用户名: 密码: 验证码:
Nesfatin-1对多巴胺能神经元的保护作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease, PD)是多发于中老年的神经系统退行性疾病,主要病理改变是中脑黑质(substantia nigra, SN)致密带多巴胺(dopamine, DA)能神经元退行性变,从而导致纹状体(striatum, Str)释放的DA减少所致。虽然遗传、环境、氧化应激、细胞凋亡、炎症反应、蛋白质异常聚集等因素均参与PD的发病,但其确切病因尚不清楚。目前PD病人DA能神经元的保护性治疗途径主要包括铁离子去除途径、单胺氧化酶-B抑制途径、神经营养因子补充、抗氧化剂的应用、神经移植、神经节苷脂途径等,但尚无行之有效的治疗办法可以阻止或者延缓DA能神经元的退行性变。因此,深入探讨PD的发病机制,针对PD病因筛选研发更有效的天然或人工合成药物成为PD研究的关键问题之一
     Nesfatin-1是2006年发现的一种由82个氨基酸组成的脑肠肽,由胃底的X/A样细胞分泌,其主要功能是抑制摄食和参与能量代谢,新近研究发现它也可以参与调节生殖、应激反应、认知等过程,并与抑郁和焦虑、癫痫的发病有关。目前有研究发现nesfatin-1在大鼠蛛网膜下腔出血和脑外伤中通过抗凋亡机制发挥神经保护作用。由于其与脑肠肽ghrelin都由胃底的X/A样细胞分泌,本课题组的前期研究工作已证实ghrelin对DA能神经元具有神经保护作用,那么,nesfatin-1对DA能神经元是否具有同样的保护作用?为了探讨这一问题,在1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin, MPTP)制备的亚急性PD小鼠模型上,通过高效液相色谱(high performance liquid chromatography, HPLC)检测了DA及其代谢产物的含量,免疫组织化学和免疫荧光技术观察了DA能神经元及其神经末梢的改变,蛋白免疫印迹法检测了SN区酪氨酸羟化酶(tyrosine hydroxylase, TH)含量的改变,观察了nesfatin-1对DA能神经元的保护作用。并进一步在体外培养的DA能细胞系——MES23.5细胞上,应用1-甲基-4-苯基吡啶阳离子(1-methyl-4-phenylpyridillium ion, MPP+)制备PD的细胞模型,通过3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5)-dimethylthiahiazo (-z-yl)-3,5-di-phenytetrazoliumromide, MTT)法检测细胞存活率,流式细胞术检测线粒体跨膜电位差(mitochondrial transmembrane potential,△ΨM)和caspase-3活性的变化,werstern blot法检测细胞色素C (cytochrome C, Cyt C)含量及细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK1/2)磷酸化的变化,细胞免疫化学检测细胞核形态学改变,来深入探讨nesfatin-1神经保护作用的机制。结果如下:
     1.在MPTP制备的亚急性PD模型小鼠中,Str内DA及其代谢产物二羟基苯乙酸(dihydroxyphenylacetic acid, DOPAC)和高香草酸(homovanillic acid, HVA)的含量均降低,分别降低96.61%、85.51%和97.2%(P<0.05)。100ng/μL和200ng/μL nesfatin-1预处理后,可拮抗由MPTP导致的DA、DOPAC和HVA含量的下降;400ng/μL nesfatin-1预处理后,可拮抗MPTP导致的DA和HVA含量的下降(P<0.05)。
     2.在MPTP制备的亚急性PD模型小鼠中,SN区内TH免疫阳性细胞数目减少30%,TH蛋白表达下降37%,与对照组相比,差别有统计学意义(P<0.05),同时Str区TH免疫阳性神经纤维末梢减少。100ng/μL,200ng/μL,400ng/μL nesfatin-1预处理可拮抗MPTP造成的DA能神经元损伤,TH免疫阳性神经元数目分别恢复至正常对照组的100%,82%,80%(P<0.05),TH蛋白表达分别恢复至正常对照组的100%,98%,95%(P<0.05),Str区TH免疫阳性神经纤维末梢增多。
     3. MPP+(300μmol/L)孵育MES23.5细胞24小时后,细胞存活率降低至对照组的74.82%,与对照组相比,差别有高度统计学意义(P<0.01)。不同浓度的nesfatin-1(10-710-13mol/L)预孵育后,可拮抗MPP+引起的细胞存活率的降低,分别为对照组的101.54%、114.39%、120.78%、110.45%、107.15%、107.78%和101.68%。10^9mol/L nesfatin-1的作用最明显。
     4. MPP+(300μmol/L)孵育MES23.5细胞24小时后,细胞ΔΨM出现降低(P<0.05),而nesfatin-1(10-8和10-9mol/L)预处理后,可拮抗MPP+造成的ΔΨM的下降(P<0.05),10-9mol/L nesfatin-1的作用最明显。
     5. MPP+(300μmol/L)孵育MES23.5细胞24小时后,细胞线粒体内Cyt C的含量降低,而胞浆中Cyt C含量升高(P<0.05)。10-9mol/L nesfatin-1预处理后,可拮抗MPP+造成的Cyt C从线粒体至细胞浆的释放(P<0.05)。
     6. MPP+(300μmol/L)孵育MES23.5细胞24小时后,能够导致凋亡效应酶caspase-3的激活,caspase-3的活性为对照组的174.78%(P<0.05).10-9mol/L nesfatin-1预处理后,可以拮抗MPP+诱发的caspase-3的激活(P<0.05)。
     7. MPP+(300μmol/L)孵育MES23.5细胞24小时后,细胞出现核的固缩、深染、破裂等凋亡现象,10-9mol/L nesfatin-1预孵育后,上述现象消失。
     8.10-9mol/L nesfatin-1预孵育MES23.5细胞能够诱导ERK1/2蛋白磷酸化,30min达到高峰。尽管ERK1/2/MAPK磷酸化的阻滞剂PD98059预孵育30min,能够拮抗nesfatin-1诱导的ERKl/2磷酸化,但不能改变nesfatin-1拮抗MPP+诱导的ΔΨM下降和caspase-3激活的作用。
     上述结果表明,nesfatin-1对MPTP和MPP+所致的DA能神经元的损伤均有保护作用,其机制可能是通过保护线粒体功能,抑制Cyt C的释放,进一步抑制caspase-3的激活而发挥,而这种保护作用与ERK1/2/MAPK信号通路无关。Nesfaitn-1可以通过抗凋亡功能而发挥对DA能神经元的保护作用,为PD的预防和治疗提供了新的策略,也为探讨nesfatin-1在中枢神经系统的生理作用提供了新的依据。
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor dysfunction. The key neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra (SN) and thus dopamine depletion in the striatum. However, the precise mechanisms leading to neurodegeneration in PD are not known, which genetic and environment factors are all involved. Up to now, there is no effective treatment for preventing or slowing the progression of neurodegeneration of dopaminergic neurons in the SN. Therefore, it is of great importance to investigate the etiology of PD and search for effective drugs to treat and prevent PD.
     Nesfatin-1, a newly discovered82-amino-acid neuropeptide released by X/A like endocrine cells in the gastric glands, regulates food intake, energy homeostasis, reproductive processes, stress response, cognition. It is also related to depression, anxiety, and epilepsy. The recent studies that it could display neuroprotective effects in subarachnoid hemorrhage and brain injury seem particularly intriguing. However, the protective effect of nesfatin-1on dopaminergic neurons has not been elucidated. In the present study,1-methyl-4-phenyl-1,2,3,6-tetrahydropyridi (MPTP)-treated mice and1-methyl-4-phenylpyridillium ion (MPP+)-treated MES23.5dopaminergic cells were selected as PD models to investigate the protective effect of nesfatin-1on dopaminergic neurons and to elucidate its underlying mechanisms. To investigate the effects of nesfatin-1on MPTP-induced toxicity in PD mice, the number of tyrosine hydroxylase (TH) positive neurons, TH levels in SN, dopamine and its metabolites contents, TH immunoreactive fibers in the striatum (Str) were tested by immunofluorescence, western blot, high-performance liquid chromatograph (HPLC), immunohistochemistry, respectively. Further studies were conducted to detect the effect of nesfatin-1on the changes of cell viability, the mitochondrial transmembrane potential (△ΨM), caspase-3levels and cytochrome c (Cyt C) release in MPP+-treated MES23.5cells. Nesfatin-1could induce the phosphorylation of extracellular regulated protein kinases (ERK1/2), which could be abolished by its inhibitor PD98059. The effects of nesfatin-1could not be abolished by PD98059. The results are as follows:
     1. The contents of DA, DOPAC and HVA in MPTP-treated mice were observed decreased compared with control group (P<0.05). Pretreatment with nesfatin-1(100ng/μL and200ng/μL), it could antagonize MPTP-induced reduction in the contents of DA, DOPAC and HVA (P<0.05). In400ng/μL nesfatin-1pretreatment group, only DA and HVA contents could be observed increased (P <0.05).
     2. In MPTP-treated mice, reduction in the number of TH-positive neurons, TH protein levels in the SN and TH immunoreactive fibers in the Str were observed compared with that of control (P<0.05). Nesfatin-1(100ng/μL,200ng/μL and400ng/μL) pretreatment significantly abolished these effects (P<0.05).
     3. MPP+(300μmol/L) could induce the reduction in cell viability in MES23.5cells (P<0.01). Pre-incubated with nesfatin-1(10-13to10-7mol/L) could antagonize MPP+-induced reduction in cell viability.
     4. MPP+(300μmol/L) treatment resulted in△Ψm decrease assessed by flow cytometry after24h exposure in MES23.5cells. Pre-incubation with nesfatin-1(10-8and10-9mol/L) could abolish this effect.
     5. Cyt C levels were observed decreased in the mitochondrion and increased in the cytosol after MPP+treatment.10-9mol/L nesfatin-1pretreatment significant antagonized Cyt C release from the mitochondrion to cytosol induced by MPP+(P<0.05).
     6. MPP+(300μmol/L) treatment induced easpase-3activation. This effect could be abolished by nesfatin-1pretreatment (P<0.05).
     7. MPP+(300μmol/L) treatment could induce hypercondensed, broken and anachromasis of nuclei in MES23.5cells.10-9mol/L nesfatin-1pretreatment attenuated the morphological changes of these cells.
     8. Nesfatin-1could induced phosphorylation of ERK1/2which reached its peak at30min and could be abolished by ERK/MAPK inhibitors PD98059. PD98059(10μmol/L) could not abolish the effects of nesfatin-1on the decrease of△ΨM and caspase-3activation induced by MPP+.
     The results indicate that nesfatin-1has neuroprotective effect in PD models both in vivo and in vitro. The underlying mechanism might be related to prevent mitochondrion damage by inhibiting Cyt C release from mitochondrion and subsequent caspase3-mediated apoptosis cascades of cells. The anti-apoptotic action of nesfatin-1is independent of ERK1/2/MAPK pathway. This work provides new evidences to explore the possible use of nesfatin-1as a potential therapeutic drug in PD by its anti-apoptotic property.
引文
1. Przedborski S, Vila M. The last decade in Parkinson's disease research. Basic sciences. Adv Neurol.2001;86:177-186.
    2. Ceballos-Baumann A. [Pharmacotherapy of Parkinson's disease]. MMW Fortschr Med. May 2 2013;155(8):49-51.
    3. Duyckaerts C, Sazdovitch V, Seilhean D. [Update on the pathophysiology of Parkinson'disease]. Bull Acad Natl Med. Oct 2010;194(7):1287-1303; discussion 1303-1284.
    4. Tremblay L. [Pathophysiology of Parkinson's disease:an update]. Bull Acad Natl Med. Oct 2010;194(7):1321-1331; discussion 1331-1322.
    5. Iversen SD, Iversen LL. Dopamine:50 years in perspective. Trends Neurosci. May 2007;30(5):188-193.
    6. Zhang ZX, Roman GC. Worldwide occurrence of Parkinson's disease:an updated review. Neuroepidemiology.1993;12(4):195-208.
    7. Schapira AH. Etiology and pathogenesis of Parkinson disease. Neurol Clin. Aug 2009;27(3):583-603, v.
    8. Xie W, Wan OW, Chung KK. New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson's disease. Biochim Biophys Acta. Nov 2010;1802(11):935-941.
    9. Kumar KR, Lohmann K, Klein C. Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol. Aug 2012;25(4):466-474.
    10. Schapira AH, Tolosa E. Molecular and clinical prodrome of Parkinson disease:implications for treatment. Nat Rev Neurol. Jun 2010;6(6):309-317.
    11. Ekbom KA. [Medical therapy of parkinsonism; review]. Sven Lakartidn. Feb 5 1954;51(6):281-286.
    12. Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol. Nov 2000;166(1):29-43.
    13. Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm. 2000;107(3):335-341.
    14. Viswanath V, Wu Y, Boonplueang R, et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J Neurosci. Dec 15 2001;21(24):9519-9528.
    15. Venderova K, Park DS. Programmed cell death in Parkinson's disease. Cold Spring Harb Perspect Med.2012;2(8).
    16. Schapira AH. Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. Jul 2007;14(7):1261-1266.
    17. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex Ⅰ deficiency in Parkinson's disease. JNeurochem. Mar 1990;54(3):823-827.
    18. Schapira AH, Mann VM, Cooper JM, et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex Ⅰ) deficiency in Parkinson's disease. J Neurochem. Dec 1990;55(6):2142-2145.
    19. Bet L, Bresolin N, Moggio M, et al. A case of mitochondrial myopathy, lactic acidosis and complex I deficiency. JNeurol. Nov 1990;237(7):399-404.
    20. Chinta SJ, Andersen JK. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radic Res. Jan 2011;45(1):53-58.
    21. Fu K, Ren H, Wang Y, Fei E, Wang H, Wang G. DJ-1 inhibits TRAIL-induced apoptosis by blocking pro-caspase-8 recruitment to FADD. Oncogene. Mar 8 2012;31(10):1311-1322.
    22. Oh IS, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. Oct 12 2006;443(7112):709-712.
    23. Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience. Oct 15 2008;156(3):563-579.
    24. Goebel M, Stengel A, Wang L, Lambrecht NW, Tache Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett. Mar 20 2009;452(3):241-246.
    25. Stengel A, Tache Y. Nesfatin-1-role as possible new potent regulator of food intake. Regul Pept. Aug 9 2010;163(1-3):18-23.
    26. Stengel A, Goebel M, Wang L, Tache Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells:role as regulators of food intake and body weight. Peptides. Feb 2010;31(2):357-369.
    27. Ozsavci D, Ersahin M, Sener A, et al. The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery. Jun 2011;68(6):1699-1708; discussion 1708.
    28. Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides. Jul 2012;36(1):39-45.
    29. Dong J, Song N,-Xie J, Jiang H. Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. JMol Neurosci. Feb 2009;37(2):182-189.
    30. Jiang H, Li LJ, Wang J, Xie JX. Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol. Aug 2008;212(2):532-537.
    31. Li C, Zhang F, Shi L, et al. Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci. Mar 2014;52(3):419-424.
    32. Crawford GD, Jr., Le WD, Smith RG, Xie WJ, Stefani E, Appel SH. A novel N18TG2 x mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci. Sep 1992;12(9):3392-3398.
    33. Du XX, Xu HM, Jiang H, Song N, Wang J, Xie JX. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson's disease. Neurosci Bull. Jun 2012;28(3):253-258.
    34. Yang J, Song S, Li J, Liang T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat. Pathol Res Pract. Feb 23 2014.
    35. Jiang H, He P, Adler CH, et al. Bid signal pathway components are identified in the temporal cortex with Parkinson disease. Neurology. Oct 23 2012;79(17):1767-1773.
    36. Zhai CL, Zhang MQ, Zhang Y, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway. Acta Pharmacol Sin. Dec 2012;33(12):1477-1487.
    37. Wu J, Tang Q, Zhao S, et a1. Extracellular signal-regulated kinase signaling-mediated induction and interaction of FOXO3a and p53 contribute to the inhibition of nasopharyngeal carcinoma cell growth by curcumin. Int J Oncol. May 6 2014.
    38. Nakamura A, Takigawa K, Kurishita Y, et al. Hoechst tagging:a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging. Chem Commun (Comb). Apr 28 2014.
    39. Gonzalez R, Reingold BK, Gao X, Gaidhu MP, Tsushima RG, Unniappan S. Nesfatin-1 exerts a direct, glucose-dependent insulinotropic action on mouse islet beta-and MIN6 cells. J Endocrinol. Mar 2011;208(3):R9-R16.
    40. Kerbel B, Unniappan S. Nesfatin-1 suppresses energy intake, co-localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol. Feb 2012;24(2):366-377.
    41. Maejima Y, Sedbazar U, Suyama S, et al. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. Nov 2009;10(5):355-365.
    42. Merali Z, Cayer C, Kent P, Anisman H. Nesfatin-1 increases anxiety-and fear-related behaviors in the rat. Psychopharmacology (Berl). Nov 2008;201(1):115-123.
    43. Nakata M, Manaka K, Yamamoto S, Mori M, Yada T. Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca(2+) influx through L-type channels in mouse islet beta-cells. Endocr J.2011;58(4):305-313.
    44. Konczol K, Bodnar I, Zelena D, et al. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochem Int. Oct 2010;57(3):189-197.
    45. Ogiso K, Asakawa A, Amitani H, et al. Plasma nesfatin-1 concentrations in restricting-type anorexia nervosa. Peptides. Jan 2011;32(l):150-153.
    46. Goebel-Stengel M, Wang L, Stengel A, Tache Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res. Jun 17 2011;1396:20-34.
    47. Ramanjaneya M, Chen J, Brown JE, et al. Identification of nesfatin-1 in human and murine adipose tissue:a novel depot-specific adipokine with increased levels in obesity. Endocrinology. Jul 2010;151(7):3169-3180.
    48. Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides. Nov 2007;28(11):2223-2228.
    49. Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. JNeurosci. Jan 28 2009;29(4):1011-1016.
    50. Obeso JA, Rodriguez-Oroz MC, Goetz CG, et al. Missing pieces in the Parkinson's disease puzzle. Nat Med. Jun 2010;16(6):653-661.
    51. Matsuda N, Tanaka K. [Neurodegenerative disorder as "mitochondrial dysfunction disease"]. Rinsho Shinkeigaku. Nov 2011;51(11):988.
    52. Gu J, Weng Y, Zhang QY, et al. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene:impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. JBiol Chem. Jul 112003;278(28):25895-25901.
    53. Wu DC, Teismann P, Tieu K, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A. May 13 2003;100(10):6145-6150.
    54. Banerjee K, Munshi S, Sen O, Pramanik V, Roy Mukherjee T, Chakrabarti S. Dopamine Cytotoxicity Involves Both Oxidative and Nonoxidative Pathways in SH-SY5Y Cells:Potential Role of Alpha-Synuclein Overexpression and Proteasomal Inhibition in the Etiopathogenesis of Parkinson's Disease. Parkinsons Dis.2014;2014:878935.
    55. Ouazia D, Levros LC, Jr., Rassart E, Desrosiers RR. Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience. May 16 2014;267:263-276.
    56. Kume S, Haneda M, Kanasaki K, et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. Jan 5 2007;282(1):151-158.
    57. Lu XL, Zeng J, Chen YL, et al. Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo:involvement of cell cycle arrest and apoptosis induction. Int J Oncol. Jan 2013;42(1):229-238.
    58. Brailoiu GC, Dun SL, Brailoiu E, et al. Nesfatin-1:distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology. Oct 2007; 148(10):5088-5094.
    59. Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res. Sep 16 2008; 1230:99-106.
    60. Jung HI, Jo MJ, Kim HR, Choi YH, Kim GD. Extract of Saccharina japonica Induces Apoptosis companied by Cell Cycle Arrest and Endoplasmic Reticulum Stress in SK-Hep1 Human Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev.2014;15(7):2993-2999.
    61. Safa M, Mousavizadeh K, Noori S, Pourfathollah A, Zand H. cAMP protects acute promyelocytic leukemia cells from arsenic trioxide-induced caspase-3 activation and apoptosis. Eur J Pharmacol. May 8 2014.
    62. Ma WD, Zou YP, Wang P, et al. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem Toxicol. May 1 2014.
    63. Liu X, Yuan D, Nie X, et al. BTEB2 Prevents Neuronal Apoptosis via Promoting Bad Phosphorylation in Rat Intracerebral Hemorrhage Model. JMol Neurosci. Apr 27 2014.
    1. Oh IS, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. Oct 12 2006;443(7112):709-712.
    2. Stengel A, Goebel M, Tache Y. Nesfatin-1:a novel inhibitory regulator of food intake and body weight. Obes Rev. Apr 2011;12(4):261-271.
    3. Stengel A, Goebel M, Wang L, Tache Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells:role as regulators of food intake and body weight. Peptides. Feb 2010;31(2):357-369.
    4. Shimizu H, Oh IS, Okada S, Mori M. Nesfatin-1:an overview and future clinical application. Endocr J.2009;56(4):537-543.
    5. Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides. Nov 2007;28(11):2223-2228.
    6. Tan BK, Hallschmid M, Kern W, Lehnert H, Randeva HS. Decreased cerebrospinal fluid/plasma ratio of the novel satiety molecule, nesfatin-1/NUCB-2, in obese humans:evidence of nesfatin-1/NUCB-2 resistance and implications for obesity treatment. J Clin Endocrinol Metab. Apr 2011;96(4):E669-673.
    7. Ozsavci D, Ersahin M, Sener A, et al. The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery. Jun 2011;68(6):1699-1708; discussion 1708.
    8. Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides. Jul 2012;36(1):39-45.
    9. Garcia-Galiano D, Navarro VM, Roa J, et al. The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J Neurosci. Jun 9 2010;30(23):7783-7792.
    10. Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS One.2010;5(12):e15201.
    11. Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience. Oct 15 2008;156(3):563-579.
    12. Brailoiu GC, Dun SL, Brailoiu E, et al. Nesfatin-1:distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology. Oct 2007;148(10):5088-5094.
    13. Goebel M, Stengel A, Wang L, Lambrecht NW, Tache Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett. Mar 20 2009;452(3):241-246.
    14. Iwasaki Y, Nakabayashi H, Kakei M, Shimizu H, Mori M, Yada T. Nesfatin-1 evokes Ca2+ signaling in isolated vagal afferent neurons via Ca2+ influx through N-type channels. Biochem Biophys Res Commun. Dec 18 2009;390(3):958-962.
    15. Goebel-Stengel M, Wang L, Stengel A, Tache Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res. Jun 17 2011; 1396:20-34.
    16. Zhang AQ, Li XL, Jiang CY, et al. Expression of nesfatin-1/NUCB2 in rodent digestive system. World J Gastroenterol. Apr 14 2010;16(14):1735-1741.
    17. Foo KS, Brauner H, Ostenson CG, Broberger C. Nucleobindin-2/nesfatin in the endocrine pancreas:distribution and relationship to glycaemic state. J Endocrinol. Mar 2010;204(3):255-263.
    18. Maejima Y, Sedbazar U, Suyama S, et al. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. Nov 2009;10(5):355-365.
    19. Stengel A, Goebel M, Wang L, et al. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats:differential role of corticotropin-releasing factor2 receptor. Endocrinology. Nov 2009;150(11):4911-4919.
    20. Nakata M, Manaka K, Yamamoto S, Mori M, Yada T. Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca(2+) influx through L-type channels in mouse islet beta-cells. Endocr J.2011;58(4):305-313.
    21. Gonzalez R, Reingold BK, Gao X, Gaidhu MP, Tsushima RG, Unniappan S. Nesfatin-1 exerts a direct, glucose-dependent insulinotropic action on mouse islet beta- and MIN6 cells. J Endocrinol. Mar 2011;208(3):R9-R16.
    22. Ramanjaneya M, Chen J, Brown JE, et al. Identification of nesfatin-1 in human and murine adipose tissue:a novel depot-specific adipokine with increased levels in obesity. Endocrinology. Jul 2010; 151(7):3169-3180.
    23. Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res. Sep 16 2008;1230:99-106.
    24. Yosten GL, Samson WK. The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol. Jun 2010;298(6):R1642-1647.
    25. Fort P, Salvert D, Hanriot L, et al. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience. Jul 31 2008;155(1):174-181.
    26. Kohno D, Nakata M, Maejima Y, et al. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology. Mar 2008;149(3):1295-1301.
    27. Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol. Jul 2004;287(1):R87-96.
    28. Sabatier N. alpha-Melanocyte-stimulating hormone and oxytocin:a peptide signalling cascade in the hypothalamus. JNeuroendocrinol. Sep 2006;18(9):703-710.
    29. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol. Mar 10 2003;457(3):213-235.
    30. Noetzel S, Stengel A, Inhoff T, et al. CCK-8S activates c-Fos in a dose-dependent manner in nesfatin-1 immunoreactive neurons in the paraventricular nucleus of the hypothalamus and in the nucleus of the solitary tract of the brainstem. Regul Pept. Oct 9 2009;157(1-3):84-91.
    31. Atsuchi K, Asakawa A, Ushikai M, et al. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport. Oct 27 2010;21 (15):1008-1011.
    32. Konczol K, Bodnar I, Zelena D, et al. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochem Int. Oct 2010;57(3):189-197.
    33. Tanida M, Mori M. Nesfatin-1 stimulates renal sympathetic nerve activity in rats. Neuroreport. Apr 20 2011;22(6):309-312.
    34. Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD. Central nesfatin-1-expressing neurons are sensitive to peripheral inflammatory stimulus. J Neuroinflammation.2009;6:27.
    35. Okere B, Xu L, Roubos EW, Sonetti D, Kozicz T. Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine-and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger-Westphal nucleus. Brain Res. Mar 4 2010;1317:92-99.
    36. Yoshida N, Maejima Y, Sedbazar U, et al. Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging (Albany NY). Nov 2010;2(11):775-784.
    37. Merali Z, Cayer C, Kent P, Anisman H. Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology (Berl). Nov 2008;201(1):115-123.
    38. Chaki S, Okubo T. Melanocortin-4 receptor antagonists for the treatment of depression and anxiety disorders. Curr Top Med Chem.2007;7(11):1145-1151.
    39. Domschke K, Dannlowski U, Hohoff C, et al. Neuropeptide Y (NPY) gene:Impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol. May 2010;20(5):301-309.
    40. Ari M, Ozturk OH, Bez Y, Oktar S, Erduran D. High plasma nesfatin-1 level in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. Mar 30 2011;35(2):497-500.
    41. Bloem B, Xu L, Morava E, et al. Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacology. Jan 2012;62(1):297-303.
    42. Ogiso K, Asakawa A, Amitani H, et al. Plasma nesfatin-1 concentrations in restricting-type anorexia nervosa. Peptides. Jan 2011;32(1):150-153.
    43. Tsuchiya T, Shimizu H, Yamada M, et al. Fasting concentrations of nesfatin-1 are negatively correlated with body mass index in non-obese males. Clin Endocrinol (Oxf). Oct 2010;73(4):484-490.
    44. Aydin S, Dag E, Ozkan Y, et al. Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides. Jun 2011;32(6):1276-1280.
    45. Aydin S, Dag E, Ozkan Y, et al. Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients:hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem. Aug 2009;328(1-2):49-56.
    46. Liu Z, Wang F, Li ZZ, et al. [Expression of neuropeptides ghrelin and Nesfatin-1 in kainic acid kindling rats]. Zhonghua Yi Xue Za Zhi. Feb 22 2011;91(7):496-500.
    47. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults:a randomized, controlled, dose-escalation trial. JAMA. Oct 27 1999;282(16):1568-1575.
    48. Zhang JV, Ren PG, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science. Nov 112005;310(5750):996-999.
    49. Ledderose C, Kreth S, Beiras-Fernandez A. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function. Recent Pat Endocr Metab Immune Drug Discov. Jan 2011;5(1):1-6.
    50. Chanoine JP, Wong AC, Barrios V. Obestatin, acylated and total ghrelin concentrations in the perinatal rat pancreas. Horm Res.2006;66(2):81-88.
    51. Dun SL, Brailoiu GC, Brailoiu E, Yang J, Chang JK, Dun NJ. Distribution and biological activity of obestatin in the rat. J Endocrinol. Nov 2006;191(2):481-489.
    52. Carlini VP, Schioth HB, Debarioglio SR. Obestatin improves memory performance and causes anxiolytic effects in rats. Biochem Biophys Res Commun. Jan 26 2007;352(4):907-912.
    53. Gourcerol G, Million M, Adelson DW, et al. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Peptides. Nov 2006;27(11):2811-2819.
    54. Zizzari P, Longchamps R, Epelbaum J, Bluet-Pajot MT. Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents. Endocrinology. Apr 2007; 148(4):1648-1653.
    55. Nogueiras R, Pfluger P, Tovar S, et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology. Jan 2007;148(1):21-26.
    56. McK.ee KK, Tan CP, Palyha OC, et al. Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics. Dec 15 1997;46(3):426-434.
    57. Moechars D, Depoortere I, Moreaux B, et al. Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology. Oct 2006; 131 (4):1131-1141.
    58. Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides:obestatin, ghrelin, and adiponectin. Peptides. Apr 2006;27(4):911-916.
    59. Yamamoto D, Ikeshita N, Daito R, et al. Neither intravenous nor intracerebroventricular administration of obestatin affects the secretion of GH, PRL, TSH and ACTH in rats. Regul Pept. Feb 12007; 138(2-3):141-144.
    60. Chartrel N, Alvear-Perez R, Leprince J, et al. Comment on "Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake". Science. Feb 9 2007;315(5813):766; author reply 766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700