用户名: 密码: 验证码:
山西太岳山油松人工林土壤碳特征对林分密度调控响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油松(Pinus tabulaeformis Carr.)具有良好的保持水土、涵养水源及改良土壤的作用,是太岳山地区最主要的造林树种之一,也是暖温带湿润半湿润气候区的地带性群落的建群种。本文以太岳山宋家沟油松人工林为研究对象,研究影响土壤有机碳储量及其分布格局,分析影响其变化的关键生态因子;对不同密度油松人工林采用土壤碳循环分室模型,研究密度调控对油松人工林土壤碳循环的影响,同时,从土壤碳平衡的差异性探讨生态系统管理对土壤碳储存动态的调控机理。主要研究结论如下:
     (1)油松人工林土壤有机碳含量在土壤剖面中随土层深度增加而减小。土壤有机碳平均含量随立地因子变化表现为:阴坡>阳坡;坡下>坡中>坡上。土壤有机碳平均含量随林龄的增加呈增加;随着林分密度增加而呈波动趋势。对土壤有机碳含量具有显著或极显著影响的因子有土壤容重、土壤含水量、土壤pH值和土壤全K含量。
     (2)油松人工林土壤总有机碳密度的变化范围在57.83~121.88t·hm-2,主要储存在0~30cm土壤中。对油松人工林土壤有机碳密度与立地因子、植被因子和土壤因子的进行多元线性回归分析表明,影响土壤有机碳密度的主要影响因子有坡度、坡位、林龄、凋落物现存量、年凋落量、土壤含水量、容重、土壤全K含量、土壤全N含量等。
     (3)油松人工林地上凋落物年凋落量随林分密度减小而减小,地下细根凋落物则相反。随着林分密度的减小,叶凋落物和细根的分解速度都加快。在分解过程中,叶凋落物和细根中不同养分元素含量的动态变化存在一定差异。细根比叶凋落物易分解,且细根中的营养元素也较容易释放。叶凋落物和细根养分元素归还量随林分密度减小呈波动变化。叶凋落物和细根N、P、K、C4种元素归还总量排序为C>N>P>K。细根在油松人工林C和养分循环中占重要地位。
     (4)油松人工林土壤呼吸速随林分密度减小而增加,且表现出明显的季节动态。土壤呼吸各组分随林分密度变化其变化幅度不同,且对土壤总呼吸的贡献率大小不同。土壤异养呼吸是土壤总呼吸的重要组成部分,占土壤总呼吸的70%以上。生长季土壤总呼吸通量随着密度减小而增加,其中土壤自养呼吸通量随着密度减小呈波动趋势,土壤异养呼吸通量随着密度减小而增加,CK、LT、MT和HT林分生长季土壤呼吸通量分别为426.923、464.500、500.936和519.938g C·m-2。土壤温湿度是影响土壤呼吸的重要影响因子。土壤总呼吸和土壤异养呼吸与土壤湿度呈显著线性相关,与土壤温度均呈显著指数相关。土壤异养呼吸对温度敏感性Q10高于土壤自养呼吸。土壤温湿度共同对土壤总呼吸和土壤异养呼吸的变化具有显著的影响。土壤湿度、活细根生物量、表层土壤有机碳含量、土壤温度这4个因子解释70%油松人工林土壤总呼吸的时空变异。
     (5)油松人工幼龄林土壤碳输入和输出均随着林分密度减小而增大。油松人工幼龄林各密度林分土壤年CO2的平衡值均为正值,随着林分密度的减小而增大。研究结果表明,对油松人工幼龄林进行不同强度密度调控,有益于土壤对大气CO2的截存,而适度(中度和强度)干扰后更有利于增强油松人工幼龄林的土壤碳汇作用。
     论文从立地因子、植被因子及土壤理化性状等多个方面探讨了影响土壤有机碳储量及分布格局的关键生态因子,并揭示密度调控对油松人工林土壤碳循环的影响,其结果对山西太岳山地区林业生产经营活动以及我国现阶段的森林土壤碳汇功能评价工作具有一定的借鉴意义和实际应用价值。
Pinus tabulaeformis Carr., a prominent species in forest plantations of Shanxi Province, is a common species of coniferous in the cool temperate zone of North China and plays a very important role in soil and water conservation and improving soil fertility in North China Mountainous Districts. This paper studied the carbon storage and its environmental response in P. tabulaeformis plantation in Shanxi province in northern China. In addition, based on the data collected from short-term located observation, the absorption, storage and release rates of carbon in soil ecosystem of20-year-old P. tabulaeformis plantation with four stand denstidies were investigated. The main results of the research are as follows:
     (1) The soil organic carbon content of P. tabulaeformis plantations decreased with soil depth increasing. The change of average soil organic carbon content of different site conditions was:shady> sunny; foot of the slope> mesoslope> top of the slope. The average soil organic carbon content in lm soil horizon increased with stand age, but did not increased with stand density. The soil organic carbon content correlated with soil bulk density, soil moisture content, soil pH and soil total K contents and this correlation depended on soil depth.
     (2) Total soil organic carbon density of P. tabulaeformis plantations varied from57.83to121.88t·hm-2with nearly half part of soil organic carbon being present in the top30cm of soil. The soil organic carbon density correlated with slope, slope position, stand age, litterfall mass, the annual litter, soil moisture content, bulk density, soil total K content and soil total N content and this correlation also depended on soil depth.
     (3) The result showed that aboveground litterfall decreased with stand density, whereas belowground litterfall was the opposite. The decomposition rate of litterfall increased as stand density decreased. The total element returns amount had notable different among four density stand, having the order of CK>MT>HT>LT. The element returns of litter had the order of C>N>P>K. The release rates and dynamic changes of nutrient elements (N, P, K and C) between the leaf litters and fine root litters exists some differences. The decomposition of fine root litters is easier than that of leaf litters, and also the nutrient elements rease more easily in the formers than in the latter. The fine root annual decomposition amount contributes28.6%~40.8%to the total litter decomposition. Amount of N, P, K and C return to soil from fine roots was32.3%~48.5%,24.4%~39.5%,26.6%~40.7%and28.8%~52.6%of total return amount. Therefore, fine root decomposition play an important role in C and nutrients cycling,
     (4) We found that immediately following thinning treatments, soil respiration increased by8%~21%compared with the unthinned control plots during both growing seasons. There were significant differences in soil respiration and its components among the various treatments. Compared with Ra, Rh made the major contribution to Rs during the growing season at all sites. The relative proportion of Rh to Rs averaged71.6%~79.7%over the four stands. During the growing seasons, the soil respiration and its components were positively correlated with the soil moisture. Correlations between Rh and soil moisture were more significant than that of Ra and soil moisture. Meanwhile, a positive correlation was found between soil temperature and soil respiration and its components at all sites. Rh and Ra have been shown to respond differently to increasing temperature, exhibiting different levels of sensitivity to temperature (Q10). Fitted Q10values of Rh ranged from2.16to2.75in the various thinning intensities, with the highest Q10value in the control sites; Rh is more sensitive to temperature than Ra in all stands. The model with the best fitted temperature and moisture factors explained18.6%~44.3%of the variation in Rs, 66.7%~77.3%of the variation in Rh and30.2%~46.4%in Ra between the four thinning sites during both growing seasons. Overall, soil respiration is better predicted by soil moisture, soil organic C, live fine root biomass and soil temperature when data are pooled for all thinning treatments over the two growing seasons. The best regression model explained74.7%of the total variation in soil respiration over the different thinning intensities for the two sampling periods.
     (5) After a carbon balance formula was formulated, the dynamics and balance of carbon was studied in the soil of P. tabulaeformis plantations. Results showed that CO2budget value increase with the decrease of the stand density. It is concluded that the decrease stand density could contribute to carbon sequestration, but that moderate and higher disturb would enhance the C sequestration more significantly. The results of this study can be used to help understand how forest management of P. tabulaeformis plantations affects carbon sequestration in forest soils.
     The paper study on soil carbon pool and effects of tree density on soil carbon cycling of P. tabulaeformis plantations, the analysis and results have certain contribution and practical application values to the forestry managerial and production activities in the Taiyue Mountain area as well as the current forest soil carbon assessment in China.
引文
1. Aerts R. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikos,1997,79(3):439-449.
    2. Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass// Bolin B. The Vlnhal Rarhnn Cycle. New Vnrk-Inhn:Wileys &Sons,1979:129-181.
    3. Anderson L J, Comas L H, Lakso A N, et al. Multiple risk factors in root survivorship: a four-year study in Concord grape[J]. New Phytol,2003,158:489-501.
    4. Andersson F, Braekke F N, Hallbacken L. Nutrition and growth of Norway spruce forests in a Nordic climatic and deposition gradient. Tech. Rep. Tema Nord, vol.566. Nordic Council of Ministers, Kobenhavn, Denmark,1998.
    5. Baties N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47:151-163.
    6. Batjes N H. Carbon and nitrogen stocks in the soils of Central and Eastern Europe[J]. Soil Use and Management,2002,18:324-329.
    7. Batjes N H. Mapping soil carbon stocks of Central Africa using SOTER[J]. Geoderma, 2008,146:58-65.
    8. Battles J J, Shlisky A J, Barrett R H, et al. The effects of forest management on plant species diversity in a Sierran conifer forest[J]. Forest Ecology and Management,2001, 146:211-222.
    9. Berg B, Mcclaugherty C. Plant Litter:Decomposition, Humus Formation, Carbon Sequestration[M]. New York:Springer Verlag,2003.
    10. Berthrong S T, Jobbagy E G, Jackson R B. A global metaanalysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation[J]. Ecological Applications,2009, 19:2228-2241.
    11. Blanco J, Imbert J, Castillo F. Thinning effects nutrient resorption and nutrient use efficiency in two Pinus sylvestris stands in the Pyrenees[J]. Ecological Applications, 2009,19:682-698.
    12. Boerner R E J, Huang J J, Hart S C. Fire, thinning, and the carbon economy:Effects of fire and fire surrogate treatments on estimated carbon storage and sequestration rate[J]. Forest Ecology and Management,2008,255(8):3081-3097.
    13. Bond-Lamberty B, Bronson D, Bladyka E, et al. A comparison of trenched plot techniques for partitioning soil respiration[J]. Soil Biology and Biochemistry,2011,43: 2108-2114.
    14. Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature,1998,396:570-572.
    15. Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J]. Soil Biology and Biochemistry,2006,38:2219-2232.
    16. Bray J R, Gorham E. Litter production in forests of the world[J]. AdvRes,1964, 2:101-157.
    17. Canary J D. Additional carbon sequestration following repeat ed urea fertilization of second-growth Douglas-fir stands in western Washington[J]. Forest Ecology and Management,2000,138(1):225-232.
    18. Cao J X, Tian Y, Wang X P, et al. Labile organic carbon pool of forest soil in the Badaling mountainous area of Beijing[J].3rd International Conference on Environmental and Computer Science,2010, (4):323-326.
    19. Carlyle J. Organic carbon in forested sandy soils:properties, processes, and the impact of forest management[J]. New Zealand Journal Forest Science,1993,23:390-402.
    20. Chapin F S III, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. New York:Springer-Verlag,2002.
    21. Chen H, Harmon M E, Griffiths R P, et al. Effects of temperature and moisture on C respired from decomposing woody roots[J]. Forest Ecology and Management,2000, 138:51-64.
    22. Chhabra A, Palria S, Dadhwal V K. Soil organic carbon pool in Indian forests[J]. Forest Ecology and Management,2003,173:187-199.
    23. Chivenge P, Vanlauwe B, Gentile R, et al. Organic resource quality influence short-term aggregate dynamics and soil organic carbon and nitrogen accumulation[J]. Soil Biology & Biochemistry,2011,43(3):657-666.
    24. Cisneros-Dozal L M, Trumbore S, Hanson P J. Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon trace [J]. Global Change Biology,2006,12:194-204.
    25. Claussen E. An effective approach to climate change[J]. Science,2004,306:816.
    26. Cline J S, Schimel J P. Microbial activity of tundra and taiga soils at subzero temperatures[J]. Soil Biology & Biochemistry,1995,27:1231-1234.
    27. Concilio A, Ma S, Li Q, et al. Soil respiration response to prescribed burning and thinning in mixed conifer and hardwood forests[J]. Canadian Journal of Forest Research,2005,35:1518-1591.
    28. Covington W W. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods[J]. Ecology,1981:62:41-48.
    29. Crow S E, Lajtha K, Filley T R, et al. Sources of plant derived carbon and stability of soil organic matter:Implications for global change[J]. Global Change Biology,2009, 15:2003-2019.
    30. Cui X Y, Wang Y F, Niu H S, et al. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia[J]. Ecology Researeh,2005, (5):519-527.
    31. Curiel Yuste J, Baldocchi D D, Gershenson A, et al. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture[J]. Global Change Biology,2007,13:2018-2035.
    32. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology,1998,4:217-227.
    33. Deng Q, Hui D F, Zhang D Q, et al. Effects of Precipitation Increase on Soil Respiration:A Three-Year Field Experiment in Subtropical Forests in China[J]. Plos One,2012,7:1-9.
    34. Detwiler R P. Land use change and the global carbon cycle:the role of tropical soils[J]. Biogeochemistry,1986,2(5):67-93.
    35. Diochon A, Kellman L, Beltrami H. Looking deeper:An investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence[J]. Forest Ecology and Management,2009, 257(2):413-420.
    36. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystem[J]. Science,1994,263:185-190.
    37. Don A, Kalbitz K. Amounts and Degradability of Dissolved Organic Carbon from Foliar Litter at Different Decomposition Stages[J]. Soil Biology and Biochemistry, 2005,37:2171-2179.
    38. Emily M, Riehard R, Mark R. Pilot analysis of global ecosystem-forest ecosystem[M]. World Resources Institute,2000:145-150.
    39. Epron D. Separating autotrophic and heterotrophic components of soil respiration: lessons learned from trenching and related root-exclusion experiments. In:Kutsch, W.L., Bahn, M., Heinemeyer, A. (Eds.), Soil Carbon Dynamics:An Integrated Methodology. Cambridge University Press, New York, NY,2009:157-168.
    40. Eriksson H, Berden M, Rosen K, et al. Nutrient distribution in an Norway spruce stand after long-term application of ammonium nitrate and superphosphate[J]. Water, Air, and Soil Pollution,1996,92:451-467.
    41. Eswaran H, Van Den B, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal,1993,57:192-194.
    42. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry,2001,33:155-165.
    43. FAO. Global forest resources assessment[D]. Rome:FAO,2010:163.
    44. Fearnside P M. Forests and global warming mitigation in Brazil:opportunities in the Brazilian forest sector for responses to global warming under the "development mechanism"[J]. Biomass and Bioenergy,1999,16:171-189.
    45. Flower-Ellis J G K, Olsson t. Litterfall in an age series of scots pine stands and its variation by components during the years 1973~1977. Swedish Coniferous Project[J]. Technical Report,1978,15:1-62.
    46. Fraser R H, Li Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION[J]. Remote Sensing Environment,2002,82:95-110.
    47. Fukuzawa K, Shibata H, Takagi K, et al. Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan[J]. Forest Ecology and Management,2006,225:257-261.
    48. Gholz H L, Fisher R F. Nutrient dynamics in slash pine plantation ecosystem[J].Ecology,1985,66(3):647-659.
    49. Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytology,2000,147:13-31.
    50. Gordon W S, Jackson R B. Nutrient concentrations in fine roots[J]. Ecology,2000, 81:275-280.
    51. Gough C M, Seiler J R. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina coastal plain[J]. Forest Ecology and Management,2004, 191:353-363.
    52. Grace J. Understanding and managing the global carbon cycle[J]. Journal of Ecology, 2004,92:189-202.
    53. Grigal D F, Berguson W E. Soil carbon changes associated with short-rotation systems[J]. Biomass and Bioenergy,1998,14(4):371-377.
    54. Gundersen P, Emmett B, Kj(?)naas O, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998,101:37-55.
    55. Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist,2008,180:673-683.
    56. Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta analysis[J]. Global Change Biology,2002,8:345-360.
    57. Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil CO2 efflux:a review of methods and observations[J]. Biogeochemistry,2000,48:115-146.
    58. Hanson P J, Wullschleger S D, Bohiman S A, et al. Seasonal and topographic patterns of forest floor CO2 efflux from an up land oak forest[J]. Tree Physiology,1993, 13:1-15.
    59. Harding R B, Jokela E J. Long-term effects of forest fertilization on site organic matter and nutrients[J]. Soil Science Society of America Journal,1994,58:216-221.
    60. Hendrick R L, Pregitzer K S. The demography of fine root in the northern hardwood forest[J]. Ecology,1992,73(3):1094-1104.
    61. Hendrick R L, Pregitzer K S. The dynamics of fine root length, biomass and nitrogen content in two northern hardwood ecosystems[J]. Can J Forest Res,1993, 23:2507-2520.
    62. Hogberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature,2001,411:789-792.
    63. Hogberg P, Singh B, Lofvenius M O, et al. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest[J]. Forest Ecology and Management,2009,257:1764-1767.
    64. Houghton R A. Land-use change and carbon cycle[J]. Global Change Bio,1995, 1:275-287.
    65. Huang Y H, Li Y L, Xiao Y. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China[J]. Forest Ecology and Management,2011,261 (7):1170-1177.
    66. Humington T. Carbon sequestration in an aggrading forest ecosystem in the southeastern US[J]. Soi Sci Soc Am J,1995,59:1459-1467.
    67. IGBP. Terrestial carbon wrking group. CLIMATE:The terrestrial carbon cycle: Implications for the Kyoto Protocol[J]. Science,1998,280:1393-1394.
    68. IPCC. Special report on emissions scenarios[M]. Cambridge:Cambridge University Perss,2000:599.
    69. Jabro J D, Sainju U, Stevens W B, et al. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops[J]. Journal of Environmental Management,2008,88:1478-1484.
    70. Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia,1996,108:389-411.
    71. Jackson R B, Cook C W, Pippen J S, et al. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest[J]. Ecology,2009,90:3352-3366.
    72. Jacobson M C, Charlson R, Rodhe H, et al. Earth System Science:From Biogeochemical Cycles to Global Change[M]. Amsterdam:Elsevier,2000:527.
    73. Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J] Geoderma,2007,137:253-268.
    74. Jandl R, Neumann M, Eckmullner O. Productivity increase in Northern Austria Norway spruce forests due to changes in nitrogen cycling and climate[J]. Journal of Plant Nutrition and Soil Science,2007,170 (1):157-165.
    75. Janssens I A, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests[J]. Global Change Biol,2001,7:269-278.
    76. Janssens I A, Sampson D A, Curiel-Yuste J, et al. The carbon cost of fine root turnover in a Scots pine forest[J]. Forest Ecology and Management,2002,168: 231-240.
    77. Jenkinson D S, Adams D E, et al. Model estimated of CO2 emissions from soil in response to global warming[J]. Nature,1991,351(23):304-306.
    78. Joffre R, Ourcival J M, Rambal S, et al. The key role of topsoil moisture on CO2 efflux from a Mediterranean Quercus ilex forest[J]. Ann Forest Sci,2003,60:519-526.
    79. Johansson M B. The influence of soil scarification on the turn-over rate of slash needles and nutrient release[J]. Scandinavian Journal of Forest Research,1994, 9:170-179.
    80. Johnson D W, Curtis P S. Effects of forest management on soil C and N storage:meta analysis[J]. Forest Ecology and Management,2001,140:227-238.
    81. Johnson D W. Effects of forest management on soil carbon storage[J]. Water, Air, and Soil Pollution,1992,64:83-120.
    82. Johnson K, Scatena F N, Pan Y. Short and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest[J]. Forest Ecology and Management,2009,259(3):1262-1267.
    83. Johnston M H, Homan P S, Engstrom J K, et al. Changes in ecosystem carbon storage over 40 years on an old field forest landscape in east central Minnesota[J]. Forest Ecology Management,1996,83:17-26.
    84. Jonhson C E, Jonhson A H, Huntington T G, et al. Whole-tree clear-cutting effects on soil horizons and organic matter pools[J]. Journal of American Society of Soil Science, 1991,55:497-502.
    85. Jonsson J A, Sigurdsson B D. Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation[J]. Iceland Agr Sci,2010, 23:97-109.
    86. Joshi M, Mer G S, Singh S P, et al. Seasonal pattern of total soil respiration in undisturbed and disturbed ecosystems of Central Himalaya[J]. Biology and Fertility of Soils,1991,11:267-272.
    87. Kaipainen T, Liski J, Pussinen A, et al. Managing carbon sinks by changing rotation length in European forests[J]. Environmental Science and Policy,2004,7(3):205-219.
    88. Kazuhito Morisada, Ken ji Ono, Hidesato Kanomata. Organic Carbon Stock in Forest Soils in Japan[J]. Geoderma,2004,119:21-32.
    89. Kim C, Son Y, Lee W K, et al. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S.et Z. stand in Korea[J]. Forest Ecology and Management,2009,257(5):1420-1426.
    90. Knoepp J D, Swank W T. Forest management effects on surface soil carbon and nitrogen[J]. Soil Science Society of American Journal,1997,61(3):928-953.
    91. Kobziar L E. The role of environmental factors and tree injuries in soil carbon respiration response to fire and fuels treatments in pine plantations[J]. Biogeochemistry,2007,84:191-206.
    92. Koerner W, Dupouey J L, Dambrine E, et al. Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France[J]. Journal Ecology,1997,85:351-358.
    93. Kraemer J F, Hermann R K. Broadcast burning:25-year effects on forest soil in the western flanks of the Cascade mountains[J]. For Sci,1979,25:427-439.
    94. Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition[J]. Soil Biology and Biochemistry,2001,33:1915-1925.
    95. Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry,2006,38:425-448.
    96. Laganiere J, Pare D, Bergeron Y, et al. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality [J]. Soil Biology and Biochemistry,2012,53:18-27.
    97. Lal R. Forest soils and carbon sequestration[J]. Forest Ecology and Management,2005, 220:242-258.
    98. Lal R. Long-term tillage and maize monoculture effect s on a tropical Alisol in western Nigeria. Ⅱ. Soil chemical properties[J]. Soil & Tillage Research,1997, 42:161-174.
    99. Lal R. Soil carbon sequestration to mitigate climate change[J]. Geoderma,2004, 123:1-22.
    100.Lee M, Nakane K, Nakatsubo T, et al. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest[J]. Plant Soil, 2003,255:311-318.
    101.Lee N Y, Koo J W, Noh N J, et al. Autotrophic and heterotrophic respiration in needle fir and Quercus-dominant stands in a cool-temperature forest, central Korea[J]. Journal of Plant Research,2010,123:485-495.
    102.Leighty W W, Hamburg S P, Caouette J. Effects of management on carbon sequestration in forest biomass in Southeast Alaska[J]. Ecosystems,2006, 9:1051-1065.
    103.Li Z P, Han F X, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma,2007,138:119-126.
    104.Lin G H, Ehleringer J R, Rygiewicz P T, et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douslasfir terracosms[J]. Global Change Biol,1999,5:157-168.
    105.Lisa B, SΦren C. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest[J]. Soil Biology & Biochemistry,2005, 37:203-213.
    106.Liski J, Nissinen A, Nissinen A, et al. Climatic effects on litter decomposition from arctic tundra to tropical rainforest[J]. Global Change Biology,2003,9(4):575-584.
    107.Liski J, Nissinen A, Nissinen A, et al. Climatic effects on litter decomposition from arctic tundra to tropical rainforest[J]. Global Change Biology,2003,9(4):575-584.
    108.Liski J, Perruchoud D, Karjalainen T. Increasing carbon stocks in the forest soils of western Europe[J]. Forest Ecology and Management,2002,169(122):159-175.
    109.Liski J. Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand-effect of trees and implications for sampling[J]. Silva Fennica,1995,29: 255-266.
    110.Liu C J, Ilvesniemi H, Berg B, et al. Aboveground litterfall in Eurasian forests[J]. Journal of Forestry Research,2003,14(1):27-34.
    111.Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Funct Ecol, 1994,8:315-323.
    112.Lopez B C, Sabate S, Gracia C A. Thinning effects on carbon allocation to fine roots in a Quercusilex forest[J]. Tree Physiology,2003,23:1217-1224.
    113.Loya W M, Pregitzer K S, Karberg N J, et al. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels[J]. Nature, 2003,425:705-707.
    114.Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature,2001,413:622-625.
    115.Ma S, Chen J, North M, et al. Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed-conifer forest[J]. Environmental Management,2004,33:148-159.
    116.Makipaa R. Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation[J]. Forest Ecology and Management,1995,79:217-226.
    117.Mallik A, Hu D. Soil respiration following site preparation treatments in boreal mixedwood forest[J]. Forest Ecology and Management,1997,97:265-275.
    118.Marland G, Garten Jr C T, Post W M, et al. Studies on enhancing carbon sequestration in soils[J]. Energy,2004,29:1643-1650.
    119.McClaugherty C A, Aber J D. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystem[J]. Ecology,1982,63(5):1481-1990.
    120.Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to climate system[J]. Science,2002,298 (5601):2173-2176.
    121.Mihail I. Abundancy and distribution of fruit bodies of fungi under conditions of thinned beech wood[J]. Lesnictvi,1995,4(15):118-123.
    122.Mishra U, Lal R, Liu D S, et al. Predicting soil organ c carbon stock using profile depth distribution functions and ordinary Kriging[J]. Soil Science Society of America Journal,2009,73:614-621.
    123.Nabuurs G J, Schelhaas M J, Mohren G M J, et al. Temporal evolution of the European forest sector carbon sink from 1950 to 1999[J]. Global Change Biology, 2003,9(2):152-160.
    124.Nakane K, Kolmo T, Horikoshi T. Root respiration rate before and jast after clearfeling in a mature, deciduous, broad-leaved forest[J]. Ecological Research,1996, 11:111-119.
    125.Nave L E, Vance E D, Swanston C W, et al. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N mineralization[J]. Geoderma,2009, 153(2):231-240.
    126.Niese J N, Strong T F. Economic and tree diversity trade-offs in managed northern hardwoods[J]. Canadian Journal of Forest Research,1992,22(11):1807-1813.
    127.Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies L.) stand after 33 years[J]. Forest Ecology and Management,2008,256:201-208.
    128.Noguchi K, Han Q M, Araki M G, et al. Fine-root dynamics in a young Hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning[J]. Journal of Forest Research,2011,16:284-291.
    129.Olajuyigbe S, Tobin B, Saunders M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland[J]. Agricultural and Forest Meteorology,2012, 157:86-95.
    130.Olajuyigbe S, Tobin B, Saunders M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland[J]. Agricultural and Forest Meteorology,2012,157: 86-95.
    131.Paul A M. Managing for forest health [J]. Journal of Forestry,2002,100 (7):22-27.
    132.Paul E, Clark F. Soil Microbiology and Biochemistry[M]. San Diego:Academic Press,, 1989.
    133.Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management,2002,168:241-257.
    134.Paul K I, Polglase P J, Richards G P. Sensitivity analysis of Predicted change in soil carbon. Following afforestation[J]. Ecological Modelling,2003,164(2-3):137-152.
    135.Peng Y Y, Thomas S C. Soil CO2 efflux in uneven-aged managed forests:temporal patterns following harvest and effects of edaphic heterogeneity [J]. Plant and Soil,2006, 289:253-264.
    136.Percy K E, Awmack C S, Lindroth R L, et al. Altered performance of forest pests under atmospheres enriched by CO2 and O3[J]. Nature,2002,420:403-407.
    137.Perez-Harguindeguy N, DIaz S, Cornelissen J H C, et al. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina[J]. Plant and Soil,2000,218:21-30.
    138.Piene H, Van Cleve K. Weight loss of litter and cellulose bags in a thinned white spruce forest in interior Alaska[J]. Canadian Journal of Forest Research,1978, 8:42-46.
    139.Pietikainen J, Vaijarvi E, Ilvesniemi H, et al. Carbon storage of microbes and roots and the flux of CO2 across a moisture gradient[J]. Canadian Journal of Forest Research, 1999,29:1197-1203.
    140.Polglase P J, Paul K I, Khanna P K, et al. Change in soil carbon following afforestation or reforestation:Review of experimental evidence and development of a conceptual framework. National Carbon Accounting System Technical Report No.20. Common wealth of Australia, Canberra. Australia for the Australian Greenhouse Office,2000:1-119.
    141.Post W M, Emanuel W R. Soil carbon pools and world life zones[J]. Nature,1982, 298:156-159.
    142.Post W M. Ogranic carbon in soil land the global carbon cycle[M]. In:Heimann M ed. The Global carbon cycle. Berlin:Springer-verlag Heidelber,1993:277-302.
    143.Raich J W and Schlesinger WH. The global carbon dioxide efflux in soil repsiration and its relationship to vegetation and climate[J]. Tellus,1992,44B:81-90.
    144.Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles,1995,9,23-36.Raich J W, Schlesinger W H. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus Series B-Chemical and Physical Meteorology,1992,44:81-99.
    145.Reiners W A, et al. Changes in litterfall along a gradient in altitude[J]. Journal of Ecology,1987,5:629-638.
    146.Rodeghiero M, Churkina G, Martinez C, et al. Components of forest soil CO2 efflux estimated from A14C values of soil organic matter[J]. Plant and Soil,2013,364: 55-68.
    147.Roger A, Sedjo. The Carbon Cycle and Global Forest Ecosystem[J]. Water, Air, And Soil Pollution,1993,70(2):295-307.
    148.Ruehr N K, Buchmann N. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration[J]. Tree Physiology,2009:1-12.
    149.Ruess R W, Van Cleve K, Yarie J, et al. Contributions of fine root p roduction and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan Interior[J]. Canadian Journal of Forest Research,1996,26(8):1326-1336.
    150.Rustad L E, Huntington T G, Boone R D. Controls on soil respiration:Implications for climate change[J]. Biogeochemistry,2000,48:1-6.
    151.Ryu S R, Concilio A, Chen J, et al. Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California[J]. Forest Ecology and Management,2009,257(4):1324-1332.
    152.Sands R. Physical changes of sandy soils planted to Radiate Pine. In R. Ballard and S. P. Gessel(eds). IUFRO Symposium on Forest Site and Continuous Productivity. Portland, Oregon,1983:146-152.
    153.Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility:a laboratory study[J]. Soil Biology and Biochemistry,2003,35(3):391-399.
    154.Sartori F, Lal R, Ebinger M H, et al. Changes in soil carbon and nutrient pools a long a chronosequence of poplar plantations in the Columbia Plateau, Oregon[J]. Agriculture, Ecosystem and Environment,2007,122:325-339.
    155.Sartori F, Lal R, Ebinger M H, et al. Changes in soil carbon and nutrient pools along a chrono sequence of poplar plantations in the Columbia Plateau, Oregon[J]. Agriculture, Ecosystem and Environment,2007,122:325-339.
    156.Sayer E J, Powers J S, Tanner E V J. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere[J].Plos One,2007,2:1-6.
    157.Schmidt M, Macdonald S, Rothwell R. Impacts of harvesting and mechanical site preparation on soil chemical properties of mixed-wood boreal forest sites in Alberta[J]. Canadian Journal of Soil Science,1996,76:531-540.
    158.Schulp C J E, Nabuurs G J, Verburg P H, et al. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories[J]. Forest Ecology and Management,2008,256(3):482-490.
    159.Schulze E D, Lloyd J, Kelliher F M, et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink:A synthesis[J]. Global Change Biology,1999,5:703-722.
    160.Sedjor R A. The carbon cycle and global forest ecosystem[J]. Water, Air, And Soil Pollution,1993,70:295-307.
    161.Selmants P C, Hart S C, Boyle S E, et al. Restoration of a ponderosa pine forest increases soil CO2 efflux more than either water or nitrogen additions[J]. Journal of Applied Ecology,2008,45:913-920.
    162.Silver W L, Ostertag R, Lugo A E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands[J]. Restoration Ecology,2000,8:394-407.
    163.Simonin K, Kolb T E, Montes-Helu M, et al. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought[J]. Agricultural and Forest Meteorology,2007,143:266-276.
    164.Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review,1977,43:449-528.
    165.Sinsabaugh R L, Antibus R K, Linkins A E, et al. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J]. Ecology,1993, 74:1586-1593.
    166.Smith P, Fang C. A warm response by soils[J]. Nature,2010,464:499-500.
    167.Subke J A, Inglima I, Cotrufo F M. Trends and methodological impacts in soil CO2 efflux partitioning:a meta-analytical review[J]. Global Change Biology,2006,12: 921-943.
    168.Sullivan B W, Kolb T E, Hart S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management,2008,255:4047-4055.
    169.Sullivan B W, Kolb T E, Hart S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management,2008,255:4047-4055.
    170.Sulzman E W, Brant J B, Bowden R D, et al. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry,2005,73:231-256.
    171.Sundquist E T. The global carbon dioxide budget[J]. Science,1993,259:935-941.
    172.Swift M J, et al. Decomposition in terrestrial ecosystems[M].Oxford:Blackwell,1979: 213-217.
    173.Tang J W, Qi Y, Xu M, et al. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada[J]. Tree Physiology,2005,25:57-66.
    174.Taylor B R, Parsons W F J, Perkinson D. Decomposition of Populus trimuloides leaf litter accelerated by addition of Alnus crispa litter[J]. Canadian Journal of Forest Research,1989,19(6):674-679.
    175.Tian D L, Peng Y Y, Yan W D, et al. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations [J]. Pedosphere,2010,20:486-493.
    176.Tian D L, Wang G J, Peng Y Y, et al. Contribution of autotrophic and heterotrophic respiration to soil CO2 efflux in Chinese fir plantations[J]. Australian Journal of Botany,2011,59:26-31.
    177.Trumbore S E, Czimczik C I. An uncertain future for soil carbon[J]. Science,2008, 321:1455-1456.
    178.Turner J. Lambert M. Change in organic carbon in forest plantation soils in eastern Australia[J]. Forest Ecology and Management,2000,133(3):231-247.
    179.Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature,2000,404:861-865.
    180.Valinger E, Elfving B, Morling T. Twelve-year growth response of Scots pine to thinning and nitrogen fertilization[J]. Forest Ecology and Management,2000, 134(1/3):45-53.
    181.Vallet P, Meredieu C, Seynave I, et al. Species substitution for carbon storage:Sessile oak versus Corsican pine in France as a case study[J]. Forest Ecology and Management,2009,257(4):1314-1323.
    182.van Veen J, Kuikman P. Soil structural aspects of decomposition of organic matter by micro-organisms[J]. Biogeochemistry,1990,11:213-233.
    183.Vargas R, Allen E B, Allen M F. Effects of vegetation thinning on above-and belowground carbon in a seasonally dry tropical forest in Mexico[J]. Biotropica,2009, 41(3):302-311.
    184. Vejre H, Callesen I, Vesterdal L, et al. Carbon and nitrogen in Danish forest soils-contents and distribution determined by soil order[J]. Soil Science Society America Journal,2003,67:335-343.
    185.Vesala T, Suni T, Rannik U, et al. Effect of thinning on surface fluxes in a boreal forest[J]. Global Biogeochemical Cycles,2005,19:1-11.
    186.Vesterdal L, Dalsgaard M, Felby C, et al. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands[J]. Forest Ecology and Management,1995,77:1-10.
    187.Vesterdal L, Rosenqvist L, vander Salm C, et al. Carbon sequestration in soil and biomass following afforestation:experiences from oak and Norway spruce chronosequences in Denmark, Sweden, and the Netherlands. In:Heil G, Muys B, Hansen K (Eds.), Environmental Effects of Afforestation. Field Observations, Modelling and Spatial Decision Support. Springer, Berlin,2006:999.
    188.Vogt K A, Grier C C, Vogt D J. Production, turnover, and nutrient dynamics of above and below ground detritus of world forests[J]. Advances in Ecological Research,1986, 15:303-377.
    189.Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1995,187:159-219.
    190.Vogt K A, Vogt D J, Brown S, et al. Dynamics of forest floor and soil organic matter accumulation in boreal, temperate, and tropical forests. In:Lal R, Kimble J, Levine E, Stewart B(Eds.), Soil Management and Greenhouse Effect, Advances in Soil Science. CRC Press, Boca Raton, Florida,1995:159-178.
    191.Walker B H, Steffen W L, Canadell J eds. The terrestrial biosphere and global change, IGBP book series 4[M]. Cambridge University Press,1999:1-18.
    192.Wang C, Bond-Lamberty B, Gower S T. Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research,2002,108(D3):art. no.8224.
    193.Wang W, Guo J X. The contribution of root respiration to soil CO2 efflux in Puccinellia tenuiflora dominated community in a semi-arid meadow steppe. Chinese Science Bulletin,2006,51:697-703 (in Chinese with English abstract).
    194.Waterworth R M, Richards G P. Implementing Australian forest management practices into a full carbon accounting model[J]. Forest Ecology and Management, 2008,255:2434-2443.
    195.Watson R T, Verardo D J. Land-use change and forestry[M]. London:Cambridge Univesrity Perss,2000:25-51.
    196.Wells C G. Effects of Prescribed Burning on Soil Chemical Properties Nutrient Availability [R]. Asheville:USD A Forest Service Southeast Forest Experiments Station,1971:86-99.
    197.Widen B, Majdi H. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation[J]. Canadian Journal of Forest Research,2001,31:786-796.
    198.Widen B, Majdi H. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation[J]. Canadian Journal of Forest Research,2001,31:786-796.
    199.Woodwell G M. The biota and world carbon budget[J]. Science,1978,199:141-146.
    200.Xu Q F, Xu J M. Changes in soil carbon pools induced by substitution of plantation for native forest[J]. Pedosphere,2003,133(3):271-278.
    201.Xu X N, Hirata E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest:N and P dynamics[J]. Plant and Soil,2005, 273:279-289.
    202.Yu X X, Zha T S, Pang Z, et al. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China[J]. Plos One,2011, 12:1-7.
    203.Zarmorch S J, Bochlold W A, Stolte K W. Using crown condition variables as indicators of forest health[J]. Canadian Journal of Forest Research,2004, 34(5):1057-1070.
    204.Zhang D Q, Hui D F, Luo Y Q, et al. Rates of litter decomposition in terrestrial ecosystems:global pattern and controlling factors[J]. Journal of Plant Ecology,2008, 1:85-93.
    205.Zinn Y L, Dimas V S, Resck J E, et al. Soil organic carbon as affected by afforestation with Eucalypt us and Pinus in the Cerrado region of Brazil[J]. Forest Ecology Management,2002,166:285-294.
    206.曹云,杨劫,宋炳煜,等.人工抚育措施对油松林生长及结构特征的影响[J].应用生态学报,2005,16(3):397-402.
    207.曾锋,邱治军,许秀玉.森林凋落物分解研究进展.生态环境学报,2010,19(1):239-243.
    208.曾昭霞,刘孝利,王克林,等.桂西北喀斯特区原生林与次生林凋落物及养分归还特征比较[J].生态环境学报,2010,19(1):146-151.
    209.陈昌洁,沈瑞祥,潘允中,等.中国主要森林病虫害防治研究进展[G].北京:中国林业出版社,1999:1-2.
    210.陈进宁,汪思龙.杉木人工林土壤碳库动态研究现状及展望[J].广西林业科学,2007,36(3):147-151,163.
    211.陈泮勤.地球系统碳循环[M].北京:科学出版社,2004:3-42.
    212.陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,6(3):339-345.
    213.程先富,史学正,于东升,等.兴国县森林土壤有机碳库及其与环境因子的关系[J].地理研究,2004,23(2):211-217.
    214.程小琴,韩海荣,康峰峰.山西油松人工林生态系统生物量、碳素积累及其分布[J].生态学杂志,2012,31(10):2455-2460.
    215.楚旭,邸雪颖,张吉利,等.大兴安岭两种林分细根生物量分布特征及季节动态[J].东北林业大学学报,2011,39(5):36--39.
    216.单建平,陶大力,王淼,等.长白山阔叶红松林细根周转的研究[J].应用生态学报,1993,4(3):241-245.
    217.段文霞,朱波,刘瑞,等.人工柳杉林生物量及其土壤碳动态分析[J].北京林业大学学报,2007,29(2):55-59.
    218.范宇,刘世全,张世熔,等.西藏地区土壤表层和全剖面背景有机碳库及其空间分布[J].生态学报,2006,26(9):2834-2846.
    219.方海波,田大伦,康文星,等.间伐后杉木人工林生态系统养分动态的研究[J].中南林学院学报,1999,6,19(2):15-20.
    220.方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报,2002,22(1):2-6.
    221.方晰,田大伦.杉木人工林林地CO2释放量的研究[J].林业科学,1997,33(2):94-103。
    222.方运霆,莫江明,Brown S,等.鼎湖山自然保护区土壤有机碳贮量和分配特征.生态学报,2004,24(1):135-142.
    223.冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877.
    224.耿玉清,余新晓,岳永杰,等.比京山地针叶林与阔叶林土壤活性有机碳库的研究[J].北京林业人学学报,2009,(5):1 9-24.
    225.郭东罡,上官铁梁,白中科,等.山西太岳山油松群落对采伐干扰的生态响应[J].生态学报,2011,31(12):3296--3307.
    226.国家林业局.中国林业年鉴[M].北京:中国林业出版社,2005:194.
    227.黄三祥,张赞,赵秀海.山西太岳山油松种群的空间分布格局[J].福建林学院学报,2009,29:269-273.
    228.蒋有绪.世界森林生态系统结构与功能研究简述[M].北京:中国林业出版社,1996.
    229.焦如珍,杨承栋,屠星南,等.杉木人工林不同发育阶段林卜植被、土壤微生物、酶活性及养分的变化[J].林业科学研究,1997,(4):34-40.
    230.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    231.金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000,(1):11-17.
    232.金研铭,徐小锋,徐惠风.根际微生态系统有机碳动态研究进展[J].湖北农业科学,2007,46(4):651-656.
    233.李国雷,刘勇,李瑞生,等.油松叶凋落物分解速率、养分归还及组分对间伐强度的响应[J].北京林业大学学报,2008,30(5):52-57.
    234.李鸿博,史锟,徐德应.植物过程对土壤有机碳含量的影响[J].应用生态学报,2005,16(6):1163-1168
    235.李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学D辑,2003,33(1):72-80.
    236.李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    237.李纫兰,缪启龙,王绍强,等.突发性火灾对南方湿地松人工林土壤碳储量的影响[J].资源科学,2009,31(4):674-680.
    238.李意德,昊仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    239.李跃林,胡成志,张云,等.几种人工林土壤碳储量研究[J].福建林业科技,2004,31(4):4-7.
    240.李正才,傅慰毅,杨校生.经营干扰对森林土壤有机碳的影响研究概述[J].浙江林学院学报,2005,22(4):469-474.
    241.李正才,徐德应,杨校生,等.北亚热带6种森林类型凋落物分解过程中有机碳动态变化[J].林业科学研究,2008,21(5):675-680.
    242.李志辉,漆良华,柏方敏,等.马尾松飞播林土壤肥力研究[J].中南林学院学报,2004,24(5):32-35.
    243.李忠,孙波,林心雄.我国东部土壤有机的密度及转化的控制因素.地理科学,2001,21(4):301-307.
    244.廖利平,汪思龙,陈楚莹,等.杉木人工林不同发育阶段凋落物量及其生态功能研究[J].应用生态学报,2000,11(3):127-130.
    245.廖利平,杨跃军,汪思龙,等.杉木(Cunninghamia lanceolata)火力楠(Michelia macclurei)纯林及其混交林细根分布、分解与养分归还[J].生态学报,1999,19(3):342-346.
    246.林希昊,王真辉,陈秋波,等.不同树龄橡胶林细根生物量的垂直分布和年内动态[J].生态学报,2008,28(9):4128-4139.
    247.刘明国,苏芳莉,谭学仁,等.不同间伐强度下天然次生林凋落物分解进程研究[J].土壤通报,2010,41(4):877-881.
    248.刘庆.川西亚高山人工针叶林与天然林凋落物的比较研究[D].四川:中国科学院成都植物研究所,2001:65--66.
    249.刘胜,丁九敏,徐涵湄,等.雪灾对毛竹林土壤呼吸与微生物生物量碳的影响[J].南京林业大学学报:自然科学版,2010,34(3):126-130.
    250.刘世荣,李春阳.落叶松人工林养分循环过程与潜在地力衰退趋势的研究[J].东北林业大学学报,1993,21(2):19-22.
    251.刘姝媛,刘月秀,叶金盛,等.广东省桉树人工林土壤有机碳密度及其影响因子[J].应用生态学报,2010,21(8):1981-1985.
    252.刘煊章,文仕知,蔡宝玉.马尾松林间伐前后养分动态的变化[J].中南林学院学报,1994,11,14(2):129-135.
    253.刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-9.
    254.刘运科,范川,李贤伟,等.间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响[J].植物生态学报,2012,36(7):645-654.
    255.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    256.罗璐,申国珍,谢宗强,等.神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J].植物生态学报,2011,35:722-730.
    257.骆士寿,陈步峰,陈永富,等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2):123-128.
    258.吕爱锋,田汉勤,刘永强.火干扰与生态系统的碳循环[J].生态学报,2005,25(10):2734-2743.
    259.吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(5):692-703.
    260.孟春,王立海,沈微.择伐对小兴安岭针阔叶混交林土壤呼吸的影响[J].应用生态学报,2008,19(4):729-734.
    261.牟长城,卢慧翠,包旭,等.采伐干扰对大兴安岭落叶松鄄苔草沼泽植被碳储量的影响[J].生态学报,2013,33(17):5286-5298.
    262.牟长城,吴云霞,李婉姝,等.采伐对小兴安岭落叶松鄄泥炭藓沼泽温室气体排放的影响[J].应用生态学报,2010,21(2):287-293.
    263.潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征[J].生态学报,2011,31(2):335-343.
    264.潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    265.裴智琴,周勇,郑元润,等.干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献[J].植物生态学报,2011,35(11):1182-1191.
    266.齐泽民.川西亚高山箭竹群落-土壤养分源库动态研究[J].重庆:西南农业大学,2004.
    267.秦松,樊燕,刘洪斌,等.地形因子与土壤养分空间分布的相关性研究[J].水土保持研究,2007,14(4):275-279.
    268.邵青还.第二次林业革命——“接近自然的林业”在中欧兴起[J].世界林业研究,1991,(4):8-15.
    269.沈文清.江西千烟洲人工针叶林生态系统碳收支研究[D].北京:北京林业大学,2006.
    270.邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,(3):24-28.
    271.史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416.
    272.苏勇.福建柏造林实验研究[J].广西林业科学,1991,20(4):187-191.
    273.孙维侠,史学正,于东升,等.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报,2004,41(2):298-301.
    274.孙晓新,牟长城,宋长春,等.采伐对小兴安岭森林沼泽甲烷通量的影响[J].土壤通报,2011,42(1):190-194.
    275.田娜,王义祥,翁伯琦.土壤碳储量估算研究进展[J].亚热带农业研究,2010,6(3):193-198.
    276.万猛,田大伦,樊巍.豫东平原杨-农复合系统凋落物的数量、组成及其动态[J].生态学报,2009,29(5):2507-2513.
    277.汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    278.王丹,王兵,戴伟,等.不同发育阶段杉木林土壤有机碳变化特征及影响因素[J].林业科学研究,2009,22(5):667-671.
    279.王凤友.森林凋落物综述研究[J].生态系统学进展,1993,24(2):160-169.
    280.王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    281.王俊波,马安平,王得祥,等.我国人工林经营现状与健康经营途径探讨[J].世界林业研究,2008,21:102-105.
    282.王其兵,李凌浩,白永飞.模拟气候变化对三种草原植物群落混合凋落物分解的影响[J].植物生态学报,2000,24(6):674-679.
    283.王绍强,刘纪远.土壤蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534.
    284.王绍强,周成虎,李克让,等.中国土壤有机碳库及空间特征分析[J].地理学报,2000,55(5):533-544.
    285.王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56(4):390-400.
    286.王娓,郭继勋.松嫩草原碱茅群落环境因素与凋落物分解季节动态[J].应用生态学报,2001,12(6):841-844.
    287.卫云燕,尹华军,刘庆,等.气候变换背景下森林土壤碳循环研究进展[J].应用与环境生物学报,2009,15(6):888-894.
    288.尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究[J].西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    289.吴楚,张秀娟.水曲柳人工林凋落物分解及其N、P、K养分归还[J].长江大学学报(自然版),2005,2(5):55-57.
    290.奚小环,杨忠芳,夏学齐,等.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J].地学前缘(中国地质大学(北京);北京大学),2009,16(1):194-204
    291.肖春波,王海,范凯峰,等.崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J].上海交通大学学报(农业科学版),2010,28(1):30-34.
    292.徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,5:26-31.
    293.徐秋芳,钱新标,桂祖云.不同林木凋落物分解对土壤性质的影响[J].浙江林学院学报,1998,15(1):27-31.
    294.徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报,2008,19(3):539-544.
    295.许晓静,张凯,刘波,等.森林凋落物分解研究进展[J].中国水土保持科学,2007,5(4):108-114.
    296.闫峻,才玉石.新时期林业生物灾害的形势和对策分析[J].北京林业大学学报,2006,28(5):59-62.
    297.闫美芳,张新时,江源,等.主要管理措施对人工林土壤碳的影响[J].生态学杂志,2010,29(11):2265-2271.
    298.杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征[J].生态学报,2007,27(9):3609-3617.
    299.杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应.应用生态学报,2007,18(12):2889-2895.
    300.杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.
    301.于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    302.于海群,刘勇,李国雷,等.油松幼龄人工林土壤质量对间伐强度的响应[J].水土保持通报,2008,28(3):66-70.
    303.原作强,李步杭,白雪娇,等.长白山阔叶红松林凋落物组成及其季节动态[J].应用生态学报,2010,21(9):2171-2178
    304.张城,下绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,(2):97-103.
    305.张家武.马尾松火力楠混交林凋落物动态及其对土壤养分的影响[J].应用生态学报,1993,4(4):359-363.
    306.张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    307.张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138.
    308.张彦东,王庆成,李清林.水曲柳落叶松纯林与混交林的枯叶分解动态[J].东北林业大学学报,1999,27(4):5-8.
    309.赵谷风,蔡延,罗媛嫒,等.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报,2006,26(10):3286-3295.
    310.赵广亮,王继兴,王秀珍,等.油松人工林密度与养分循环关系的研究[J].北京林业大学学报,2006,28(4):39-44.
    311.中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法[M].北京:科学出版社,1983:105-107.
    312.周德明,陈晓萍,张建湘,等.马尾松飞播林地土壤微生物的研究[J].中南林学院学报,2002,22(3):59-62.
    313.周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,2006,21(2):138-143.
    314.周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    315.朱连奇,朱小立,李秀霞.土壤有机碳研究进展[J].河南大学学报(自然科学版),2006,36(3):72-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700