用户名: 密码: 验证码:
富含甘油三酯脂蛋白致泡沫细胞的蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流行病学研究显示:高甘油三酯血症是冠心病(Coronary heart disease,CHD)的危险因素,在高甘油三酯血症的人群中,动脉粥样硬化(Atherosclerosis,AS)的发生与血浆中增高的极低密度脂蛋白(Very low density lipoprotein,VLDL)及VLDL来源的残余脂质颗粒成正相关。我国膳食以高糖低脂为主,在血脂水平和组分上与西方人群存在显著差异,血脂紊乱以内源性甘油三酯(Triglyceride,TG)升高最为多见。TG主要存在于富含甘油三酯脂蛋白(Triglyceride-rich lipoprotein,TRL)中,而后者90%以上为VLDL,因此TG升高实际上反映了VLDL增多。VLDL是一种主要由TG,游离和酯化胆固醇,磷脂及载脂蛋白组成的脂蛋白颗粒,直径小的VLDL能够到达血管内皮下导致巨噬细胞内脂质的堆积,从而形成泡沫细胞。
     巨噬源性泡沫细胞是AS斑块内出现的特征性病理细胞。由于目前大多研究仅局限于与泡沫细胞形成的调节脂质代谢的相关蛋白质,如对摄取脂质相关的受体,低密度脂蛋白受体相关受体(Low density lipoprotein receptor,LRP),低密度脂蛋白受体(Low density lipoprotein recepter LDLR),MSR,CD36等,或对其胞内堆积或外排的研究,研究多是“点对点”的研究,很少考虑巨噬细胞在吞噬脂蛋白后是否伴随其他的病理生理改变。如有报道显示,吞噬大量脂质的泡沫细胞在动脉粥样进展的后期容易发生凋亡等。因而,巨噬细胞在吞噬大量脂质后胞内必然发生的比较复杂的蛋白质组改变。蛋白质组学从整体的角度分析细胞内的蛋白质表达水平或修饰状态的变化,了解蛋白质之间相互作用与联系,在蛋白质水平上发现和探讨生命活动的规律及重要病理生理的本质。目前关于泡沫细胞的蛋白组学研究已有开展,多集中在富含胆固醇的泡沫细胞研究。然而,富含TG的泡沫细胞的蛋白质组研究还未见报道。本研究首次对富含TG的泡沫细胞进行了蛋白质组研究。
     首先,培养的THP-1细胞经佛波脂(Phorbol-12-myristate-13-acetate,PMA)诱导48小时分化为巨噬细胞。密度梯度离心提取脂蛋白VLDL及LDL,LDL经CuSO4氧化,定量后以50μg/ml VLDL及OX-LDL孵育巨噬细胞48小时,OX-LDL处理组作阳性对照组。油红染色显示VLDL孵育的巨噬细胞内堆积大量的脂质。进一步测定胞内脂质成分,结果提示:VLDL孵育形成的泡沫细胞内主要以TG堆积为主,表明富含TG的泡沫细胞模型已建立。
     下一步,提取上述富含TG的泡沫细胞的总蛋白,通过二维电泳技术分离其蛋白质组,建立了富含TG的泡沫细胞的二维图谱。对二维图谱进行ImageMaster软件分析结果显示:每张图谱可检测到1000个蛋白质点左右,大部分蛋白质的等电点集中在PH 5-7。VLDL处理组与PBS处理组的蛋白质组表达量比较分析,114个蛋白质点表达上调,101个蛋白质点表达下调。这些结果表明巨噬细胞在吞噬VLDL形成泡沫细胞中,可能有大量蛋白质表是参与其病理过程。
     其次,为进一步鉴定上述蛋白质组中的差异蛋白质,我们在凝胶上手工切取差异点,然后经胰蛋白酶解,将上述酶解的片断经基质辅助激光解析电离飞行时间质谱分析(Matrix assisted laser desorptionionization-time of flight-mass spectrometry,MALDI-TOF-MS)分析,获得了蛋白质肽质量指纹图谱(petide mas fingerprint,PMF),然后搜索基因组和蛋白质组数据库,实现了蛋白质的定性鉴定。其中14个差异蛋白质点通过质谱分析被鉴定,其中包括与泡沫细胞中脂滴形成密切相关的蛋白质脂肪分化相关蛋白(Adipose differentiation-related protein,ADRP),磷酸甘油酸变位酶等参与糖酵解以及参与氧化应激等蛋白质,同时我们通过Western Blot验证部分蛋白质的表达变化,其结果与蛋白质组结果一致,并通过RT-PCR检测发现上述蛋白质在mRNA水平上已发生变化。上述结果表明,巨噬细胞泡沫化的过程中,不仅大量脂质堆积,可能伴随着复杂的生物学变化如糖代谢,氧化应激的变化等。
     另外,本文首次将荧光差异凝胶电泳(Difference in-gel electrophoresis, DIGE)技术应用于富含TG的泡沫细胞研究。由于DIGE可以将不同的标本标记不同的荧光染料,混合后在同一次二维电泳过程中进行等电聚焦和SDS-PAGE电泳,重复性好、灵敏度高,目前已作为蛋白质组定量研究的工具之一。在前期实验基础上,本实验将提取的各组细胞总蛋白各50gg分别用Cy3,Cy5标记,各样品组的等量混合物用Cy2标记作内标,凝胶匹配率达93%,经分析表达量上调1.5倍以上有94个,表达量下调1.5倍以上有78个。与传统二维电泳相比,荧光二维差异电泳具有更高的灵敏度,更好的重复性。
     综上所述,本课题将二维电泳技术应用于富含TG的脂蛋白致泡沫细胞的蛋白质组研究。通过二维电泳技术建立了富含TG的泡沫细胞的二维图谱;通过Image master6.0分析软件分析了在VLDL孵育的泡沫细胞中表达上调的蛋白质点114个,表达下调的蛋白质点101个;通过质谱鉴定出14个蛋白质,包括与TG在泡沫细胞中堆积密切相关的ADRP,及糖代谢中的磷酸甘油酸变位酶,烯醇化酶等。通过对这些蛋白质功能分析,提示VLDL不仅影响泡沫细胞脂质堆积,还可能影响泡沫细胞其他生物学行为(糖代谢,活性氧的生成等);初步将DIGE技术应用于富含TG的泡沫细胞蛋白质组学研究,建立了良好的荧光二维差异电泳图谱。
It has been reported that hypertriglyceridemia is a risk factor for coronary heart disease. Atherosclerogenesis in hypertriglyceridaemic individuals is associated with the increased concentrations of VLDL and VLDL-associated remnant particles.In China, the people diet characterize low-fat and high glucose, the level and composition of lipids are different from the crowd with the West, the lipid disorders within the endogenous triglyceride (TG) increased is the most prevalent. TG is most in triglyceride-rich lipoprotein, while more than 90% the latter is VLDL, thus elevated TG in fact reflects the increase in VLDL. VLDL is a large lipoprotein particle that is composed of triglycerides, free and esterified cholesterol, phospholipids, and apolipoproteins, VLDL with the small diameter can enter vascular endothelium and cause lipid accumulation in macrophages.
     The macrophage-derived foam cells are the characteristics of pathological-inflammation cells occuring within the AS plaque. More traditional researchs focused on foam cell induced by cholesterol-rich lipoprotein oxidizd LDL. Because of most studies work on the proteins related to the formation of foam cells, which the function is regulating lipid metabolism, such as the receptor intaking lipid, LRP, LDLR, MSR, CD36 and so on, or related to the intracellular accumulation or efflux studies, and research studies are mostly point to point, with little regard whether the other pathophysiological changes have occured in macrophages after phagocytosis lipoprotein. It has been reported that the foam cells containing large amounts of lipids in the latter progress atherosclerotic prone to apoptosis.Thus, the more complex changes in the proteome must have occured in macrophages after the phagocytosis a large number of lipids.Proteomics point of view of the overall intracellular protein expression levels or modification of the state of change, to understand the interaction between proteins and the link,to explore the laws of life activities and its important pathophysiological nature at the protein level.At present, the proteomics research on foam cell has been undertaken, mainly concentrating in cholesterol-rich foam cell.However, the proteomics research on triglyceride-rich foam cells has not been reported.
     In this study, the cultured THP-1 cells were treated with phorbol ester (PMA) to induce for 48 hours, the cells were differentiated into macrophages.Extracting of LDL and VLDL by density gradient centrifugation, then 50μg/ml VLDL or oxidized-LDL after quantitation was used to incubate the differentiated macrophages for 48 hours.Oil red staining showed a large number of lipid accumulation in macrophages incubated with VLDL. Further determination of intracellular lipid components, the results suggest that the foam cells incubated with VLDL accumulate mainly in triglycerides, the triglyceride levels are 5.6-fold in contrast to the PBS-treated control macrophages.The experimental results showed that in vitro cultured macrophages can form foam cells after incubation with VLDL, and the lipid composition is major as triglycerides.
     Next, we established triglyceride-rich foam cells of two-dimensional map by two-dimensional electrophoresis. The results showed that over 1000 spots could be detected in each gel, the isoelectric point of most proteins was in the PH 5-7.114 protein spots were increased and 101 protein spots were down-regulated in VLDL-treated macrophage fom cells compared to the proteins in PBS-treated macrophage. Further, in order to identify the protein group, the protein spots were excised by hand, and then degraded by trypsin, the enzyme fragment were analysied by MALDI-TOF-MS to obtain protein peptide mass fingerprint (peptide mas fingerprint, PMF), then were searched in genomics and proteomics databases to achieve a qualitative identification of the proteins.Of which 14 different protein spots were identified by mass spectrometry, which includes the ADRP related to lipid droplets formation in foam cells, phosphoglycerate conjugation enzymes involved in glycolysis and the protein participating in oxidative stress.Meantime, the expression of some proteins was verified by Western Blot, and the results are consistent with the proteomic results, while their mRNA level was detection by RT-PCR, which also has changed. So in the process of formation foam cells, not only a large number of lipid accumulation in macrophage, but also accompanied other complex biological changes.
     Emerging fluorescence difference gel electrophoresis (difference in-gel electrophoresis, DIGE) technology can label the different specimens with different fluorescent dyes, the samples are mixed and seperated by isoelectric focusing and SDS-PAGE electrophoresis at the same time. Because of its good repeatability, high sensitivity, as it is now one of the tools of quantitative proteome research. However, the applications on their atherosclerosis have not been reported. On the basis of two-dimensional map of triglyceride-rich foam cells in previous study,50p,g of total cellular protein extracted in each group were used to be labled with Cy3 or Cy5,Cy2 as internal standard, captured the images with Typhoon 9410 scanner. Higher quality two-dimensional maps were eatablised, the matching rate of gel were 93%,94 protein spots were increased and 78 protein spots were down-regulated in VLDL-treated macrophage fom cells compared to the proteins in PBS-treated macrophage (1.5 fold).Fluorescence two-dimensional difference gel electrophoresis has a higher sensitivity, the analysis of differences in the protein are more reliable.
     In conclusion, the two-dimensional electrophoresis technology was used to carry out a proteome research for triglyceride-rich lipoprotein-induced foam cell in this study. A triglyceride-rich foam cells of the two-dimensional map was established by two-dimensional electrophoresis technology; 114 protein spots were increased and 101 protein spots were decreased in the foam cells incubated with VLDL with the analysis of Image master 6.0 software;14 proteins, including ADRP related to triglyceride accumulation in foam cells, Phosphoglycerate mutase, enolase related to glucose metabolism and so on, were identified with mass spectrometry. With the analysis of functions of these proteins, suggesting that VLDL not only affects the lipid accumulation in foam cells, may also affect other biological action (glucose metabolism, reactive oxygen species generation, etc.)in foam cells;Initially, the two-dimensional fluorescence difference gel electrophoresis technology were used for triglycerides-rich foam cells proteomic research, the map of two-dimensional fluorescence difference gel electrophoresis has been established.
引文
[1].Wasinger VC,Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995 16(7):1090-4.
    [2].陈主初,肖志强.疾病蛋白质组学.化学工业出版社,20066,第一版
    [3].O'Farrell PH. High resolution two-dimensional electrophoresis of proteins.J Biol Chem. 1975;250(10):4007-21.
    [4].Gaut JP, Heinecke JW. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc Med.2001;11(3-4):103-12.
    [5]Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005;182(1):1-15.
    [6]Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis:beyond lipid uptake Arterioscler Thromb Vasc Biol.2006 Aug;26(8):1702-11.
    [7].Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science.1991;251(4995):788-91.
    [8].Lam MC,Tan KC, Lam KS.Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages.Atherosclerosis. 2004;177(2):313-20.
    [9].Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages:implications for atherosclerosis.Circulation. 2001;103(9):1194-7.
    [10].Austin MA.Epidemiology of hypertriglyceridemia and cardiovascular disease. Am J Cardiol.1999;83(9B):13-16.
    [11].Redgrave TG, Roberts DC,West CE. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem.1975;65(1-2):42-9.
    [12].Qu S,Wu F, Tian J, Li Y, Wang Y, Wang Y, Zong Y.Role of VLDL receptor in the process of foam cell formation. J Huazhong Univ Sci Technolog Med Sci.2004;24(1):1-4,
    [13].Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, Theiss D, Schneider U, Lehrach H, Gobom J. Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry:an analytical challenge for studying complex protein mixtures. Electrophoresis.2001;22(14):2844-55.
    [14].Jungblut P, Thiede B.Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom Rev.1997;16(3):145-62.
    [15].Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198-207.
    [16].Hanash S.Disease proteomics.Nature.2003;422(6928):226-32.
    [17].Patricoin, EF, Liotta, LA, Nutritional genomics and proteomics in cancer prevention. J. Nutr.2003,133,2476S-84S.
    [18].Humphery-Smith I, Cordwell SJ, Blackstock WP. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 1997;18(8):1217-42.
    [19].Pandey A, Mann M. Proteomics to study genes and genomes.Nature. 2000;405(6788):837-46.
    [1].Glass CK, Witztum JL.Atherosclerosis.the road ahead. Cell.2001;104(4):503-16.
    [2].Brown MS,Goldstein JL. Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem.1983;52:223-61.
    [3].Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med.1999;340(2):115-26.
    [4].钱学贤,戴玉华,孔华宁.现代心血管病学.第一版.人民军医出版社,1999,818~834.
    [5].Austin MA. Epidemiology of hypertriglyceridemia and cardiovascular disease. Am J Cardiol.1999;83(9B):13F-16F.
    [6].Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol.2001;12(2):151-7.
    [7].Frank JS,Fogelman AM. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res. 1989;30(7):967-78.
    [8].Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW.Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms. J Lipid Res. 1993;34(5):703-17.
    [9].Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA, Wolfe BM, Huff MW. Transforming growth factor-betal inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants.Arterioscler Thromb Vasc Biol.2001;21(12):2011-8.
    [10].Ricote M, Valledor AF, Glass CK. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage:effects on lipid homeostasis, inflammation, and atherosclerosis.Arterioscler Thromb Vasc Biol.2004;24(2):230-9.
    [11].Dichtl W, Nilsson L, Goncalves I, Ares MP, Banfi C, Calara F, Hamsten A, Eriksson P, Nilsson J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ Res.1999;84(9):1085-94.
    [12].Stollenwerk MM, Schiopu A, Fredrikson GN, Dichtl W, Nilsson J, Ares MP. Very low density lipoprotein potentiates tumor necrosis factor-alpha expression in macrophages. Atherosclerosis.2005;179(2):247-54.
    [13].Persson J, Nilsson J, Lindholm MW.Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids Health Dis.2006;5:17.
    [14].Chen LY, Mehta P, Mehta JL. Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets:relevance of the effect of oxidized LDL on platelet function. Circulation.1996;93(9):1740-6.
    [15].Nofer JR, Tepel M, Kehrel B,Wierwille S, Walter M, Seedorf U, Zidek W, Assmann GLow-density lipoproteins inhibit the Na+/H+ antiport in human platelets. A novel mechanism enhancing platelet activity in hypercholesterolemia. Circulation. 1997;95(6):1370-7.
    [16].Riddell DR, Graham A, Owen JS.Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease. J Biol Chem. 1997 Jan 3;272(1):89-95.
    [17].VanderLaan PA, Reardon CA, Thisted RA, Getz GS.VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice. J Lipid Res.2009;50(3):376-85.
    [18].Persson J, Degerman E, Nilsson J, Lindholm MW.Perilipin and adipophilin expression in lipid loaded macrophages.Biochem Biophys Res Commun.2007;363(4):1020-6.
    [19].Brasaemle DL, Barber T, Wolins NE,Serrero G, Blanchette-Mackie EJ,Londos C.Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res.1997;38(11):2249-63.
    [20].Imamura M, Inoguchi T, Ikuyama S,Taniguchi S,Kobayashi K, Nakashima N, Nawata H.ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab.2002;283(4):E775-83.
    [21].Gao J, Serrero G.Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem. 1999;274(24):16825-30.
    [22].Larigauderie G, Cuaz-Perolin C,Younes AB,Furman C,Lasselin C,Copin C,Jaye M, Fruchart JC,Rouis M.Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J. 2006;273(15):3498-510.
    [23].Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM.PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A.2003;100(3):1268-73.
    [24].Pedrini MT, Kranebitter M, Niederwanger A, Kaser S,Engl J, Debbage P, Huber LA, Patsch JR.Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia.2005;48(4):756-66.
    [25].Sukhanov S, Higashi Y, Shai SY, Itabe H, Ono K, Parthasarathy S,Delafontaine P.Novel effect of oxidized low-density lipoprotein:cellular ATP depletion via downregulation of glyceraldehyde-3-phosphate dehydrogenase. Circ Res. 2006;99(2):191-200.
    [26].Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, Byers H, Ward M, Hochstrasser DF, Cawthorne MA, Sanchez JC.Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice.Proteomics. 2004;4(8):2270-82.
    [27].Aronis A, Madar Z, Tirosh O.Mechanism underlying oxidative stress-mediated lipotoxicity:exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med. 2005;38(9):1221-30.
    [28].Han D, Williams E, Cadenas E.Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space.Biochem J.2001;353
    [29].Alexander RW.Atherosclerosis as disease of redox-sensitive genes. Trans Am Clin Climatol Assoc.1998;109:129-45;
    [30].Duval C, Auge N, Frisach MF, Casteilla L, Salvayre R, Negre-Salvayre A.Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase. Biochem J.2002;367(Pt 3):889-94.
    [31].Martin-Ventura JL, Duran MC,Blanco-Colio LM, Meilhac O, Leclercq A, Michel JB, Jensen ON, Hernandez-Merida S, Tunon J, Vivanco F, Egido J.Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation.2004;110(15):2216-9.
    [32].Martin-Ventura JL, Nicolas V, Houard X, Blanco-Colio LM, Leclercq A, Egido J, Vranckx R, Michel JB, Meilhac O.Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler Thromb Vasc Biol.2006;26(6):1337-43.
    [33].Inada H, Naka M, Tanaka T, Davey GE, Heizmann CW.Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochem Biophys Res Commun.1999;263(1):135-8.
    [34].Kanamori T, Takakura K, Mandai M, Kariya M, Fukuhara K, Sakaguchi M, Huh NH, Saito K, Sakurai T, Fujita J, Fujii S.Increased expression of calcium-binding protein SI00 in human uterine smooth muscle tumours. Mol Hum Reprod.2004;10(10):735-42.
    [35].Memon AA, Sorensen BS,Meldgaard P, Fokdal L, Thykjaer T, Nexo E.Down-regulation of S100C is associated with bladder cancer progression and poor survival.Clin Cancer Res.2005;11(2 Pt 1):606-11.
    [36].Rosenfeld ME, Ross R.Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis.1990;10(5):680-7.
    [37].Gordon D, Reidy MA, Benditt EP, Schwartz SM.Cell proliferation in human coronary arteries.Proc Natl Acad Sci U S A.1990;87(12):4600-4.
    [1].Unlu M, Morgan ME, Minden JS.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis.1997;18(11):2071-7.[2].Van den Bergh G, Arckens L.Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol.2004;15(1):38-43.
    [3].Zhou G, Li H, DeCamp D, Chen S,Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd, Zhao Y.2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics.2002; 1(2):117-24.
    [4].Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, Mogg M, Schreiber M, Feuerstein I, Huck CW, Stecher G, Bonn GK, Huber LA.Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/ MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis. 2006;27(8):1641-50.
    [5].Sharma K, Lee S,Han S, Lee S,Francos B,McCue P, Wassell R, Shaw MA,RamachandraRao SP.Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics.2005 Jul;5(10):2648-55.
    [6].Tonge R, Shaw J, Middleton B,Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M.Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics.2001;1(3):377-96.
    [7].Marouga R, David S,Hawkins E.The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem.2005;382(3):669-78.
    [1]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995;16:1090-4.
    [2]Huh WK, Falvo JV, Gerke LC, Carroll AS,Howson RW, Weissman JS, O'Shea EK.Global analysis of protein localization in budding yeast. Nature.2003;425:686-91.
    [3]Norin M, Sundstrom M.Structural proteomics:developments in structure-to-function predictions. Trends Biotechnol.2002;20:79-84.
    [4]Sali A, Glaeser R, Earnest T, Baumeister W. From words to literature in structural proteomics. Nature.2003;422:216-25.
    [5]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007-21.
    [6]Rabilloud T, Adessi C, Giraudel A, Lunardi J.Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.1997;18:307-16.
    [7]Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B,Wildgruber R, Weiss W.The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.2000;21:1037-53.
    [8]Gorg A, Postel W, Giinther S.The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.1988;9(9):531-46.
    [9]Klose J, Kobalz U.Two-dimensional electrophoresis of proteins:an updated protocol and implications for a functional analysis of the genome. Electrophoresis.1995;16:1034-59.
    [10]Patton WF.A thousand points of light:the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics.Electrophoresis. 2000;21:1123-44.
    [11]Shevchenko A, Wilm M, Vorm O, Mann M.Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem.1996;68(5):850-8.
    [12]Mortz E, Krogh TN, Vorum H, Gorg A.Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics.2001;1:1359-63.
    [13]Yan JX, Harry RA, Spibey C, Dunn MJ.Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes.Electrophoresis. 2000;21:3657-65.
    [14]Unlii M, Morgan ME, Minden JS.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis.1997;18:2071-7.[15] Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R. Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes.Proteomics. 2003;3:1181-95.
    [16]Hillenkamp F, Karas M, Beavis RC, Chait BT.Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991;63:1193A-1203A.
    [17]Issaq HJ, Veenstra TD, Conrads TP, Felschow D.The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification. Biochem Biophys Res Commun. 2002;292:587-92.
    [18]Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM.Electrospray ionization for mass spectrometry of large biomolecules. Science.1989;246:64-71.
    [19]Zhang W, Czernik AJ, Yungwirth T, Aebersold R, Chait BT.Matrix-assisted laser desorption mass spectrometric peptide mapping of proteins separated by two-dimensional gel electrophoresis:determination of phosphorylation in synapsin I.Protein Sci. 1994;3:677-86.
    [20]Verentchikov AN, Ens W, Standing KG.Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem.1994;66:126-33.
    [21]Wright GL Jr.SELDI proteinchip MS:a platform for biomarker discovery and cancer diagnosis.Expert Rev Mol Diagn.2002;2:549-63.
    [22]Rodland KD.Proteomics and cancer diagnosis:the potential of mass spectrometry. Clin Biochem.2004;37:579-83.
    [23]Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD.SELDI-TOF MS for diagnostic proteomics.Anal Chem.2003;75:148A-155A.
    [24]Liotta LA, Ferrari M, Petricoin E.Clinical proteomics:written in blood. Nature.2003; 425:905.
    [25]Brown MS, Goldstein JL.Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem.1983;52:223-61.
    [26]Blanco-Colio LM, Martin-Ventura JL, Vivanco F, Michel JB,Meilhac O, Egido J.Biology of atherosclerotic plaques:what we are learning from proteomic analysis. Cardiovasc Res.2006;72:18-29.
    [27]Yu YL, Huang ZY, Yang PY, Rui YC, Yang PY.Proteomic studies of macrophage-derived foam cell from human U937 cell line using two-dimensional gel electrophoresis and tandem mass spectrometry. J Cardiovasc Pharmacol.2003;42:782-9.
    [28]Fach EM, Garulacan LA, Gao J, Xiao Q, Storm SM, Dubaquie YP, Hefta SA, Opiteck GJ.In vitro biomarker discovery for atherosclerosis by proteomics.Mol Cell Proteomics. 2004;3:1200-10.
    [29]Patton WF, Erdjument-Bromage H, Marks AR, Tempst P, Taubman MB.Components of the protein synthesis and folding machinery are induced in vascular smooth muscle cells by hypertrophic and hyperplastic agents. Identification by comparative protein phenotyping and microsequencing. J Biol Chem.1995;270:21404-10.
    [30]Jang WG, Kim HS, Park KG, Park YB, Yoon KH, Han SW, Hur SH, Park KS, Lee IK.Analysis of proteome and transcriptome of tumor necrosis factor alpha stimulated vascular smooth muscle cells with or without alpha lipoic acid. Proteomics. 2004;4:3383-93.
    [31].You SA, Archacki SR, Angheloiu G, Moravec CS,Rao S, Kinter M, Topol EJ, Wang Q.Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker:evidence consistent with iron hypothesis in atherosclerosis.Physiol Genomics. 2003;13:25-30.
    [32]Donners MM, Verluyten MJ, Bouwman FG, Mariman EC, Devreese B,Vanrobaeys F, van Beeumen J, van den Akker LH, Daemen MJ, Heeneman S.Proteomic analysis of differential protein expression in human atherosclerotic plaque progression. J Pathol. 2005;206:39-45.
    [33]Martinet W,Schrijvers DM, De Meyer GR, Herman AG, Kockx MM.Western array analysis of human atherosclerotic plaques:downregulation of apoptosis-linked gene 2. Cardiovasc Res.2003;60:259-67.
    [34]Righetti PG,Castagna A, Antonioli P, Boschetti E.Prefractionation techniques in proteome analysis:the mining tools of the third millennium. Electrophoresis. 2005;26:297-319.
    [35]Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A, Macaya C, Nunez A, Gomez J, Alonso-Orgaz S,Carrasco C, Burgos ME, de Andres R, Granizo JJ, Farre J, Rico LA.Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol.2004;44:1578-83
    [1].Brown MS,Goldstein JL. Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem.1983;52:223-61.
    [2]Austin MA.Epidemiology of hypertriglyceridemia and cardiovascular disease. Am J Cardiol.1999;83(9B):13F-16F.
    [3]Nakamura T, Kugiyama K.Triglycerides and remnant particles as risk factors for coronary artery disease. Curr Atheroscler Rep.2006; 8(2):107-10.
    [4]Yarnell JW, Patterson CC, Sweetnam PM, Thomas HF, Bainton D, Elwood PC, Bolton CH, Miller NE.Do total and high density lipoprotein cholesterol and triglycerides act independently in the prediction of ischemic heart disease? Ten-year follow-up of Caerphilly and Speedwell Cohorts. Arterioscler Thromb Vasc Biol.2001;21(8):1340-5.
    [5]钱学贤,戴玉华,孔华宁.现代心血管病学.第一版.人民军医出版社,1999,818~834.
    [6]刘秉文.血浆甘油三酚与动脉粥样硬化.心血管病学进展.20卷第一期.1999年
    [7]Zhao R, Ma X, Shen GX.Transcriptional regulation of plasminogen activator inhibitor-1 in vascular endothelial cells induced by oxidized very low density lipoproteins.Mol Cell Biochem.2008;317(1-2):197-204.
    [8]Sobel BE, Schneider DJ.Platelet function, coagulopathy, and impaired fibrinolysis in diabetes.Cardiol Clin.2004;22(4):511-26.
    [9]Norata GD, Grigore L, Raselli S,Seccomandi PM, Hamsten A, Maggi FM, Eriksson P, Catapano AL.Triglyceride-rich lipoproteins from hypertriglyceridemic subjects induce a pro-inflammatory response in the endothelium:Molecular mechanisms and gene expression studies.J Mol Cell Cardiol.2006;40(4):484-94.
    [10]Norata GD, Raselli S,Grigore L, Garlaschelli K, Vianello D, Bertocco S,Zambon A, Catapano AL.Small dense LDL and VLDL predict common carotid artery IMT and elicit an inflammatory response in peripheral blood mononuclear and endothelial cells. Atherosclerosis.2009;206(2):556-62.
    [11]Shin HK, Kim YK,Kim KY, Lee JH, Hong KW.Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation:prevention by cilostazol.Circulation.2004;109(8):1022-8.
    [12]Nordestgaard BG, Wootton R, Lewis B.Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo.Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol. 1995;15(4):534-42.
    [13]Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Hardman J, Kotite L, Kunitake ST, Havel RJ, Kane JP.Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb.1994;14(11):1767-74.
    [14]Rubins HB,Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB,Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J.Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med.1999;341(6):410-8.
    [15]Austin MA.Epidemiology of hypertriglyceridemia and cardiovascular disease.Am J Cardiol.1999;83(9B):13F-16F.
    [16]Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW.Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms. J Lipid Res. 1993;34(5):703-17.
    [17]Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Hardman J, Kotite L, Kunitake ST, Havel RJ, Kane JP.Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb.1994;14(11):1767-74.
    [18]Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA, Wolfe BM, Huff MW. Transforming growth factor-betal inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vasc Biol.2001;21(12):2011-8.
    [19]Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM.PPARdelta is a very low-density lipoprotein sensor in macrophages.Proc Natl Acad Sci U S A.2003;100(3):1268-73.
    [20].Jong MC, Hendriks WL, van Vark LC, Dahlmans VE, Groener JE, Havekes LM. Oxidized VLDL induces less triglyceride accumulation in J774 macrophages than native VLDL due to an impaired extracellular lipolysis.Arterioscler Thromb Vasc Biol. 2000;20(1):144-51
    [21]Palmer AM, Murphy N, Graham A.Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) Al from human macrophage foam cells.Atherosclerosis. 2004;173(1):27-38.
    [22]Persson J, Degerman E, Nilsson J, Lindholm MW.Perilipin and adipophilin expression in lipid loaded macrophages. Biochem Biophys Res Commun.2007;363(4):1020-6.
    [23]Bjorkerud S,Bjorkerud B.Lipoproteins are major and primary mitogens and growth promoters for human arterial smooth muscle cells and lung fibroblasts in vitro.Arterioscler Thromb.1994;14(2):288-98.
    [24]Sachinidis A, Kettenhofen R, Seewald S,Gouni-Berthold I, Schmitz U, Seul C,Ko Y, Vetter H.Evidence that lipoproteins are carriers of bioactive factors.Arterioscler Thromb Vasc Biol.1999;19(10):2412-21.
    [25]Lipskaia L, Pourci ML, Delomenie C, Combettes L, Goudouneche D, Paul JL, Capiod T, Lompre AM.Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation. Circ Res. 2003;92(10):1115-22.
    [26]Dolmetsch RE, Lewis RS,Goodnow CC, Healy JI.Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386(6627):855-8.
    [27]Kawakami A, Tanaka A, Chiba T, Nakajima K, Shimokado K, Yoshida M.Remnant lipoprotein-induced smooth muscle cell proliferation involves epidermal growth factor receptor transactivation. Circulation.2003;108(21):2679-88.
    [28]Zhao D, Letterman J, Schreiber BM.beta-Migrating very low density lipoprotein (beta VLDL) activates smooth muscle cell mitogen-activated protein (MAP) kinase via G protein-coupled receptor-mediated transactivation of the epidermal growth factor (EGF) receptor:effect of MAP kinase activation on beta VLDL plus EGF-induced cell proliferation. J Biol Chem.2001;276(33):30579-88.
    [29]Clarke MC,Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR.Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med.2006;12(9):1075-80.
    [30]Ellahham S.Role of antiplatelet agents in the primary and secondary prevention of atherothrombotic events in high risk-patients. South Med J.2008;101(3):273-83.
    [31]Byrne CD.Triglyceride-rich lipoproteins:are links with atherosclerosis mediated by a procoagulant and proinflammatory phenotype? Atherosclerosis.1999;145(1):1-15.
    [32]Bai H, Liu BW, Deng ZY, Shen T, Fang DZ, Zhao YH, Liu Y.Plasma very-low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein oxidative modification induces procoagulant profiles in endogenous hypertriglyceridemia. Free Radic Biol Med. 2006;40(10):1796-803.
    [33]Ibrahim S,Djimet-Baboun A, Pruneta-Deloche V, Calzada C, Lagarde M, Ponsin G.Transfer of very low density lipoprotein-associated phospholipids to activated human platelets. J Lipid Res.2006;47(2):341-8.
    [34]Chen LY, Mehta P, Mehta JL.Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets:relevance of the effect of oxidized LDL on platelet function. Circulation.1996;93(9):1740-6.
    [35]Nofer JR, Tepel M, Kehrel B, Wierwille S, Walter M, Seedorf U, Zidek W, Assmann G.Low-density lipoproteins inhibit the Na+/H+ antiport in human platelets.A novel mechanism enhancing platelet activity in hypercholesterolemia. Circulation. 1997;95(6):1370-7.
    [36]Riddell DR, Graham A, Owen JS.Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease.J Biol Chem. 1997;272(1):89-95.
    [37]Ibrahim S, Guillot N, Pruneta-Deloche V, Charriere S,Calzada C, Guichardant M, Moulin P, Lagarde M, Ponsin GAlterations in the transfer of phospholipids from very-low density lipoproteins to activated platelets in type 2 diabetes.Atherosclerosis.2009; 203(1):119-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700