,2003:13:236-240
    Fire A, Xu S, Montgomery M K,et a1. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans.Nature.1998,391:806-811
    Frank C.Lanfermeijer. The products of the broken Tm-2and the durable Tm-22resistancegenes from tomato differ in four amino acids.Journal of Experimental Botany,2005,(9):1-9
    Frary A, Earle E D. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato [J]. Plant Cell Reports,1996,16:235-240
    Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after theirintroduction: lessons from realistic field risk assessment studies. Annual Review ofPhytopathology,2007,45:173-202
    Gabriel D W, Rolfe B G. Working models of specific recognition in plant-microbeinteraction. Annual Review of Phytopathology,1990,28:365-391
    Goelet P, Lomonossoff GP, Butler PJG, et al. Nucleotide sequence of tobacco mosaic virusRNA. Proceeding of the National Academy of Sciences of the United States ofAmerica.1982,79:5818-5822
    Golden TA, Schauer SE, Lang JD.et al. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryodevelopment in Arabidopsis. Plant Physiology,2002,130:808-822
    Gorbalenya A E, Koonin EV, Donchenko AP, et al. A novel super family of cleosidetriphosphate-binding motif containing proteins which are probably involved in duplexunwinding in DNA and RNA replication and recombination, Febs Letters.1988,235:16-24
    Goregaoker S P, D J Lewandowski, J N Culver. Identification and functional analysis of aninteraction between domains of the126/183-kDa replicase-associated proteins of tobaccomosaic virus. Virology,2001,282:320-328
    Goto K, Kobori T, Kosaka Y. et al. Characterization of silencing suppressor2b of Cucumbermosaic virus based on examination of its small RNA-binding abilities. Plant CellPhysiology,2007,48:1050-1060
    Habili N, Symons R H. Evolutionary relationship between luteoviruses and other RNA plantviruses based on sequence motifs in their putative RNA polymerases and nucleic acidhelicases. Nucleic Acids Research.1989,17:9543-9555
    Hagiwara Y K, Komoda T, Yamanaka A, et al. Subcellular localization of host and viralproteins associated with tobamovirus RNA replication. Embo Journal.2003,22:344-353
    Hall T J. Resistance at the Tm-2locus in the tomato to tomato mosaic virus. Euphytica,1980,29:189-1971
    Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional genesilencing in plants.Science,1999,286:950-952
    Haseloff J, Gerlach W L. Simple RNA enzymes with new, highly specific endoribonucleaseactivitied.Nature,1988,328:484-491
    Hayes R J, Buck K W. Complete replication of a eukaryotic virus RNA in vitro by a purifiedRNA-dependent RNA polymerase [J]. Cell,1990,63:363-368
    Hilf M E, Dawson W O. The tobamovirus capsid protein functions as a host-specificdeterminant of long distance movement. Virology,1993,193:106-114
    Hodgman T.C. A new superfamily of replicative proteins, Nature,1988,333:22-23
    Hou Y M, Sanders R, Ursin V M. Transgenic plants expressing Geminivirus movementproteins: abnormal phenotypes and delayed infection by tomato mottle virus intransgenic tomatoes expressing the bean dwarf mosaic virus BV1or BC1p roteins.Molecular Plant Microbe Interactions,2000,13:297-308
    Lam Y H,Wong Y S,Wang B,et a1.Use of trichosanthin to reduce infection by turnip mosaicvirus [J]. Plant Science,1996,114:111-l17
    Lawson C, Haley L, Hart J, et al. Engineering resistance to mixed virus infection in acommercial potato cultiver: resistace to potato virus X and potato virus Y in transgenicRusset Burbank[J]. Biotechnology,1990,8(2):127-134
    Lewandowski D J, W O Dawson. Functions of the126-and183-kD a proteins of tobaccomosaic virus. Virology.2000,271:90-98.
    Lindbo JA, Silva-Rosales L, Proebsting WM, et al.Induction of highly specific antiviral statein transgenic plants: implications for regulation of gene expression and virus resistance.Plant Cell,1993,5:1749-1759
    Ling HQ, Kriseleit D, Ganal MW. Effect of ticarcillin potassium clavulanate on callus growthand shoot regeneration in Agrobacterium-mediated transformation of tomato(Lycopersicon esculentum Mill.)[J]. Plant Cell Reports.1998,17:843-847
    Lodge J K,Kaniewski W K,Tumer N E.Broad spectrum virus resistance in transgenic plantsexpressing pokeweed antiviral protein[J].Proceeding of the National Academy ofSciences of the United States of America,1993,90:7089-7093
    Ishikawa M T, Meshi F, Motoyoshi N, et al. In vitro mutagenesis of the putative replicasegenes of tobacco mosaic virus. Nucleic Acids Research.1986,14:8291-8305
    Ishikawa M T, Meshi T, Ohno, et al. Specific cessation of minus-strand RNA accumulation atan early stage of tobacco mosaic virus infection. Journal of Virology.1991,65:861-868
    Ishikawa M, Okada Y. Replication of tobamovirus RNA. Proccedings of the Japan AcademySeries B Physical Biological Sciences,2004,80:215-224
    Jacobsen SE, Running MP, Meyerowitz EM. Disruption of an RNA helicase/RNase III genein Arabidopsis causes unregulated cell division in floral meristems.Development,1999,126:5231-5243
    Jones AL, Thomas CL, Maule AJ. De novo methylation and cosuppression induced by acytoplasmically replicating plant RNA virus. Embo Journal,1998,17:6385-6393
    Jorgensen RA, Cluster PD, English J, et al. Chalcone synthase cosuppression phenotypes inpetunia flowers: comparison of sense vs. antisense constructs and single-copy vs.complex T-DNA sequences. Plant Molecular Biology,1996,31:957-973
    Kalantidis K, Psaradakis S, Tabler M, et al. The occurrence of CMV-specific short RNAs intransgenic tobacco expressing virus-derived double-stranded RNA is indicative ofresistance to the virus [J]. Molecular Plant-Microbe Interactions,2002,15(8):826-833
    Komuro Y. Identification of viruses infecting vegetables and ornamentals in Japan [J].Japanese Journal of Phytopathology,1966,32:114-116
    Koorneef M, Hanhart C, Jongsma M, et al. Breeding of a tomato genotype readily accessibleto genetic manipulation[J]. Plant Science.1986,45:201-208
    Koonin E V, and V V Dolja. Evolution and taxonomy of positive strand RNA viruses:implications of comparative analysis of amino acid sequences. Critical Reviews inBiochemistry and Molecular Biology.1993,28:375-430
    Malyshenko S L, Kondakova O A, Nazarova J V, et al. Reduction of tobacco mosaic virusaccumulation in transgenic plants producing non-functional viral transport proteins[J].Journal of General Virology,1993,74:1149-1156
    Margis R, Fusaro AF, Smith NA.et al.The evolution and diversification of Dicers in plants.Febs Letters,2006,580:2442-2450
    Ma′s P, R N Beachy. Replication of tobacco mosaic virus on endoplasmic reticulum androle of the cytoskeleton and virus movement protein in intracellular distribution ofviral RNA. Journal of Cell Biology.1999,147:945-958
    Matzke MA, Priming M, Trnovsky J, et al. Reversible methylation and inactivation of markergenes in sequentially transformed tobacco plants. Embo Journal,1989,8:643-649
    McCormick S, Niedermeyer J, Fry J, et al. Leaf disc transformation of cultivated tomato(L1esculentum) using Agrobacterium tumefaciens [J]. Plant Cell Reports,1986,5:81-84
    Meshi T, Motoyoshi F, Maeda T,et al. Mutations in the tobacco mosaic virus302kD proteingene overcome Tm-2resistance in tomato.Plant Cell,1989,1(5):515-522
    Meshi T, Ohno T, Okada Y. Nucleotide sequence and its character of cistron coding for the30K protein of tobacco mosaic virus (OM strain). Journal of Biochemistry,1982,91:1441-1444
    Mette M F, Aufsatz W, van der Winden J, et al. Transcriptional silencing and promotermethylation triggered by double-stranded RNA. Embo Journal.2000,19:5194-5201
    Motoyoshi F, Oshima N. Expression of genetically controlled resistance to tobacco mosaicvirus infection in isolated tomato leaf mesophyll protoplasts.Journal of GeneralVirology,1977,34:499-506
    Napoli C, Lemieux C, Jorgensen R.Introduction of a chimeric chalcone synthase gene intopetunia results in reversible co-suppression of homologous genes in trans. PlantCell,1990,2:279-289
    Nelson R S. Tobacco mosaic virus infection of transgenic Nicotiana babacum plants isinhibited by antisense constructs directed at the5region of viral RNA [J].Gene,1993,127:227-232.
    Nishikiori M K, Dohi M, Mori T, et al. Membrane-bound tomato mosaic virus replicationproteins participate in RNA synthesis and are associated with host proteins in a patterndistinct from those that are not membrane bound. Journal of Virology.2006,80:8459-8468
    Nitta N, Takanami Y, Kuwata S, et al. Inoculation with RNAs1and2of Cucumber mosaicvirus induces viral RNA replicase activity in tobacco mesophyll protoplasts [J]. Journalof General Virology.1988,69:2695-2700
    Niu Q W, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenicArabidopsis thaliana confers virus resistance. Nature Biotechnology.2006,24:1420-1428
    Ohki S, Bigot C, Mousseau J. Analysis of shoot-formin capacity in vitro in two lines oftomato (Lycopersicon esculentum Mill) and their hybrids[J]. Plant and Cell Physiology.1978,19:27-42
    Ohno T M, Aoyagi Y, Yamanashi H, et al. Nucleotide sequence of the tobacco mosaic virus(tomato strain) genome and comparison with the common strain genome[J]. BiochemicalJournal.1984,96:1915-1923
    Osman T A M, K W Buck. The tobacco mosaic virus RNA polymerase complex contains aplant protein related to the RNA-binding subunit of yeast eIF-3. Journal of Virology.1997,71:6075-6082
    Osman T A M, K W Buck. Identification of a region of the tobacco mosaic virus126-and183-kilodalton replication proteins which binds specifically to the viral3_-terminaltRNA-like structure. Journal of Virology.2003,77:8669-8675
    Palukaitis P, Garcia-Arenal F, Cucumoviruses, Advances in Virus Research.2003,62:241-323
    Palukaitis P, M. J. Roossinck, R. G. Dietzgen, et al. Cucumber mosaic virus. Advances inVirus Research,1992,41:281-348
    Park W, Li J, Song R. et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novelprotein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology.2002,12:1484-1495
    Pfitzner A J P. Transformation of tomato [J].1998,81:359-363
    Powellabel P, Nelsonrs, Deb, et al. Delay of disease development in transgenic plants thatexpress the tobacco mosaic virus coat protein gene [J]. Science,1986,232:738-743
    Pozueta-Romero J, Houlne G, Canas L, et al. Enhanced regeneration of tomato and pepperseedling explants for Agrobacterium-mediated transformations.[J]. Plant Cell, Tissueand Organ Culture,2001,67:173-180
    Przemyslaw Lehmann, Carol E Jenner,Edward Kozubek, et a1.Coat protein-mediated resist-ance to turnip mosaic virus in oilseed rape (Brassica napus)[J].Molecular Breeding,2003,11:83-94
    Purow B W, Haque R M, Noel M W, et al. Express ion of Notch-1and its ligands,Delta-like-1and Jagged-1, is critical for glioma cell survival and proliferation. CancerResearch,2005,65(6):2353-2363
    Qiu D L, Diretto G, Tavarza R, et al. Improved protocol for Agrobacterium-mediatedtransformation of tomato and production of transgenic plants containing carotenoidbiosynthetic gene CsZCD [J]. Scientia Horticulturae,2007,112(2):172-175
    Qu J, Ye J, Fang R X.Artificial microRNA-mediated virus resistance in plants. Journal ofVirology.2007,81:6690-6699
    Roossinck M J, Zhang L, Hellwald K H. Rearrange-ments in the5′nontranslated region andphylogenetic analyses of Cucumber mosaic virus RNA3indicate radial evolution ofthree subgroups [J]. Journal of Virology,1999,73(8):6752-6758
    Rozanov M N, Koonin E V, Gorbalenya A E. Conservation of the putative methyltransferasedomain: a hallmark of the Sindbis-like supergroup of positive strand RNA viruses,Journal of General Virology,1992,73:2129-2134
    Sayaka H, Shin-ichiro O, Eri A, et al. The effects of spacer sequences on silencing efficiencyof plant RNAi vectors [J]. Plant Cell Reports,2007,26(5):651-659.
    Scholthof H.B. The Tombusvirus-encoded P19:from irrelevance to elegance.Nature ReviewsMicrobiology,2006,4:405-411
    Suzuki M, Kuwata S, Kataoka J, et al. Functional analysis of deletion mutants of Cucumbermosaic virus RNA3using an in vitro transcription system[J]. Virology,1991.183:106-113
    Tabara H, Sarkissian M, Kelly W G, et al. The rde-1gene, RNA interference, and transposonsilencing in C. elegans. Cell,1999,99:123-132
    Takahashi S, Komatsu K, Kagiwada S, et al. The efficiency of interference of Potato virus Xinfection depends on the target gene [J]. Virus Research,2006,116:214-217
    Tavladoraki P,Benvenuto E,Trinca S,et a1.Transgenic plants expressing a functionalsingle-chain Fvantibody are specifically protected from virus attack [J].Nature,1993,366:469-472
    Tenllado F, Diaz-Ruiz J R. Double-stranded RNA-mediated interference with plant virusinfection [J]. Journal of Virology,2001,75(24):12288-12297
    Tenllado F, Llave C, Diaz-Ruiz J R. RNA interference as a new biotechnological tool for thecontrol of virus diseases in plants [J].Virus Research,2004,102:85-96
    Torgeir H, Mohammed A, Merete T, et alPositional effects of short interfering RNAstargeting the human coagulation trigger tissue factor. Nucleic Acids Research.2002,30:1757-1766
    Tsujimoto Y T, Numaga,K, Ohshima M, et al. Arabidopsis TOBAMOVIRUSMULTIPLICATION (TOM)2locus encodes a transmembrane protein that interacts withTOM1. Embo Journal.2003,22:335-343
    Ultzen T, Gielen J, Venema F, et al.Resistance to tomato spotted wilt virus in transgenictomato hybrids[J]. Euphytica.1995,85:159-168
    van der Krol A R, Mur L A, Beld M, et al. Flavonoid genes in petunia: addition of a limitednumber of gene copies may lead to a suppression of gene expression.Plant Cell,1990,2:291-299
    van Roekel J S C, Damm D, Melchers L S, et al. Factors influencing transformationfrequency of tomato (Lycopersicon esculentum)[J]. Plant Cell Reports,1993,12:644-647
    Vasil V, Casticlo A M, Frepmm M E, et al. Rapid production of transgenic wheat plants bydirect bombarment of cultured immature embryos [J].Nature Biotechnology,1993,11(13):1553-1558
    Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate theaccumulation of Arabidopsis mRNAs. Molecular Cell,2004,16:69-79
    Voinnet O, Pinto Y, Baulcombe D. C. Suppression of gene silencing: a general strategy usedby diverse DNA and RNA viruses of plants. Proceedings of the National Academy ofSciences, USA.1999,96:14147-14152
    Voss A,Niersbach M,Hain R,et a1.Reduced virus infectivity in N-tabacum secreting a TMVspecific full size antibody[J].Molecular Breeding,1995,1(1):39-50
    Wahyuni W S, Dietzgen R G. Serological and biological variation between and with insubgroupⅠandⅡstrains of cucumber mosaic virus [J].Plant pathology,1992,41(4):282-297
    Wang M B, Waterhouse P M. High-efficiency of silencing of a-glucuronidase gene in rice iscorrelated with repetitive transgene structure but is independent of DNA methylation.Plant Molecular Biology,2000,43:67-82
    Wang M B, Abbott D C, Waterhouse P M. A single copy of virus derived transgene encodinghairpin RNA give immunity to barley yellow dwarf virus. Molecular Plant Pathology,2000,1:347-356
    Wassenegger M, Hiemes S, Riedel L, et al. RNA-directed de novo methylation of genomicsequences in plants. Cell,1994,76:567-576
    Watanabe T A, Honda A, Iwata S, et al. Isolation from tobacco mosaic virus-infected tobaccoof a solubilized template-specific RNA-dependent RNA polymerase containing a126K/183K protein heterodimer. Journal of Virology.1999,73:2633-2640
    Weber H, Schultze S, Pfitzner A J. Two amino acid substitutions in the tomato mosaic virus30-kilodalton movement protein confer the ability to overcome the Tm22resistance genein the tomato. Journal of Virology,1993,67(11):6432-6438
    Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective andhigh-throughput gene silencing in plants. The Plant Journal,2001,27(6):581~590
    Xie Z, Johansen L K, Gustafson A M, et al. Genetic and functional diversification of smallRNA pathways in plants. Plos Biology,2004,2: E104
    Yakuwa T, Harada T, Hanzawa M. Basic studies on the vegetative propagation ofhorticultural plants. II. Effect of growth regulators on callus and organ formation fromtissue segments of tomato cultured in vitro [J]. Memories Faculty Agronomy HokkaidoUniversity.1973,9:25-41
    Yang L, Liu Z, Lu F, et al.SERRATE is a novel nuclear regulator in primary miRNAprocessing in Arabidopsis. Plant Journal,2006,47:841-850
    Yamanaka T T, Ohta M, Takahashi T, et al. TOM1, an Arabidopsis gene required for efficientmultiplication of a tobamovirus, encodes a putative transmembrane protein. Proceedingsof the National Academy of Sciences, USA.2000,97:10107-10112
    Yie Y, Zhao F, Zhao S, et al. High resistance to cucumber mosaic virus conferred by satelliteRNA and coat protein in transgenic commercial tobacco cultivar G-140[J]. MolecularPlant-Microbe Interactions,1992,5(6):460-465
    Zamore P D, Tuschl T, Sharp P A, et al. RNAi: double-stranded RNA directs theATP-dependent cleavage of mRNA at21to23nucleotide intervals.Cell,2000,101:25-33
    Zeenko V V L A, Ryabova A S, Spirin H M, et al. Eukaryotic elongation factor1A interactswith the upstream pseudoknot domain in the3-untranslated region of tobacco mosaicvirus RNA. Journal of Virology.2002,76:5678-5691
    Ziegler-Graff V, Guilfors P J, Baulcombe D C. Tobacco rattle virus RNA-129K geneproductpotentates viral movement and also affects symptom induction in tobacco [J]. Virology,1991,182:145-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700