用户名: 密码: 验证码:
激光陀螺捷联惯导系统温度误差建模与补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新军事变革不断深入,高技术武器高速发展,捷联惯导系统工作环境发生着巨大的变化,如何在恶劣温度环境下提供精确、稳定的位置、姿态信息,是捷联惯导系统研究所面临的艰难挑战。在激光捷联惯导系统正常工作时,系统内部温度场分布复杂,温度对系统各个部件影响各有差异,增加了系统温度误差建模与补偿的难度。论文从激光陀螺捷联惯性系统误差机理入手,对系统中陀螺组件和加速度计组件分别进行温度误差建模,并研究了对应的标定方法。
     文章通过分析陀螺组件的输入输出模型,结合激光陀螺器件级刻度因子、零偏的温度多项式模型,研究了陀螺组件零偏、刻度因子以及安装误差的温度模型,并在捷联惯性系统的常温标定方法的基础上,讨论了一种基于三轴温控转台的陀螺组件刻度因子、零偏以及安装误差角温度标定方法。
     本文根据石英挠性加速度计组件的结构分析了其温度特性,通过分析加速度计组件的输入输出模型,将刻度因子矩阵分解为加速度计器件刻度因子与安装误差两个部分分别进行分析,结合加速度计零偏的分析,研究了加速度计组件零偏、刻度因子以及安装误差的温度模型。在捷联惯导系统的常温标定方法的基础上,讨论了一种基于三轴温控转台的加速度计组件刻度因子、零偏以及安装误差角温度标定方法。
     论文介绍了一种基于双轴位置单轴速率温控转台的加速度计组件温度标定方法,通过对实验数据的分析处理,得出加速度计组件温度误差模型参数,并且运用重力测量误差检验了加速度计组件温度模型的有效性。
     通过总结一次性温度标定方法的不足,提出温度参数修正的思想。在针对加速度计组件测量模型的深入分析之后,从重力测量误差入手,归纳出修正方法的优化模型。考虑到优化模型自身的特点,文章考虑使用基本粒子群算法对参数进行优化,并通过了静态重力测量误差实验的检验,取得了较好的效果。通过参数修正,增强了加速度计组件温度模型参数的重复性与时效性,为温度补偿方法的广泛应用提供了工程方法支持。
As the high and new technology weapons becoming more and more important in wars, the work environment for strapdown inertial navigation system (SINS) varies as well. How to constantly suply accurate and steady out for navigation a hard task for the investigation on SINS. When SINS is working, the thermal environment in it is fuzzy and varying, and the thermal effort of the units in the system differs from each other. Therefore this make the investigation on thermal effort of SINS become more difficult. At the beginning of the investigation, we make some analysis on the origin of thermal effort and the thermal effort modal of accelerometers and gyros, then a thermal calibration technique is carried out.
     With analysis on the IO modal of gyros, a polynomial modal for gyro bias, scale factor and misalignment is carried out. On the basis of this, a calibration technique is investigated.
     After studying the IO modal and thermal characteristics of accelerometers, a polynomial modal for accelerometers bias, scale factor and misalignment is carried out. On the basis of this, a calibration technique is investigated.
     The paper investigated a calibration technique for themal modal of accelerometers. This calibration technique succeed in carried out a valid thermal modal for accelerometers.
     After concluding the disadvantages of temperature calibration method, the paper carries out a optimation method for characteristics of temperature model, and the optimation model is investigated. A test for optimation using PSO method is carried out. After that the stability and reliability of the modal have been intensified.
引文
[1]姜璐,于远治,吉春生.陀螺仪在导航中的应用及其比较[J].舰船工程, 2004. 26(2):10-13.
    [2]董煜茜.微机械振动轮式陀螺样机的试验研究.[J]宇航学报, 2000. 21(1): 65-70
    [3] Gary A, Neal B, LEE I, et al. Evolution of precision IFOG[C]. ION 57th Annual Meeting/ CIGTF 20th Biennial Test Symposium, 2001:200-204.
    [4]梁阁亭,惠俊军.陀螺仪的发展与应用[J].飞航导弹. 2006(4).
    [5] Gustavson T, Landragin A, Kasevich M A. Rotion sensing with a dual atom-interferometer Saganac gyroscope[J]. Class, Quantum Grav. 2000,17: 2385-2398.
    [6]郭创,张宗麟,王金林,赵小宁.激光陀螺温度特征点选择及补偿[J].光电工程, 2006. 33(6).
    [7]马小霞,带世荣.基于模糊控制的陀螺温度控制系统研究.中国惯性技术学报[J], 2004.
    [8]张明举.陀螺仪标度因数温度误差补偿方法分析.自动驾驶仪与红外技术[J], 2005. 4.
    [9]吴美平,胡小平.多层局部回归神经网络在激光陀螺捷联惯导系统惯性敏感器误差补偿中的应用.国防科技大学学报[J], 2001. 23(6).
    [10]吴美平,胡小平.基于动态神经元网络的激光陀螺输出误差模型.中国惯性技术学报[J], 2000. 8(4).
    [11]张鹏飞,龙兴武.机抖激光陀螺捷联系统中的惯性器件的温度补偿的研究.宇航学报[J], 2006.
    [12]张广莹,邓正隆.陀螺仪温度建模研究.仿真学报[J], 2003.
    [13]徐丽娜,邓正隆.陀螺仪温度实验与建模研究.宇航学报[J], 1999. 20(2).
    [14]滕玉昆,张英芳.陀螺漂移与温度动态过程的实验分析.中国惯性技术学报[J], 1997. 5(1).
    [15]吴国勇,顾启泰.环形激光陀螺温度模型.清华大学学报, 2003. 2.
    [16]刘瑞方,张湘平,季德成,吴文启.基于ASYM的激光陀螺捷联惯导系统温度误差模型辨识.中国惯性技术学报[J], 2007. 15(3).
    [17] J. Roll, A.N., and L. Ljung.“Local modelling of nonlinear dynamic systems using direct weight optimization”. in Proc. 13th IFAC Symp.Syts. Ident., 2003,pp: 1554–1559.
    [18] J. Roll, A.N., and L. Ljung.“Nonlinear system identification via direct weight optimization,”Automatica, 2005. Vol 41: pp. 475–490.
    [19] Er-Wei, Y.L.“Recursive Direct Weight Optimization in Nolinear System Identification:A Minimal Probability Approach.”IEEE transitions on automatic control, 2007. 52(7).
    [20]郭创,张宗麟,王金林,赵小宁.激光陀螺温度特征点选择及补偿.光电工程[J], 2006 33(6)
    [21]吕妍红,崔中兴.环形激光陀螺的神经网络消噪.传感技术学报[J], 2006 19(1)
    [22]张鹏飞,汤建勋,龙兴武.机抖激光陀螺抖动机构的温度特性研究.应用激光, 2006 26(5)
    [23]张鹏飞,王宇,龙兴武,汤建勋,李革,许光明.加速度计温度补偿模型的研究.传感技术学报, 2007. 20(5).
    [24]张鹏飞,龙兴武.二频机抖激光陀螺温度漂移补偿的初步研究.激光杂志, 2005.26(5).
    [25]张鹏飞,龙兴武.二频机抖激光陀螺零偏的温度特性的逐步回归分析.光学技术, 2006.32(5).
    [26] Chatfield A B. Fundamentals of high accuracy inertial navigation[M]. Published by the American institute of Aeronautics and Astronautics, 1997: 23-30.
    [27]王洋,商顺昌.石英挠性加速度计的温场分析[J]传感器技术,1996
    [28]何铁春,周世勤.惯性导航加速度计.北京:国防工业出版社,1983
    [29]李国辉,戴世荣,杨孟兴.加速度计静态温度模型的辨识.导航与控制, 2004.3(1)
    [30]张鹏飞,王宇,龙兴武等.加速度计温度补偿模型的研究.传感技术学报, 2007.20(5)
    [31]袁保伦,饶谷音.一种新的激光陀螺惯性测量组合标定方法.中国惯性技术学报, 2007.15(7)
    [32]粒子群算法. http://baike.baidu.com/
    [33] A. B. Chatfield, Fundamentals of High Accuracy Inertial Navigation vol. 174 progress in Astronautics and Aeronautics: American Institute of Aeronautics and Astronautics, Inc, 1997.
    [34]赵小宁,李.,雷宝权.激光陀螺零偏温度补偿研究.中国惯性技术学报[J], 2004. 12(3).
    [35]李清梅,胡小平,吴美平.高精度加速度计A/D转换电路的温漂补偿.中国惯性技术学报[J], 2005. 13(5): 45-48.
    [36]梅硕基,惯性仪器测试与数据分析[M]. 1991,西北工业大学出版社.
    [37]过锐秋.加速度计静态温度模型辨识及温度补偿方法研究.西安电子科技大学学报(自然科学版)[J], 2007. 34(3).
    [38]丁衡高.惯性技术文集[M]国防工业出版社,1994
    [39]顾冬晴,秦永元,严恭敏,徐景硕.基于多元回归模型的捷联惯性测量组件标定技术.中国惯性技术学报[J], 2003.
    [40]赵建勋,机抖激光陀螺及捷联惯导系统热平衡分析与热设计研究,国防科技大学硕学位论文, 2007
    [41]严恭敏,秦永元,严卫生,徐德民.基于双轴位置转台的激光捷联惯组标定方法.中国惯性技术学报[J], 2007.
    [42]葛文涛,陈明刚,张伟,邓正隆.激光捷联惯性导航系统温度误差建模及补偿.中国惯性技术学报[J], 2007. 15(3).
    [43]刘巧光,许辅义,滕云鹤,章燕申.环形激光陀螺仪随机误差模型的研究.清华大学学报(自然科学版), 1999(2).
    [44]杜建邦.三角形激光陀螺谐振腔的精度分析.航天控制, 1998(3): 53-61.
    [45]吴美平,陆用激光陀螺捷联惯导系统误差补偿技术研究,国防科技大学博士学位论文, 2000
    [46]章燕申,汤全安,潘珍吾.激光陀螺及其误差补偿.航空学报, 1990. 11(3)
    [47]罗晖,张广发.激光陀路信号检测系统的理论与实验研究.激光技术, 1997.21(3)
    [48]王旭东,邵惠鹤, RBF网络理论及其在控制中的应用,信息与控制, 1997, Vol 26, No 4
    [49] Haiying Hou. Modeling Inertial Sensors Errors Using Allan Variance [D]. Deparment of Geomatics Engineering, September 2004
    [50] D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology, 1997
    [51] Bernie Gollomp. Gyroscopes. IEEE Instrumentation & Measurement Magazine, September 2001
    [52] Youshen Xia, Mohamed S. Kamel, Henry Leung. A fast algorithm for AR parameter estimation using a novel noise-constrained least-squares method. Neural Networks
    [53] James C, Peyton Jones, Kenneth R. Muske. Identification and adaptation of linear look-up table parameters using an efficient recursive least-squares technique. ISA Transactions 2009.48
    [54] El-Sayed M. Abdelrahman, Khalid S. Essa. New least-squares algorithm for model parameters estimation using self-potential anomalies. Computers & Geosciences, 2008(34)
    [55] Samrat L. Sabat, Layak Ali, Siba K. Udgata. Integrated Learning Particle Swarm Optimizer for global optimization. Applied Soft Computing, 2010
    [56] V. Kumar, P. Balasubramanian. Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization. Fuel, 2009.88
    [57] Venkatesh Rajagopalan, Subhadeep Chakraborty, Asok Ray. Estimation of slowly varying parameters in nonlinear systems via symbolic dynamic filtering. Signal Processing, 2008.88
    [58] Hubert Varella, Martine Gue’rif, Samuel Buis. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environmental Modelling & Software, 2010.25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700