用户名: 密码: 验证码:
无驱动结构的硅微机械陀螺若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无驱动结构的硅微机械陀螺是一种基于哥氏力效应的新型角速度传感器,它利用旋转体自旋作为驱动,没有驱动结构,体积小,成本低,结构简单,可同时敏感旋转体的滚动、俯仰、偏航三个角速度。这种微机械陀螺是一种很有前景的传感器,可广泛应用于诸如滚转导弹等高速旋转体的姿态检测,它的研究具有重要的理论意义和实际应用价值。
     本文分别完善了这种无驱动结构的硅微机械陀螺的数学模型,提出了抑制滚动角速度变化对陀螺输出信号影响的方法,实现了输出信号分离算法等关键技术问题,并在此基础上研制了以DSP2812为核心处理器的微机械陀螺姿态传感器样机。本文的创新工作包括以下具体内容:
     1.针对前期所建微机械陀螺的数学模型只考虑偏航或俯仰的情况,利用欧拉方程,结合陀螺的结构特点,建立了微机械陀螺在俯仰和偏航并存时的数学模型,并通过仿真实验验证了所建模型的正确性,进一步完善了微机械陀螺的理论。
     2.针对滚动角速度变化对微机械陀螺输出信号的影响,定义了滚动速度变化对刻度因子的影响率,提出了一种抑制滚动角速度变化对输出信号影响的方法,通过对具体微机械陀螺的实验、分析,结果表明,通过该方法处理后,其影响率降低了近23倍,提高了陀螺刻度因子的一致性。
     3.研究了通过微机械陀螺输出信号和加速度计信号的相位差与旋转体空间偏转方向的关系,提出了利用相位差确定空间偏转方向的方法,进行了理论证明和实验验证;并深入分析了影响相位差的因素:如滚动角速度、输入角速度(俯仰和偏航合角速度)、温度及复杂运动形式下加速度计被调制等;针对两信号相位差受到滚动角速度及输入角速度影响突出,提出了一种相位差复合建模补偿的方法,实验表明补偿后相位差的最大绝对误差小于2°,减小了影响。
     4.微机械陀螺输出信号是一包含滚动、偏航和俯仰角速度的调制信号,为了从微机械陀螺输出信号解调出滚动、俯仰、偏航三个角速度信息,以便用于旋转载体的多通道控制系统,提出了微机械陀螺输出信号的解调算法,并通过仿真实验验证了算法的有效性。结果表明:①该算法能够解调出旋转载体的滚动角速度、偏航角速度和俯仰角速度;②解调出来的滚动角速度与实际滚动角速度在5s内的最大相对误差小于0.3%,偏航角速度与实际偏航角速度最大绝对误差是5.2°/s,俯仰角速度与实际俯仰角速度的最大绝对误差是4.1°/s。
     5.基于上述研究,设计并实现了以DSP2812为核心处理电路的微机械陀螺姿态传感器样机,并利用三轴转台模拟滚转导弹对样机进行了测试,测试结果表明,该姿态传感器可以将同时敏感的滚动、偏航和俯仰三个角速度直接以数字形式输出给上位机。解调出的滚动角速度的相对误差小于1%,俯仰、偏航角速度的相对误差小于17%,效果良好。
Non-driven structure micromechanical gyroscope is a novel angular rate sensor based on Coriolis force effect, which has not driven part, but utilizes itself circumrotation of the rotating carrier as driven force. It has the characteristics of small size, low cost, simple structure and can sense rolling, pitching and yaw angular rate of the rotating carrier at the same time. The micromechanical gyroscope is a promising sensor, which can be extensively applied to attitude measurement of high-speed-rotating airframe, e.g. rolling airframe missile. So its research has important theoretical significance and practical application value.
     The dissertation has improved the mathematical model of micromechanical gyroscope, presented the method to compensate the effect of rolling angular rate on the output signal of the gyroscope and achieved the demodulation algorithm of the signal of the gyroscope. According to the above, the paper has designed and implemented the attitude sensor for high-speed-spin vehicle. The main contributions of this dissertation are listed as follows:
     1. The previous model of micro-mechanical gyroscope fails to consider the existence of both pitching and yaw at the same time. The paper has presented the mathematical model of the micromechanical gyroscope based on Euler equations and the structure characters of the gyroscope. The simulation test has shown that the model is correct. And the theory of the non-driven Silicon micromechanical gyroscope has been improved furthermore.
     2. In the order to reduce the effect of rolling angular rate on the output signal of the micromechanical gyroscope, the paper has defined the parameter about the influence on the scale factor caused by the change of rolling velocity, and presented a method to restrain the influence. The experiment results have shown that the ratio is reduced nearly by 23 times and improves the scale factor consistency of the gyroscope.
     3. Though researching the relationship between phase difference, which is caused by output signal of the micromechanical gyroscope and accelerometer signal, and the deflection direction of the rotating carrier, the paper has proposed a method to determine the space deflection direction of rotating carrier based on the phase difference. Theoretical analysis and experimental results has verified the rationality and effectiveness of the method. Then the paper has analyzed the factors, i.e. rolling angular rate, the input angular, temperature and the demodulated accelerometer in the form of complex motion, which could influence the phase difference. Base on the rolling and input angular rate effecting phase difference, the paper has proposed composite phase difference compensation method. The test results have shown that the maximum absolute error of the compensated phase difference is less than 2°. The experiments have verified the validity of the compensation model.
     4. The micromechanical gyroscope output signal is a modulation signal including rolling, pitching and yaw angular rate. With the aim to demodulate the information to get the three angular rates used in the multi-channel control system of the rotating carrier, the demodulation algorithm of the micro-mechanical gyroscope output signal has been advanced and the simulation experiment has demonstrated the effectiveness of the algorithm. The results have shown that:(1) the algorithm can demodulate three angular rates i.e. rolling, pitching and yaw; (2) within the 5s, the maximum relative error between the demonstrated rolling rate and the actual rolling rate is less than 0.3%, the maximum absolute error between the demonstrated pitching rate and the actual pitching rate is 5.2°/s, the maximum absolute error between the demonstrated yaw rate and the actual yaw rate is 4.1°/s.
     5. Based on the above research, the paper has designed and implemented the micromechanical gyroscope attitude sensor prototype, whose core processing circuit is DSP2812. Then the prototype has been tested on the three-axis turntable, which can simulate the rolling missile. The results show that:the attitude sensor can sense rolling, yaw and pitching angular simultaneously and can output three angular rates in digital form directly to the host computer; the relative error of the demodulated rolling angular rate is less than 1%, the relative error of pitching (yaw) angular rate is less than 17%.
引文
[1].钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2008.
    [2].王颂康,朱鹤年.高新技术弹药[M].北京:兵器工业出版社,1997.
    [3].舒金龙,陈良瑜,朱振福.末制导炮弹的研究现状与发展趋势[J].系统工程与电子技术,2003,25(4):443-446.
    [4]. Alfred R Schuler. Measuring rotating motion with linear accelerometers[J]. IEEE Trans.on AES,1967,3(3):465-472.
    [5]. Padgaonkar A J, Krieger K W, King A I. Measurement of angular acceleration of a rigid using linear accelerometers [J]. Journal of Applied Mechanics,1975,42(9): 552-556.
    [6]. Merhav Shmuel J. A non-gyroscopic inertial measurement Uint[J]. Journal of guidance and control,1982,5 (3):227-235.
    [7]. Algrain Marcelo C. Accelerometer-based platform stabilization[J]. SPIE Acquisition, Tracking, and Pointing,1991,1482:367-382.
    [8]. Chen Jeng-Heng, Lee Sou-Chen, DeBra Daniel B. Gyroscope free strapdown inertial measurement unit by six linear accelerometers [J]. Journal of Guidance, Control, and Dynamics,1994,17(2):286-290.
    [9]. Park Sungsu, Tan Chin-Woo, Park Joohyuk. A scheme for improving the performance of a gyroscope-free inertial measurement unit[J]. Sensors and Actuators, A:Physical, 2005,121(2):410-420.
    [10].马澎田,陈世友,李艳梅.无陀螺捷联惯导系统[J].航空学报,1997,18(4):484-488.
    [11].史震.无陀螺捷联惯导系统中加速度计配置方式[J].中国惯性技术学报,2002,10(1):15-19.
    [12].伊德进,王宏力,刘光斌.捷联惯导系统六加速度计配置方案研究[J].中国惯性技术学报,2003,11(2):48-51.
    [13].牟淑志.无陀螺惯性测量组合仿真及实验研究[D].南京理工大学博士论文,2006.
    [14].张萌.旋转弹用惯性测量系统研究[D].中北大学硕士论文,2008.
    [15].丁明理,王祁.无陀螺惯性测量组合实验系统设计[J].哈尔滨工业大学学报,2006,38(10):1748-1749.
    [16].王劲松,王祁,孙圣和.无陀螺微惯性测量装置[J].传感器技术,2003,22 (4):43-45.
    [17]. Ding, M., Wang, Q., Shen, G, Zhao, P. A novel non-gyro inertial measurement unit [J]. Key Engineering Materials,2005,295-296:583-588.
    [18].周百令,黄胜华,王寿荣.一种新型的单陀螺多加速度计捷联惯导系统[J].中国惯性技术学报,2002,10(1):6-9.
    [19].赵龙,陈哲.提高无陀螺捷联惯导系统角速率解算精度的新方法[J].系统仿真学报,2003,15(4):579-603.
    [20].张树侠,孙静.捷联式惯性导航系统[M].北京:国防工业出版社,1992.10.
    [21]. Walsh, Paul. Use of inertial measurement units as a primary sensor for a flight control system [J]. IEE Colloquium (Digest),1998,275:6/1-6/2.
    [22]. Cardarelli, Donato. An integrated MEMS inertial measurement unit[J]. Record IEEE PLANS, Position Location and Navigation Symposium,2002,:314-319. April 15,2002-April 18,2002.Palm Springs, CA, United states.
    [23].韩璐,景占荣,张京妹,段哲民.弹用捷联式惯性导航系统数值仿真[J].西北工业大学学报,2009,29(2):163-167.
    [24].杨艳娟.捷联惯性导航系统关键技术研究[D].哈尔滨工程大学博士论文,2001.
    [25].薛文胜.浅析几种新型陀螺的发展动态[J].电子科技大学学报,1995,24(5):485-489.
    [26].史金光,王中原,刘巍.简易控制修正力技术研究[J].弹道学报,2006,18(1):14-17.
    [27]. Thomas E Harkins,David J.Hepner MAGSONDE:a Device for Making Angular Mearsurement on Spinning Projectiles with Magnetic Sensors[R]. ADA386491. December 2000.
    [28].陈智刚,王志军,C.N.斯特列夫.运用地磁传感器对旋转弹进行程序控制[J].华北工学院测试技术学报,2001,15(3):169-171.
    [29]. Kao, C.F., Chen, T.L. Design and analysis of an orientation estimation system using coplanar gyro-free inertial measurement unit and magnetic sensors[J]. Sensors and Actuators, A:Physical,2008,144(2):251-262.
    [30].楼朝飞,张锐.地磁传感器在滚动导弹惯测组合中的应用研究[J].航天控制,2008,26(2):41-46.
    [31].王占平,唐小宏,王亚非.高速飞行的旋转体姿态识别技术研究[J].电子科技大学学报,2007,36(2):203-206.
    [32].周兆英,王中林,林立伟.微系统和纳米技术[M].北京:科学出版社,2007,7.
    [33]. Gregory T.A.Kovacs, Nadim I. Maluf, Kurt E.Peterson. Bulk micromachining of Silicon[J]. Proceeding of the IEEE,1998,86(8):1536-1551.
    [34]. James M. Bustillo, Roger T. Howe, Richard S. Muller. Surface micromachining for microelectromechanical systems[J]. Proc.IEEE,1998,86(8):1552-1574.
    [35]. W.Menz. LIGA and related technologies for industrial application[C].//The 8th International Conference on Solid-State Sensors and Actuators (Transducers'95), Sweden,1995:552-555.
    [36]. J.Bernstein, P.Greiff.A vibratory micromechanical gyroscope[C].//AIAA Guidance and Control Conference, Minneapolis,MN,USA,1988:1033-1040.
    [37]. J.Bernstein, S. Cho, A.T. King, A.Kourepenis, P.Maciel, and M.Weinberg. A micromachined comb-drive tuning fork rate gyroscope[C].//Proc.IEEE Micro Electro Mechanical Systems Workshop(MEMS'93), Fort Lauderdale, FL, 1993:143-148.
    [38]. P.Greiff,B.Boxenhorn. Micromechanical gyroscopic transducer with improved drive and sense capabilities[P]. U.S. Patent, No.5408877, Apr,25,1995.
    [39]. Michael William Putty. A micromachined vibrating ring gyroscope[PhD]. American: Electrical engineering, University of Michigan,1995.
    [40]. Farrokh Ayazi, KHalil Najafi. Design and fabrication of a high-performance polysilicon vibrating ring gyroscope[C].//11th IEEE/ASME international workshop on Micro Electro Mechancial Systems, Germany,1998.
    [41]. Farrokh Ayazi, KHalil Najafi. A HARPSS polysilicon vibrating ring gyroscope[J]. Journal of microelectromechanical systems,2001,10(2):169-179.
    [42]. P. Greiff, B.Antkowiak. Vibrating wheel micromechanical gyro[C].//IEEE PLANS'.1996[C].17-31.
    [43]. T.K. Tang, R.C. Gutierrez,J.Z. Wilcox, et al. Silicon bulk micromachined vibratory gyroscope[C]. Tech. Dig. Solid-State Sensors and Actuator Workshop, Hilton Head Island, SC,June 2-6,1996:288-293.
    [44]. T.K. Tang, R.C. Gutierrez, C.B. Stell.et al. A packaged silicon MEMS vibratory gyroscope for microspacecraft[C].//In Proc. IEEE Micro Electro Mechanical Systems Workshop, Japan,1997:500-505.
    [45]. W.A. Clark, R.T. Howe,R.Horowitz. Surface micromachined Z-axis vibratory rate gyroscope[C].//Tech. Dig. Solid-State Sensors and Actuator Workshop, Hilton Head Island, SC,June 2-6,1996:283-287.
    [46].周世勤.新型惯性技术的发展[J].飞航导弹,2001,6:70-77.
    [47]. T.Juneau, A.P. Pisano, J.H. Smith. Dual axis operation of a micromachined rate gyroscope[C].//In Tech.Dig.9th Int. Conf. Solid-State Sensors and Actuators, Chicago, IL, June 1997:883-886.
    [48]. Liu Kai, Zhang, Weiping, Chen, Wenyuan, et.al. The development of micro-gyroscope technology [J]. Journal of Micromechanics and Microengineering,2009,19(11):113001.
    [49]. Cenk Acar, Andrei M. Shkel, Four degrees-of-freedom micromachined gyroscope[J]. Journal of Modeling and Simulation of Microsystems,2001,2(1):71-82.
    [50]. Seshia, A.A, Howe. R.T., Montague, S. An integrated microelectromechanical resonant output gyroscope[C].//The 15th IEEE International Conference Micro Electro Mechanical Systems,2002:722-726.
    [51]. Huikai Xie, Gary K. Fedder. Integrated microelectromechanical gyroscopes[J]. Journal of aerospace engineering,2003,16(2):65-75.
    [52].MEMS陀螺成功应用于Draper'惯性星光姿态确定系统[R].上海市传感技术学会简讯,2007,1:4.
    [53]. K.Tanaka, Y.Mochida, M.Sugimoto. A Micromachined Vibrating Gyroscope[J]. Sensors and Actuators, A:Physical,1995,50(1-2):111-115.
    [54]. Y.S.Oh, B.L.Lee,S.S Baek. A Tunable Vibratory Microgyroscope[J]. Sensors and Actuators, A:Physical,1998,64(1):51-56.
    [55]. Y.Mochida,M.Tamura,K.Ohwada. A Micromachined Vibrating Rate Gyroscope with Independent Beams for the Drive and Detection Modes. Sensors and Actuators[J], A:Physical,2000,80(2):170-178.
    [56]. Hiroshi Kawai, Ken-Ichi Atsuchi,Masaya Tamura,Kuniki Ohwada,High-resolution microgyroscope using vibratory motion adjustment technology[J], Sensors and Actuators A,2001(90):153-159。
    [57]. W.Geiger,B.Folkmer,et al,New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes[J].Sensors and Actuators A.66:118-124,1998.
    [58]. W.Geiger, B.Folkmer. A new silicon rate gyroscope[C].//The 11th IEEE workshop on Micro-Electro-Mechanical Systems, Heidelberg, Germary,1998:615-620.
    [59]. W.Geiger, B.Folkmer. Newdesigns, readoutconcept and simulation approach of micromachined rate gyroscopes[C].//Smposium gyrorechnology'97,1997.
    [60]. R.Voss,et al. Silicon angular rate sensor for automotive applications with piezoelectric drive and piezoresistive read-out[C].//Tech, Dig.9th Int. Conf. Solid-State Sensors and Actuators(Transducers'97),Chicago,IL,June 1997:879-882.
    [61]. Lutz, M.Golderer. A Precision Yaw Rate Sensor in Silicon Micromachining[C]. //Proc.1997 Int. Conf. on Solid State Sensors and Actuators,Chicago,IL,June 16-19,1997:847-850.
    [62]. F.Paoletti, M.A.Gretillat, N.F.de Rooij. A silicon micromachined vibrating gyroscope with piezoresistive detection and electronmagnetic excitation[C]. //Proc.IEEE MicroElectro Mechanical Systems Workshop(MEMS'96), San Diego, CA,1996:162-167.
    [63]. Bin Xiong, Lufeng Che,Yuelin Wang. A novel bulk micromachined gyroscope with slots structure working at atmosphere[J].Sensors and Actuators,2003, (107): 137-145.
    [64].熊斌.栅结构微机械振动式陀螺[D].中国科学院上海微系统与信息技术研究所博士论文,2001.
    [65].熊斌,黄小振,王跃林.一种新型微机械陀螺的研究[J],高技术通讯,2001,(9):38-41.
    [66].陈垚.微机械陀螺的材料及器件设计研究[D].中国科学院上海微系统与信息技术研究所博士论文,2000.
    [67].陈永,焦继伟,熊斌.一种基于滑膜阻尼效应的新型微机械陀螺[J],中国机械工程,2004,15(2):103-106.
    [68].陈永.基于滑膜阻尼效应的音叉式微机械陀螺研究[D].中国科学院上海微系统与信息技术研究所博士论文,2004.
    [69].陈雪荫,宋朝晖,李欣昕.高灵敏度硅微机械陀螺的设计与制造[J].传感器技术,2004,(23):82-85.
    [70]. X.Li, M.Bao, H.Yang, S.Shen. A micromachined piezoresitive angular rate sensor with a composite beam structure[J]. Sensors and Actuators A,1999, (72):217-223.
    [71]. Heng Yang, Minhang Bao, Hao Yin,Shaoqun Shen. A novel bulk micromachined gyroscope based on a rectangular beam-mass structure[J]. Sensors and Actuators A, 2002, (96):145-151.
    [72].杨恒.矩形梁微机械陀螺与相关微机械动力学研究[D].复旦大学博士论文,2000.
    [73].陈志勇,高钟毓,张嵘.振动轮式微机械陀螺频率配置和气压选择[J].中国惯性技术学报,2001,(9):53-56.
    [74].韩竞科,王东红,陈伟平.梁式硅微机械陀螺结构的研究[J],遥测遥控,2001,(11):43-47.
    [75].马薇,李世玮,虞吉林.一种新颖的四梁式压电薄膜微型陀螺[J].中国科学技术大学学报,2000,(30):401-405.
    [76]. Y.Weizheng, C.Honglong, L.Weijian. Application of an Optimization Methodology for Multidisciplinary System Design of Microgyroscopes[J]. Microsystem Technologies,2006,12(4):315-323.
    [77]. D.Haitao, L.Xuesong, C.Jian. A Bulk Micromachined Z-Axis Single Crystal Silicon Gyroscope for Commercial Applications[C].//IEEE International Conference on Nano/Micro Engineered and Molecular Systems,NEMS, Sanya, China, 2008:1039-1042.
    [78]. Fuxue Zhang, Wei Zhang. The Structure Principle of Silicon Micromachined Gyroscope Driven by the Rotating Carrier[J]. International Journal of Information Acquisition,2005,2(3):203-216.
    [79].张福学,王宏伟,张伟,毛旭,张楠.利用旋转载体自身角速度驱动的硅微机械陀螺[J].压电与声光,2004,27(2):109-117.
    [80].张福学,毛旭,张伟.旋转体自身驱动的硅微机械陀螺[J].中国工程科学,2007,8(8):23-27.
    [81].张福学,王宏伟,张伟.旋转载体驱动硅微机械陀螺的设计和性能检测[J].电子元件与材料,2006,25(12):20-26.
    [82].樊尚春,王路达,郭占社.一种自解耦高灵敏度谐振硅微机械陀螺[P].中国专利,2008-11-12.
    [83].樊尚春,王路达,郭占社.一种高性能谐振硅微机械陀螺[P].中国专利,2008-12-17.
    [84]. http://www.c114.net/news/212/a465336.html.
    [85]. Jonathan J Bernstein.Comb drive micromechanical tuning fork gyroscope[P]. United States Patent,5349855,1994,9,27.
    [86]. Philip Wayne Loveday.Analysis and compensation of imperfection effects in piezoelectric vibratory gyroscopes: [Ph.D.Dissertation]. Blacksburg, Virginia, Polytechnic Institute and State University,1999.
    [87]. S.An,Y,et al.,Dual-axis microgyroscope with closed-loop detection[C].//Proc.IEEE MicroElectroMechanical Systems Workshop(MEMS'98), Heidelberg, Germany, 1998:328-333.
    [88]. T.Juneau and A.P. pisano, Micromachined dual input anis angular rate sensor[C],// Tech.Dig.Solid-State Sensor & Actuator Workshop,Hilton Head Island, SC,June 1996:299-302.
    [89]. M.Hashimoto, C.Cabuz,K.Minami, and M.Esashi, Silicon resonant angular rate sensor using electromagnetic excitation and capacitive detection[J], J.Micromech. Microeng,1995:219-225
    [90]. F.Paoletti,M.A.Gretillat, and N.F.de Rooij, A silicon micromachined vibrating gyroscope with piezoresistive detection and electromagnetic excitation[C].//Proc. IEEE MicroElectro Mechanical Systems Workshop(MEMS'96), San Diego,CA,1996:162-167.
    [91]. R.Voss,et al. Silicon angular rate sensor for automotive applications with piezoelectric drive and piezoresistive read-out[C].//Tech,Dig.9th Int. Conf. Solid-State Sensors and Actuators(Transducers'97),Chicago,IL,June 1997:879-882
    [92]. B.Boxhorn et.al,A vibratory micromechanical gyroscope[C].//Navigation and Control Conference,Minneapolis,Minnesota,USA,1998:1033-1040.
    [93]. S.F.Konovalov, A.V.Kuleshov,V.P.Podtchezertsev. Vibrating angular rate sensor[C]. /Integrated Navigation Systems Proceedings of 10th International Conference.St Petersburg,2003:107-117.
    [94]. Singh, A.K.; Gorain, U.K. Development of vibrating disc piezoelectric gyroscope[J], Defence Science Journal,2004,54(3):387-393.
    [95]. Lutz, M.Golderer. A Precision Yaw Rate Sensor in Silicon Micromachining[C], //Proc.1997 Int. Conf. On Solid-State Sensors and Actuators, Chicago,IL,June 16-19,1997:847-850.
    [96]. F.Paoletti,M.A.gretillat,and N.F.de Rooij, A silicon micromachined vibrating gyrscope with piezoresistive detection and electromagnetic excitation[C], //Proc.IEEE MicroElectro Mechanical Systems Workshop(MEMS'96),San Diego,CA,1996:162-167.
    [97]. Li Xinxin. A micromechanical piezoresistive angular rate sensor with a composite beam structure[J], Sensors and Actuators A,1999,72:217-223.
    [98]. Anthony D, Manhattan Beach, Wallace H, Los Angeles. Planar vibratory gyroscopes[P], US6289733 B1,2001,9,18.
    [99]. Saukoski Mikko, Aaltonen Lasse, Salo Teemu. Interface and control electronics for a bulk micromachined capacitive gyroscope[J]. Sensors and Actuators, A: Physical, 2008,147(1):183-193.
    [100].Roman C., Tony K Tang. Micro-electromechanical system inertial sensor[P], US7640803B1,2010,1,5.
    [101].Shyu-Mou Chen, Sheau-Shi Tzuoo, Chung-Ta Kau. Silicon dual inertial sensors[P]. US6928873B2,2005,8,16.
    [102]. D.J.Seter. Characterization of a novel micromachined optical vibrating rate gyroscope[J]. Review of Scientific Instruments,1999,70(2):1274-1246.
    [103].Soderkvist Jan.Micromachined gyroscopes[J].Sensor and Acruators,1994,43:65-71.
    [104].Soderkvist, Jan.Micromachined vibrating gyroscopes[C].//Proceedings of SPIE-The International Society for Optical Engineering, Austin, TX, USA,1996, 2882:152-160.
    [105].Soderkvist, Jan. Electrostatic excitation of tuning fork shaped angular rate sensors[J]. Journal of Micromechanics and Microengineering,1997,7(3):200-203.
    [106]. Anon.Piezo vibrating gyroscopes for navigational use[J]. Electronic Engineering (London).1996,68(829):2.
    [107].Andersson Gert I, Hedenstierna Nils,Svensson Per, et al. A Novel Sillicon Bulk Gyroscope[C].//The 10th International Conference on Solid-State Sensors and Actuators.Sendai, Japan,1999:103-106.
    [108]. http://www.analog.com/UploadedFiles/Data_Sheets/778386516ADXRS150_B.Pdf.
    [109].邹汝平,张延风.旋转导弹滚动频率设计[J].兵工学报,2007,28(2):220-222.
    [110].赵凯华,罗蔚茵.力学[M].北京:高等教育出版社,2004.
    [111].张福学,张伟.旋转体自旋角速度不稳定对陀螺稳定性的影响[J].中国惯性技术学报,2007,15(5):585-588.
    [112].陆健.最小二乘法及其应用[J].应用数学,2007(12):19-21.
    [113].张鹏飞,龙兴武.二频机抖激光陀螺温度漂移补偿的初步研究[J].激光杂志,2005,26(5):83-84.
    [114].Ling Wang, Fuxue Zhang.Research on Principle and Phaxe of Silicon Micromachined Gyroscope Using for Rotating Carrier[C].//Proceedings of the 2007 International Conference on Information Acquisition.2007:10-16.
    [115].陈世同,孙枫,高洪涛,李绪友.有自适应滤波技术在光纤陀螺信号处理中的应用研究[C].弹箭与制导学报,2006,26(2):1130-1132.
    [116].秦永元.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [117].侯青剑,缪栋,彭云辉.卡尔曼滤波在激光陀螺信号处理中的应用[J].计算机测量与控制,2005,13(11):1287-1288.
    [118].万彦辉,秦永元.小波分析在陀螺信号滤波中的研究[J].压电与声光,2005,27(4):455-457.
    [119].胡广书.数字信号处理[M].北京:清华大学出版社,2003.
    [120].Gustafsson F. Determining the Initial States in Forward-Backward Filtering[J]. IEEE Transactions on Signal Processing.1996,44 (4):988-992.
    [121].樊新海,安钢,张传清.零相位数字滤波及其应用[J].国外电子测量技术,2005,8:9-11.
    [122].苏奎峰,吕强,常天庆,张永秀.TMS320X281X DSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008.
    [123].孙丽明.TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社2008.
    [124]. http://www.analog.com/static/imported-files/data_sheets/ADXL103_203.pdf
    [125].凌林本,李滋刚,周百令,熊正南.硅微机械陀螺传感器信号的检测方法[J].中国惯性技术学报,1999,7(4):61-64.
    [126].刘俊,张斌珍.微弱信号检测技术[M].北京:电子工业出版社,2005.
    [127].明亮,汪银年,王家光,张福学.一种硅微机械陀螺小信号检测电路的设计[J].北京机械工业学院学报,2006,21(4):20-25.
    [128].李万玉,阮爱武,罗晋生,冯培德.硅微机械陀螺接口检测技术的研究[J],微电子学,1999,129(5):343-346.
    [129].王雷,王保良,冀海峰.电容传感器新型微弱电容测量电路[J],传感技术学报,2002,4:273-277.
    [130].解磊,苏伟,陈泉根.微电容加速度计系统的设计[J].传感器与微系统,2007,26(11):75-77.
    [131].刘宝华.一种微小电容的测量电路[J].电工技术杂志,2001,5:45-46.
    [132].傅文利,赵进创,王师.交流型微小电容测量电路的研制[J].电子技术应用,2001,9:42-43.
    [133].刘松龄.一种高频测量微小电容的电路[J].中南民族学院学报(自然科学版),1999,18(1):13-16.
    [134].李阳.高精度微小电容测量电路的研制[J].上海计量测试,2004,4(182¨9-20.
    [135].莫冰,谭晓昀,刘晓为.电容检测型微机械陀螺的信号检测电路[J].仪器仪表学报,2005,26(8):324-326.
    [136].丁英丽.交流型微小电容测量电路的设计[J].电工技术杂志,2003,9:100-101.
    [137].杨苗苗,陈德勇.微机械电容式加速度传感器测试电路研究[J].传感技术学报,2006,19(6):2421-2424
    [138].Torg Stecker, Helmut Kremer.用于电容传感器信号转换的集成电路CAV424[J].仪表技术与传感器,2003,1:40-42.
    [139]. Analog Devices, Inc. AD7746 Data Sheet [DB/OL]. http://www.analog.com/UploadedFiles/Data_Sheets/AD7745_7746.pdf.2005.
    [140].何维玮,赵新,李毅堂,卢桂章.基于AD7745的微电容加速度计测量电路设计与实现[J].传感技术学报,2008,21(3):529-532.
    [141].胡敏,李晓莹,常洪龙,蒋庆华.基于ASIC芯片的微小电容测量电路研究[J]. 计量学报,2007,28(4):379-382.
    [142].顾海洲,马双武.PCB电磁兼容技术一设计实践[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700