用户名: 密码: 验证码:
运动性贫血时红细胞功能变化以及营养干预对其的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究目的和意义
     运动员的贫血发生率较高。贫血会严重影响运动能力、训练效果、运动后的恢复及免疫等机能状况;有时还成为过度训练的诱因。贫血与体力负荷及营养状况的关系已引起医学界的广泛重视。
     本研究的目的是建立运动性贫血的动物模型,并对长期运动训练的大鼠不同时期的红细胞膜变化进行研究,以了解运动训练对红细胞的影响,尤其在大鼠出现运动性贫血时以及潜在性运动性贫血的红细胞膜的变化规律,为准确地反映潜在性贫血和防止运动性贫血的发生和发展提供灵敏监测指标,同时结合血红蛋白、铁代谢参数等指标来评价运动性贫血,以增加对运动性贫血诊断的准确度,为防治运动性贫血的发生和发展提供依据。并对8周运动训练的大鼠红细胞膜变化进行研究,进一步探讨运动性贫血的机理。
     二、研究内容和方法
     1、大鼠运动性贫血模型的建立
     实验中通过10周多级负荷力竭跑台运动建立了运动性贫血模型,并以测定Hb、RBC、HCT来作为评定标准。
     2、8周运动训练及抗运动性贫血剂对大鼠红细胞功能的影响—运动性贫血机制的探讨
     本实验在运动性贫血模型基础上和抗运动性贫血剂基础上进行红细胞氧化应激状态、能量代谢功能研究;并利用先进的流式细胞技术和激光共聚焦技术对红细胞的老化进行定量和定性研究;同时利用膜蛋白一维、二维电泳技术观察了红细胞膜蛋白的变化,采用图象分析系统进行红细胞膜蛋白定量分析;通过对上述指标的综合分析,以探讨运动对红细胞损伤以及运动性贫血的机理。
     3、运动性贫血机理和防治措施的研究
     本实验对12名贫血运动员及12名正常运动员进行了一系列红细胞指标的测定,并对其进行为期一个月的抗运动性贫血剂的治疗,以探讨运动如何造成红细
    
    胞损伤从而导致运动性贫血的机理以及如何进行防治。
    三、实验结果
    1、大鼠运动性贫血模型的建立
     本研究结果显示贫血评定的三个标准指标Hb在10周力竭负荷跑台运动组和
    对照组之间表现出统计学非常显著性(P<0.01),而RBC和/或Hct在10周力竭
    负荷跑台运动组和对照组之间未表现出统计学显著性。此外,由于多级负荷力竭
    跑台训练持续时间太长(最长时达到一天训练十多小时),而且由于大鼠个体差
    异较大,从跑台的利用率来说很不经济。所以在正式实验过程中,作者没有采用
    此种运动性贫血模型,而是采用递增负荷跑台运动造成的运动性贫血模型。
    2、动物实验之8周递增负荷运动训练及抗运动性贫血剂对大鼠红细胞膜功能的
     影响一运动性贫血机制的探讨
     在递增负荷运动所引起的运动性贫血模型上,运动导致红细胞自由基生成增
    加,脂质过氧化增强,抗氧化酶系统能力降低,Na+一K十一ATP酶活性降低,红细
    胞糖酵解和磷酸戊糖旁路两种能量代谢能力均降低,造成对红细胞的损伤。在递
    增负荷运动所引起的运动性贫血模型上,红细胞老化明显增加,这主要是由于红
    细胞中的自由基累积增加,抗氧化能力减弱,脂质过氧化增强所致。运动性贫血
    组的肌动蛋白较对照组明显降低,其原因可能和运动引起的体内自由基的形成和
    清除的动态平衡紊乱有关,氧自由基可使许多生物大分子如核酸、蛋白质膜多不
    饱和酸发生损伤,引起超氧化反应,导致膜结构和功能被破坏。同时,本文发现
    带一6蛋白运动组较对照组明显降低。在递增负荷运动所引起的运动性贫血模型
    上,抗运动性贫血剂通过降低自由基的生成,并通过不同程度地提高血浆和红细
    胞的SOD、CAI’、GSH一PX水平,改善红细胞糖代谢能力,有效减少红细胞的老
    化来治疗运动性贫血。
    3、动性贫血及其机理和防治措施的研究
     运动性贫血运动员红细胞自由基和脂质过氧化产物增加,抗氧化能力降低,
    表现为抗氧化酶系统和非酶系统能力均降低。说明运动性贫血运动员红细胞氧化
    和抗氧化平衡严重失调。使用抗运动贫血剂可明显减少运动后血浆和红细胞MDA
    的生成,同时提高抗氧化酶系统和非酶系统能力,改善运动员体内血液氧化还原
    状态。运动性贫血运动员红细胞糖酵解能力和磷酸旁路代谢能力均降低,八月,P和
    
    NADPH生成减少,影响机体能量代谢和GSH一PX活性,使用抗运动性贫血剂对
    磷酸旁路代谢途径有明显的改善作用,但红细胞糖酵解能力则变化不明显。运动
    性贫血运动员红细胞Na+一K十一ATP酶和c扩气Mg2+一ATP酶活性均降低,红细胞内离
    子平衡失调,从而影响红细胞膜的渗透性。使用抗运动贫血剂可提高Na+一K+一ATP
    酶和c扩气Mg2+一ATP酶活性,改善红细胞膜的渗透性和变形性。运动性贫血组的
    肌动蛋白较对照组明显降低,其原因可能和运动引起的体内自由基的形成和清除
    的动态平衡紊乱有关,氧自由基可使许多生物大分子如核酸、蛋白质膜多不饱和
    酸发生损伤,引起超氧化反应,导致膜结构和功能被破坏。运动加快了红细胞老
    化的过程,运动性贫血组SA较对照组SA有明显降低,PS外翻较对照组PS外翻
    有明显升高,使用抗运动贫血剂明显延缓红细胞老化的过程,SA有明显升高,PS
    外翻率明显降低。
    四、结论
     通过动物和人体实验认为运动导致运动性贫血的机理之一是
I. Purpose and Significance of the Research
    Sports anemia, which often occurs among athletes, can negatively affect athletic performance, training; post-training recovery and the functioning of the athletes' immune system. Much attention has been given by medical researchers to the relationship between anemia and nutrition.
    The purpose of this research is to build an animal model of sports anemia and to monitor red cell membrane changes. The research seeks to determine the effects of training on red cell membrane, especially, when sports anemia results from extended training. This research also seeks to establish some accurate indices for sports anemia. The research evaluates and accurately diagnosis sports anemia using, as references, hemoglobin and ferrum. The research further explores the mechanism of sports anemia.
    II. Contents of the Research
    Part One: Establishment of a sports anemia model for rats
    Two types of training were used to establish the sports anemia model: swimming and treadmill. The three indices used to evaluate this model were: Hb, RBC and HCT. Part Two: Effect of extended training and anemia countermcasures on red cell of rats
    This part of the research investigated the oxidative stress status of blood and the energy metabolism of red blood cells relating to sports anemia and anemia countermeasures. By using the flow cytometer and CLSM (two very modem techniques to study the aging of red blood cells), both qualitative and quantitative analyses were made. Gel electrophoresis was used to determine changes in the membrane protein of red cells, and quantitative analysis of the protein of red cells membrane was achieved through use of an advanced image analysis system.
    
    
    
    From the data resulting from use of the above techniques, it was possible to explore how extended training causes damage to red cells and how this, in turn, causes sports anemia.
    Part Three: The mechanism of sports anemia, preventive measures, and anemia countermeasures in athletes
    In this part of research, two groups of athletes were used: one group of twelve all had sports anemia and the second group of twelve were all healthy. Blood from both groups were studied to establish initial, baseline indices. Following one month of anemia countermeasures, blood was again studied and compared for results. It was determined that extended training caused damage and loss of red cells and also determined that anemia countermeasures could restore red cells in the blood.
    III. Experimental Results
    Part One: Establishment of a sports anemia model for rats
    After ten weeks of exhaustive training on the treadmill, Hb indices in the rats was found to be significantly lower than that of the control group (p<0.01). RBC and HCT were not found to be significantly lower than that of the control group. Also, it takes too long to make this sports anemia model, and can't make full use of the treadmill because the difference among the rats is too big. So, in the formal experiment, it is suggested to use the progressively more strenuous training on the treadmill to make the sports anemia model.
    Part Two: Effect of extended training and anemia countermeasures on the red cell membrane of rats
    Based on the sports anemia model of progressively more strenuous training on the treadmill, it was found that such training produced more and more free radicals in the blood; enhanced oxidation and peroxidation; and caused a decrease of serum SOD and Ery-SOD, serum GSH and Ery-GSH, serum CAT and Ery-CAT. This model showed that oxidative stress levels in blood are raised and oxidative injury to red blood cells is induced. This type of exercise was found to impair the energy metabolizing system and to lower the enzyme level of Na+-K+-ATP, which cause
    
    
    damage to the red blood cells. Regarding the senility parameters of red blood cells, the PS extroversion rate was significantly higher than that of the control group and the SA is significantly lower. Anemia countermeasures raised the levels of serum SOD and Ery-SOD, serum GSH and E
引文
[1] Schmidi W.maasen N, Tegtbur U. et al. Changes in plasma volume and red cell formation after a marathon competition. Eur J appl physiol. 1989:58:453-8
    [2] Selby GB,Eichner ER. Hematocrit and performance: the effect of endurance training on blood volume. Sem Hematol. 1994:31:122-7
    [3] Wolf PL Lott JA, Nitti GJ et al. Changes in serum enzymes,Lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem. 1987:20:73-7
    [4] Lijnen P.Hespel P, Gagand R et al. Indicators of cell breakdown in plasma during and after a marathon race. Int J sports Med. 1988:9:108-13
    [5] Kanalery JA. Jill Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes Metabolism. 1991:40:88-92
    [6] Selby GB, Eichner ER, Endurance swimming. Intravascular Hemoysis, anemia and iron depletion: new perspective on athletes anemia. Am J Med. 1986:81:791-4
    [7] Magnusson B. Hallberg L, Rossander L. et al. Iron metabolism and sports anemia Acta. Med Scand. 1984:216:157-64
    [8] Weight LM, Byrne MJ. Jacobs P, Hacmolytic effects of exercise. Clin Sci. 191:81:147-52
    [9] Cook JD. The effect of endurance training on iron metabolism. Sem Hematol. 1994:31:146-54
    [10] Schobersberger W, Tschann M Hasibeder W. et al. Consequences of 6 weeks strength training on red cell O2 transport and iron status. Eur J Appl physiol. 190:60:163-8
    [11] Dufaux B.Hoederath A.Steitbergerl et al. Serum ferritin transerrin Haptoblobin.And iron in middle and long-distance runners, Elite rowers and professional racing cyclists. Int J. Sports Med. 1981:2:43-6
    [12] 钱忠明,肖德生等.运动性铁缺乏研究进展综述.运动医学杂志.1998;17(2) : 151-154
    [13] Scanero JF, Villanuera J. Rojo. A throughout the sports. Season physiol Behav. 197:62(4) 811-4
    [14] Yoshimura H(1970) . Anemia during physical training (sports anemia). Nutr Rev. 28:251-253
    [15] Yoshimura H, Inoue T, Yamada T, et al. (1980) . Anemia during hard physical training(sports anemia) and its causal mechanism with special reference to protein nutrition. World Rev Nutr Diet. 35: 1-86
    [16] Erslev AJ. (1990) . Hematology, Williams WJ, Beutler E, Erslev A, Lichtman MA. (eds), P653, Mctraw-hill publishing company
    [17] Smith JA. (1995) . Exercise,training and red blood cell turnover. Sports Med. 19: 9-31
    [18] Szygula Z(1990) . Erythrocytic system under the influence of physical exercise and training. Sports Med. 10:181-197
    [19] Eichner ER. (1986) . The anemias of athletes. Physician Sports med. 14(9) :
    
    122-130
    [20] Balaban EP. (1992). Sports anemia. Clin Sports Med. 11(2): 313-323
    [21] Weight LM(1993) . "Sports anemia": does it exist? Sports Med. 16(1): 1-4
    [22] Dufaux B, Hoederath A, Streitberger I, et al(1981). Serum ferritin, transferring, haptoglobin, and iron in middle- and long-distance runners, elite rower, and professional racing cyclist. Int J Sports Med. 2:43-46
    [23] Nattiv A, Puffer J (1991). Lifestyles and health risks of collegiate athletes. J Fam Pract. 33:585-590
    [24] Haymes EM, Lamanca JJ(1989).Iron loss in runners during exercise: implications and recommendations. Sports Med. 7:277-285
    [25] Seiler D, Nagel D, Franz H, et al(1989) . Effects of long-distance running on iron metabolism and hematological parameters. Int J Sports Med. 10:357-362
    [26] Tobin BW, Beard JL(1989). Interactions of iron deficiency and exercise training in male Sparague-Dawley rats: ferrokinetics and hematology. J Nutr. 119(9): 1340-1347
    [27] Khotimchenko SA, Alekseeva IA. (1999). Model of nutritional iron deficiency anemia in rats. Vopr Pitan. 68:13-15
    [28] Ruckman KS, Sherman AR. (1981) . Effects of exercise on iron and copper metabolism in rats. J Nutr. Sep; 111(9): 1593-601.
    [29] Qian ZM, Xiao DS, Tang PL, Yao FY, Liao QK.(1999) . Increased expression of transferrin receptor on membrane of erythroblasts in strenuously exercised rats. J Appl Physiol. 87(2):523-529
    [30] 肖德生,钱忠明(2000).运动诱导的低铁状态大鼠骨髓细胞铁摄入的变化.生理学报.52(2):147-151
    [31] 黄园(2001).运动性红细胞损伤机理的研究--氧化应激与红细胞老化.北京体育大学博士研究生学位(毕业)论文
    [32] Ming Qian Z, Sheng Xiao D, Kui Liao Q, Ping Ho K. (2002) . Effect of different durations of exercise on transferrin-bound iron uptake by rat erythroblast. J Nutr Biochem. Jan;13(1):47-54
    [33] 朱全,浦钧宗,张敏(1998).游泳方法建立大鼠模拟过度训练模型.中国运动医学杂志.17(2):137-140.
    [34] McDonald R, Hegenauer J, Sucec A, Saltman P(1984). Effects of iron deficiency and exercise on myoglobin in rats. Eur J Appl Physiol. 52: 414-419.
    [35] 叶剑飞,余闽,岑浩望(1992).过度训练的病理生理及康复-大鼠过度训练模型的建立.中国运动医学杂志.11(2):15-31.
    [36] 郑陆,隋波,潘力平等(2000).过度训练动物模型的建立.中国运动医学杂志.19(2):179-181
    [37] Spodaryk K, Szygula Z, Dabrowski Z, Miszta H(1985) . The activity of erythrocyte enzyme in rats subjected to running exercise. Eur J Appl Physio. 54: 533-537
    [38] Szygula Z, Spodaryk K, Dabrowski Z, Miszta H(1986). Post-exercise anaemia as a result of exercise overloading of the organism. Physiol Bohemoslov. 35(2):104-11
    [39] William J William, Ernes T Beutler, et al. Hematology, 3rd Edition, 1983, P 345
    
    
    [40] 成同怡.国外医学分子生物学分册.1992;14(2):84
    [41] Sahr KE. J Biochem. 1990;265:4434
    [42] Curtis PJ, et al. Gene. 1985;36:357
    [43] Winkelmann JC,et al. J Bio chem. 1990;265(20):11827
    [44] Reid ME, et al. Blood. 1990;75:2229
    [45] Tanner MJ,et al. Biochem J. 1988;256:703
    [46] Liu SC, et al. Semin Hematol. 1992;29(4):231
    [47] Tromp G, et al. Acad Sci USA. 1985;5254
    [48] Samuel E Lux. Hemolytic anemias 3 membrane disorder. Hematology. 3rd Edition 1981, P197
    [49] Wager, G.M, Schwartz, R.S. Membrane Phospholipid organization and vesiculation of e rythrocyte in Siekle cell anaemia. Clinics in Haematolog. 1985, P 183
    [50] Wilson JG, et al. N Engl J Med. 1982, 307:981
    [51] Nelson DS. Adv Immunol. 1963, 3:131
    [52] Nelson RA. Proc Roy Soe Med. 1956, 49:55
    [53] Siegel, et al. Lancet. 1981, 12:556
    [54] Siegel, et al. Immunol Common. 1981, 10:433
    [55] Modef ME, et al. Clin Res. 1982, 30:3539
    [56] Walport MJ, et al. Clin Exp Immunol. 1985, 59:547
    [57] Forslid J et al. Immunology. 1982, 55:97
    [58] Yannelli JR, et al. Cancer Research. 1988,48:5696
    [59] Lubert Stryer. Introducfion to biological membranes. Biochemistry. 1981, P205
    [60] 陈文杰主编.《血液分子细胞生物学》中国医药科技出版社.1993
    [61] 邓家栋主编.《临床血液学》上海科技出版社.1985
    [62] Hebbel RP, Eaton JW. Pathobiology of heme interaction with blood. 1989;26:136-49
    [63] Fortier N, et al. The relationship between in vivo generated Hb skeletal protein complex and increadsed red cell membrane rigidity. Blood. 1988:71:1427
    [64] Erslev AJ Beutler E. chapter 39, production and destruction of erythrocutes in willaiams Hematology fifth edition Mc Grew-Hill. Inc, New work. 1995:425-440
    [65] Besa Ec. Hematoligic effects of androgens revisited: an alternative therapy in various hematologic conditions. Sem Rematol. 1994:31:134-45
    [66] Mariano Tao. Composition, Structue, and orgaization of mammalian cell membranes. Membrane abnormalitic and diseases, vol 1 P. 1
    [67] 张之南,潘华珍.红细胞膜的研究意义.生理科学进展.第3期:222,1684
    [68] Bartosz G, et al. Erythrocyte membrane changes during aging in vivo. Blood Cell Biochemistry. 1990,3:45-66
    [69] 曹燕翔,潘华珍.老化红细胞的分离和鉴定.生理科学.1988(9):35-37
    [70] Suzuki T, et al. Senescent erythrocytes: Isolation of aged cells and their biochemical characteristics. Proc Natl Acad Sci, USA. 1988,85:1647-1651
    [71] Mahandas N, et al. Bilayer balance and regulation of red cell shape changes. J. Supramol, Struct. 1978, 9:453-458
    [72] Inaba M, et al. Deamidation of human erythrocyte protein 4.1: possible role in
    
    aging. Blood. 1992, 79:3355-3361
    [73] Goodman S R, et al. Erythrocyte membrane skeletal protein bands 4. 1a and 4. 1b are sequence-related phosphoproteins. J. Bio. Chem. 1982, 257:4564-4569
    [74] Ka Kay MMB, et al. Proc Narl sci USA. 1986;83:2463
    [75] Kay MMB, et al. Proc Narl sci USA. 1984;81:5753
    [76] Kay MMB, et al. Proc Narl sci USA. 1984;80:1631
    [77] Ciance C Det al. Phosphorlation of ankyrin down regulaties its cooparatives interaction with spectrin and protein 3. J .Cell. Biochem. 1988, 37:301-306
    [78] 张丽君,潘华珍.红细胞老化过程中囊泡化作用的探讨.基础医学与临床.1992,12:295-298
    [79] Barber I R, Clark S. Membrane protein carboxyl methylation increade with human erythrocyte age. J. Biol. Chem. 1983, 258:1189-1196
    [80] Platt D. Blood cells, rheology and aging. Berlin: Springer-Verlog, 1988, 16-28
    [81] Aminoff D, et al. The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation. Blood Cells. 1988, 114:229-247
    [82] 张之南,李容生主编.《红细胞疾病基础与临床》科学出版社.2000年
    [83] 吴其夏主编.《体液因素和血液循环病理生物学》中国医科大学中国协和医科大学联合出版社.1994,P225-226
    [84] Danon D,Marikovsky Y. The aging of the red blood cell: a multifactor process. Blood cells. 1988:14:7-15
    [85] O Toole ML, HillerWDB, Roalsted MS, et al. Hemolysis during triathlon races:its relation to race distance. Med Sci Sports Exerc. 1988:20:272-5
    [86] Schmidt W Maassen N Trost F, et al. Training-induced effects on blood volume,erythrocyte, turnorer, and haemoglobin oxygen-binding prjopertied. EUR J Appl Physiol. 1988:57:490-8
    [87] Chiu D, et al. Lipid peroxidation in human red cells. Seminars in Hematology. 1989, 26:257-276
    [88] Hebbel R P. Auto-oxidation and a membrane associated "Fenton Reagent": A possible explanation for development of membrane lesions in sickle erythrocyte. Bri. J. Haematology. 1985, 59:129-132
    [89] Davis KJA,et al. Biochem, biophys, Res, Commun. 1982, 107:1198-1205
    [90] 丁树哲等.生物化学和生物物理学报.1991,23:305-9
    [91] 陈英杰等.中国运动医学杂志.1991,10(3):135-9
    [92] Alessio HM, et al. Am. J. of Physiol. 1988, 255:C874-7
    [93] Brady PS, Et al. J. Animal. 1978, 47: 492-6science
    [94] Jenkinjs RR, et al. Med,.Sci Sports Exercise. 1983, 15: 93H
    [95] Kanter MM, et al. Eur. J Appl. Physiol. 1988, 57:60-63
    [96] Viinikka L, et al. Med. Sci, Sport Exer. 1984, 16(3):275-77
    [97] Lovin R, et al. Eur J Apply Physiol. 1987, 56:313-6
    [98] Li JL, et al. Arch Biochem Biophys. 1988,263(1):137-49
    [99] 许豪文.第二届全国运动医学学术交流会论文摘要汇编.郑州,1989
    [100] Maughan RJ. Muscle and nerve. 1989, 12:332-6
    [101] Recknagel RD. Lab Invest. 1965, 15:332-6
    [102] Recknagel RD, et al. Experimenta molecular pathol. 1966, 5:108-17
    
    
    [103] Recknagel RD, et al. Experimenta molecular pathol. 1988, 65:2478-83
    [104] Jain SK, et al. Biochem Biophys Acta. 1988, 937:205-10
    [105] Jenkins RR. The role of superoxide dismutase and catalade in muscle fatigue. Biochemistry of Exercise. 1983, 13:467-471
    [106] Kanter MM, et al. Effect of exercise training on antioxdant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol. 1985, 59:1298-1303
    [107] Quintanilha At. Effect of physical exercise and/or vitamin E on tissur oxidative metabotism. Bichemsoci Tran. 1984, 12:403-404
    [108] Gohil K, et al. Blood glutathione oxidation during human exercise. J Appl Physiol. 1988, 64:115-119
    [109] Ohno H, et al. The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cell. Can J Physical Pharmacol. 1986, 64:1263
    [110] Corbucci GG.. The effect of exertion on mitochondruial oxidative capacity and on some antioxidant mechanisms in muscle from marthon runners. Int J Sports Med. 1984, Suppl. 5:135
    [111] 吴玲.中国运动医学杂志.1995,14(3):152-157
    [112] 胡琪深等.中国运动医学杂志.1991,10(4):211-213
    [113] 陈吉棣等.中国运动医学杂志.1995,14(3):129-134
    [114] S. Thompson and AH Maddy. Gel Electrophoresis of erythrocyte membrane proteins, in JC Ellory and JD Young(eds) Red Cell Membranes,A Methodological Approach, Academic press, Biological technigued Series. Chapter 5, 1982 pp67, London, New work
    [115] FF Elstner, et al. Inhibition of nitrite formation from hydroxyl ammonium chloride:A simple assay for superoxide dismutase. Anal Biochem. 1976,70:616
    [116] BL Celler, et al. A method for distinguishing Cu, Zn-and Mn-containing superoxide dismutases. Anal Biochem. 1983, 128:86
    [117] 李津婴等.铁缺乏对大鼠红细胞膜带-3 蛋白质含量与功能的影响.营养学报.1988,10(4):319
    [118] 孙湄等.中国运动医学杂志.1987,6(3):138-141
    [119] 于基国等.中国运动医学杂志.1991,5(2):145-147
    [120] 徐友涵等.一种简便灵敏的活性测定方法.生物化学与生物物理进展.1987,4:64-66
    [121] 衣雪洁.力竭性运动对大鼠红细胞脂质过氧化水平和酶活性的影响.沈阳体育学院学报.1999,1:15-17
    [122] 左风琼.孔雀比色法同步测定红细胞中和活性.华西医大学报.1995,26(2):230-233
    [123] 李可基等.运动负荷中红细胞流变形的初步研究.中国运动医学杂志.1989,6(1):1-5
    [124] Semin Hematol. 1989, 26(4)257
    [125] Dollad CJ. Effects of vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol. 1997, 45:927-929
    [126] Jackson MT. Electron spin resonance studies of intact skeletal muscle. Biochem Biophys Acta. 1995, 847:185-188
    
    
    [127] Sjodin B, Westing Yh and Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990, 10:236-254
    [128] Meerson FZ, et al. Development of modern components of the mechanism of cardiac hypertrophy in the rat. Cir Res. 1983, 53:51
    [129] 黄佳等.吸氧对大强度运动后自由基代谢、红细胞抗氧化系统的影响[J].中国运动医学杂志.2002,21(1):41-43
    [130] 衣雪洁等.力竭性游泳红细胞膜的影响[J].中国运动医学杂志.2001,20(2):139-141
    [131] 许豪文.运动性疲劳的研究进展-自由基的生成和抗氧化剂的应用.山西体育科技.1989,3:9-14
    [132] Davis JJA, Et al. Free radical and tissue damage response by exercise[J] . Biochem Biophysics Research Communications. 1982,(107): 1198-1205
    [133] 倪耀华等.运动强度对血浆脂质过氧化物和超氧化物歧化酶活性的影响[J].中国运动医学杂志.1992,11(2):118
    [134] 于基国.不同运动强度对红细胞膜脂质过氧化的影响[J].中国运动医学杂志.1997,16(2):146-147
    [135] 李磊.抗疲劳中药对大强度训练红细胞抗过氧化酶活性的影响[C].第五届全国体育科学大会论文汇编.1997
    [136] 章江洲.力竭运动对小鼠红细胞腺苷脱氨酶及SOD活性的影响[J].中国运动医学杂志.1999,18(2):160-161
    [137] 许豪文等.急性运动时人体血浆脂质过氧化物及血液中抗氧化机制的研究.1989年全国运动医学学术会议论文摘要汇编.1989:3-2
    [138] 冯连世等.急性运动对血清超氧化物歧化酶的影响及其与有氧能力的关系[J].中国运动医学杂志.1994,13(3):129-132
    [139] 潘同斌等.小白鼠运动及恢复过程中血浆SOD活力的动态变化.四川体育科技.1996,3:16-17
    [140] Burge WE, et al. Comparison of the amount of catalase in the muscle of large and of small animals. American J of Physiology. 1916, 42:373-377
    [141] Salminen A, et al. Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation I vitro. Acta Physiol Scand. 1983, 117: 109-113
    [142] Laires MJ, Madeira F, Sergio J, et al. Preliminary study of the relationship between plasma and erythrocyte magnesium variations and some circulating pro-oxidant and antioxidant indices in a stamdardized physical effort. Magnes Res. 1993 Sep, 6 (3): 233-238
    [143] Somani SM, Franks, Rybak LP. Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacology Biochem Behav. 1995 Aug, 51 (4): 627-634
    [144] A lessio, H.A. Exercise-induced oxidative stress[J] . Med. Sci Sport Exer. 1993, 25:218-224
    [145] 章南洋.改良红细胞ATP酶超微量测定法[J].中国运动医学杂志.1989,8
    [146] 方允中,李少杰.自由基与酶.基础理论及其在生物学和医学中的应用[M].北京:科学出版社.1994
    [147] Halliwill B, Guutteridge JWC. Free radical in biology and medicine. Oxford:
    
    Clarendon Press. 1989:17
    [148] JI, L L ,F. W. Starman and H. A. Lardy. Enzymetic down regulation with exercise in skeletal muscle[J] . Arch. Biochem Biophys. 1988, 263: 137-149
    [149] Smith, J. A. Exercise, training and red blood cell tumover[J]. Sports Med. 1995, 19:9-31
    [150] 李磊,冯美云等.抗疲劳中药和跑台训练对大鼠红细胞抗过氧化酶和Na~+-K~+-ATP酶活性的影响[C].北京体育大学学报.2000,23(3):326-329
    [151] Hershkoc.国外医学输血及血液学分册.1990,13(5):272-274
    [152] 汪德清.黄芪有效成分对氧自由基清除的ESR研究[J].生物化学和生物物理进展.1996,23
    [153] 吴其夏主编.体液因素和血液循环病理生理学.中国医科大学中国协和医科大学联合社.1994,225-228
    [154] Jain SK. Blood. 1984, 63(2): 362-367
    [155] 冯立明.氧化对红细胞老化的影响.科技视野.50-51
    [156] 张锦楠.红细胞老化的研究近况.国外医学输血及血液学分册.1993,16(3):145-148
    [157] Vandegriff KD. Biotechnol Genet Eng Rev. 1992, 10:403-53
    [158] Hess JR. Macdonald VW, Brinkley WW. J Appl Physiol. 1993,74:1769-79
    [159] 刘洪珍等.运动和有氧锻炼对人体一氧化氮代谢影响的研究.第六届全国体育科学大会论文摘要汇编.2000:378-379
    [160] 金丽等.不同负荷训练对男子皮艇运动员血清一氧化氮和一氧化氮合酶的影响.第六届全国体育科学大会论文摘要汇编.2000:347-348
    [161] 张靓等.不同运动负荷对大鼠cNOS、iNOS活性的影响及其机理的探讨.第六届全国体育科学大会论文摘要汇编.2000:685
    [162] Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeletal on red cell deformability, membrane material properties, and shape. Semin Hematol. 1983, 20 (3): 225-42
    [163] Dhermy D, Garbarz M, Lecomte MC, et al. Abnormal electophrotic mobility of spectrin tetramers in hereditary elliptocytosis. Hum Genet. 1986, 74 (4): 363-367
    [164] Jordan J, Kiernan W, Merker HJ, et al. Red cell membrane skeletal changes in marathon runners. Int J Sports Med. 1998, 19:16-19
    [165] Banga JP, Gratzer WB, Pinder JC, et al. An erythrocyte membrane-protein anomaly in march-haemoglobin-uris. Lancet (ⅱ) 1979:1048-49
    [166] Snyder LM, Leb L, Piotrowsky J, et al. Irreversible spectrin-haemoglobin crosslinking in vivo: a marker for red cell senescence. Br J Haematol. 1983, 53:379-84
    [167] 冯连世.大强度训练及恢复后大鼠红细胞膜蛋白的变化.中国运动医学杂志.2001,20(3):244-247
    [168] Butikofer P, Kuypers FA, Xu CM, et al. Blood. 1989; 74(5): 1481-4
    [169] Verhoren B. Schlegel RA and Williamson PJ. Exp Med. 1995; 182:1597
    [170] Elnimr T, Hashem A, Assar R. Heroin dependence effects on some major and trace elements. Biol Trace Elem Res. 1996, Aug; 54 (2): 153-62
    [171] Ferrel JE Jr, et al. Phosphoinsitide Metabolism and the morphology of humans.
    
    Erythrocytes J Cell Biol. 1984; 98:1992-98
    [172] Kay MMB. Proc Natl Acad Sci USA. 1984; 81:5753
    [173] Kay MMB, et al. Proc Natl Acad Sci USA. 1984; 80:1631
    [174] Kaczmarski M, Wojcicki J, Samochowiec L, et al.The influence of exogenous antioxidants and physical exercise on some parameters associated with production and removal of free radicals. Pharmzie. 1999 Apr; 54(4): 303-6
    [175] Marzatico F, Pansarasa O, Bertorelli L, et al. Blood free radical antioxidant enzymes and lipd peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness. 1997 Dec; 37 (4): 235-9
    [176] Duthie GG; Robertson JD, Maughan RJ. Oxidative damage and effects of antioxidant manipulation. J Nutr. 1992:122 (Suppl 3): 766-73
    [177] Krtzschamar M, Muller D, Hubscher J, et al. Influence of aging training and acute exercise on plasma glutathione and lipid peroxides in man. Int J Sports Med. 1991, 12:218-22
    [178] Elimr T, Hashem A, Assar R. Heroin dependence effects on some major and trace elements. Biol Trace Elem Res. 1996, 54(2): 153-62
    [179] Ferrel JE Jr et al. Phosphoinsitide metabolism and the morphology of human. Erythrocytes Cell Biol. 1984, 98:1992-8
    [180] 孙存普等.自由基生物学论.机体代谢中的自由基.112-148
    [181] 姜泊主编.细胞凋亡基础与临床.13
    [182] 张之南等.红细胞疾病基础与临床.科学出版社.2000,12-13
    [183] Mc Conkey DJ, Sten Drrenius. The role of calcium in the regulation of apoptosis. J Leukoc Biol. 1996, 59:775
    [184] Sumikawa K, Mu Z et al. Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur J Appl Physiol. 1993, 67(2): 132-7
    [185] 许豪文等.运动时大学生血浆脂质过氧化物和血液抗氧化系统的变化.体育科学.1992,12(4):50
    [186] 孙湄等.运动对人红细胞膜影响的研究- N~+-K~+-ATP酶活性在运动中的变化.中国运动医学杂志.1987,6(3):138
    [187] Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 199; 21:213-238
    [188] Meydani M, Evans WJ, Handelman G, Biddle L, Fielding RA, Meydani SN,Burrill J, Fiatarone MA, Blumberg JB, Cannon JG.. Protective effect of vitamin E on excerise-induced oxidative damage in young and older adults. Am J Physiol. 1993; 264:R992-998
    [189] Quintanilha AT. Effects of physical exercise and/or vitamin E on tissue oxidative metabolism. Biochem Soc Trans. 1984; 12:403-404
    [190] Sumida S, Tanaka K, Kitao H, Nakadomo F. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem. 1989; 21:835-838
    [191] Tildus PM, Houston ME. Vitamin E status and response to exercise training.
    
    Sports Med. 1995; 20: 12-23
    [192] Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeletal on red cell deformability, membrane material properties, and shape. Semin Hematol. 1983,20 (3) : 225-42
    [193] Dhermy D, Garbarz M, Lecomte MC, et al. Abnormal electophrotic mobility of spectrin tetramers in hereditary elliptocytosis. Hum Genet. 1986, 74 (4) : 363-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700