用户名: 密码: 验证码:
具有二级三维网络结构的壳聚糖/羟基磷灰石骨组织工程复合支架材料的构建及其生物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,因创伤、先天性畸形、骨关节炎、骨质疏松和肿瘤等原因造成的骨缺损疾病对骨移植材料的需求日趋增加。当前常用的骨修复材料包括自体骨移植物、异种或同种异体骨移植物以及人工合成的骨替代材料,然而这些材料均存在一定的缺陷或局限性。自体骨移植一直被视为治疗骨缺损的“黄金法则”,但它受限于来源,并且存在着引起供区正常骨结构破坏、感染和疼痛等潜在问题。异种或同种异体骨移植物具有免疫原性,会引发机体的免疫排斥反应,还可能导致病原体传染。传统的人工合成的骨替代材料,如羟基磷灰石或磷酸钙陶瓷,虽然可以避免生物源性移植物的缺陷,但其仅具有填充、支持和骨传导作用,不具有高的生物活性,尤其骨诱导能力弱,不能形成“活”的具有生物功能的骨组织。如何理想地实现骨缺损的修复,一直是临床研究的热点和难点。
     如今,骨组织工程为骨缺损的修复提供了重要的选择性策略。支架材料作为人工细胞外基质材料是骨组织工程的核心。根据天然骨的结构和组成,天然聚合物/羟基磷灰石复合支架材料成为了研究热点。生物可降解的天然衍生高分子聚合物壳聚糖(chitosan),由于其良好的生物相容性,生物可降解性,正电性,易化学改性性而成为仅次于胶原的最具有潜力的用于骨组织工程支架材料的天然聚合物。目前,壳聚糖/羟基磷灰石骨组织工程支架材料的制备方法主要基于混合共沉淀法和原位共沉淀法。以上制备方法虽然工艺简单,却很难在一个具有复杂结构的三维支架内实现表面化学组成和微观结构的可控调节,且使用的交联剂戊二醛有毒,其在体内降解过程中很容易释放出来。此外,为了获得与骨组织结构类似来达到理想的力学性能和生物活性的骨支架材料,生物矿化方法已成为实现形貌和结晶度与天然骨相似的磷灰石在天然聚合物自组装的重要策略。然而,目前很难利用类似在胶原表面进行生物矿化的方法实现羟基磷灰石在壳聚糖基的支架材料表面组装。因此,通过一种无毒且可控的方法实现具有生物活性的羟基磷灰石在壳聚糖基的支架材料表面精确组装仍然是骨组织工程的重要挑战。
     骨髓来源的间充质干细胞(BMSCs),作为一种成体干细胞,因具有低的免疫原性、易获取性和多向分化潜能性已成为骨组织工程中最为理想的种子细胞之一。近来研究表明生物材料的表面特征,包括化学组成、粗糙度、微结构,特别是纳米级微结构,可以直接影响干细胞的命运。因此,了解骨髓间充质干细胞在支架微环境的生理反应,可以在分子水平明确支架微环境对细胞行为的影响,这为骨髓间充质干细胞在骨组织工程的应用提供了理论依据并有助于研发具有特定生物活性的组织诱导性支架材料。而且,目前随着干细胞与生物材料表面微环境相互作用的逐步广泛认识,组织工程逐步朝向设计和工程化具有促进细胞特殊表型表达功能的支架材料表面的方向发展。此外,骨支架材料的表面特征,特别是考虑到对生长因子(例如骨形态发生蛋白-2,BMP-2)的持续释放,或许能够提供一种新型而有效的药物释放系统来达到促进成骨的目的。
     根据上述背景,本论文旨在通过一种无毒且可控的方法实现具有生物活性的羟基磷灰石在壳聚糖基的支架材料表面精确组装,并探讨该复合支架材料的表面微环境对接种的干细胞体外成骨分化潜能以及对成骨生长因子(如BMP-2)缓释能力的影响,提供一种具有潜在应用价值的骨组织工程支架材料。本论文主要包括以下几个方面的工作:
     1.二级三维多孔网络结构壳聚糖/羟基磷灰石骨组织工程支架材料(HGCCS)的构建及细胞生物相容性表征
     使用无毒的交联剂京尼平(Gneipin),根据纳米籽晶诱导的仿生矿化方法,利用水热合成、原位复合和冷冻干燥制备技术,实现了羟基磷灰石在壳聚糖支架表面的组装,并成功地制备了具有二级三维网状结构的壳聚糖网络/HAp骨组织工程支架材料(HGCCS):第一级网络结构为壳聚糖支架构成的三维连通的多孔结构(约150μm),利于细胞迁移和物质传输;第二级网络结构是由羟基磷灰石在孔道表面白组装形成的纳米网络结构(约150nm),为细胞的生长和生理功能提供了特殊的微环境。
     X射线衍射(XRD)、高分辨投射电镜(HRTEM)和傅里叶变化红外光谱(FTIR)分析证实了在HGCCS孔道表面上连续的纳米结构是由结晶性的羟基磷灰石组成。使用的无毒交联剂京尼平,赋予了复合支架材料特有的荧光特性和高的力学强度。羟基磷灰石纳米籽晶的掺入促进了羟基磷灰石纳米网络结构在支架孔道表面的快速组装,且共同起到了增强支架材料力学性能的作用。HGCCS的弹性模量(EM)高达50.49±2.23MPa。利用京尼平与壳聚糖共聚物的荧光特性,开发了其在支架材料成像与示踪以及支架材料降解过程中结构观察的潜在应用。此外,其荧光特性或许为研究细胞与支架材料之间的相互作用,以及观察细胞在支架表面的黏附、定位和迁移提供了一个有效手段。
     将前成骨细胞MC3T3-E1接种于京尼平交联的壳聚糖支架(GCF)和HGCCS上体外培养3天后,通过扫描电镜(SEM)对细胞形貌的观察以及通过激光扫描共聚焦显微镜(CLSM)对细胞核和细胞骨架染色后进行观察,证实了GCF和HGCCS具有良好的细胞生物相容性。将提取的大鼠BMSCs接种于支架材料内,通过细胞形貌和细胞骨架组装观察以及细胞增殖实验,进一步证实了HGCCS具有良好的细胞生物相容性。此外,胎牛血清蛋白(fetal calf serum,FBS)作为模式蛋白被用于评价了HGCCS的蛋白吸附性能。相比于GCF和京尼平交联的壳聚糖/纳米羟基磷灰石复合物(GCGF), HGCCS特有的孔道表面特征,包括高的比表面积、纳米尺寸的结晶度以及微孔隙度促进了FBS在支架材料表面的吸附,并为BMSCs的生长获得了更多的营养。FBS在三种支架材料上的吸附结果也进一步支持了细胞增殖结果。
     2.体外评价BMSCs在HGCCS上的成骨分化潜能
     体外评价了BMSCs在HGCCS上的成骨分化潜能。在相同的体外培养条件下,培养7天后,BMSCs在GCF和HGCCS上的细胞形状和细胞骨架组装均呈现出显著的差异。BMSCs在GCF上呈现出成纤维形貌,具有BMSCs的典型表型,而BMSCs在HGCCS上的多角的形状类似成骨细胞的表型。碱性磷酸酶(ALP)作为成骨重要标志物之一,其活性检测结果表明HGCCS诱导了更高的ALP活性。基于实时定量PCR(RT-PCR)检测,HGCCS诱导了成骨分化标志物在mRNA水平的最高表达,分别是第7天的成骨特异性转录因子(Runx2),第7天的骨桥蛋白(OPN)和第14天的骨钙素(OCN)。分别培养7天和14天后,茜素红染色结果证实了BMSCs在HGCCS上具有促进矿化基质和钙结节形成的能力。在相同的体外培养条件下,相比于GCF, HGCCS表面的羟基磷灰石纳米网络结构作为重要的信号因素促进了BMSCs的体外成骨分化。
     3.基于具有二级三维多孔结构的壳聚糖/羟基磷灰石复合支架的表面微结构调控BMP-2缓释及促进BMSCs体外成骨分化
     体外评价了HGCCS表面特殊的羟基磷灰石纳米网络结构对BMP-2的吸附和长期释放作用以及对大鼠BMSCs体外成骨分化潜能的影响。酶联免疫吸附实验(ELISA)结果表明,与对照组GCF的28%的BMP-2载药率相比,HGCCS具有65%的有效载药率。ELISA结果还表明BMP-2从HGCCS可持续释放到第14天,而在第1和第3天BMP-2在GCF上呈现出爆发式地释放。进而,BMP-2从HGCCS的缓释能力促进了体外BMSCs的ALP活性增加。基于实时定量PCR检测,BMP-2荷载的HGCCS也诱导了成骨分化标志物在mRNA水平的最高表达,分别是第14天的Runx2,第3天的OPN和第14天的OCN。本次研究结果证实具有二级三维多孔结构的HGCCS的表面羟基磷灰石纳米网络结构作为BMP-2的荷载系统可以促进BMSCs的体外成骨分化,表明HGCCS是具有潜在应用价值的骨组织工程支架材料。
     4.猪脱细胞真皮基质(PADM)-羟基磷灰石复合支架材料对大鼠颅骨临界骨缺损修复性能的初步研究
     课题组前期首次利用PADM作为基础材料体外构建了具有二级三维多孔结构的天然胶原-羟基磷灰石复合支架材料,并研究了其对大鼠下颌骨临界骨缺损的修复性能。在前期研究基础上,进一步构建了8mm大鼠颅骨临界骨缺损模型用于评价PADM和PADM-HAp的成骨生物活性。修复5周后,Micro-CT分析和组织化学染色结果表明相比于PADM, PADM-HAp具有更好的骨修复能力。
In the modern world there are increasingly urgent demands for various biomedical bone implants to repair bone defects caused by bone fractures, congenital malformation, osteoarthritis, osteoporosis or bone cancers. However, bone substitute including autografts, allografts, and an assortment of synthetic or biomimetic materials and device, all have some drawbacks. Although bone autografts are recognized as gold standard, their supply is limited and there are many potential drawbacks associated with their use including donor site morbidity, danger of infection, and pain. Allografts have the risk of introducing infectious agents or immune rejection. Though the traditional synthetic bone substitute including hydroxyapatite or calcium phosphate ceramics do not have the drawbacks from autografts and allografts, they only possess the functions of filling, supporting and osteoconduction, and do not have high bioactivity, especially osteoinduction. Therefore, it is difficult to achieve the functions of natural bone. Thus, the requirement for complete regeneration of bone and restoration of its function is a major clinical need.
     Bone tissue engineering has been regarded as an important strategy to repair and regenerate bone tissue. Bone scaffolds as synthetic extracellular matrix materials are significant for bone tissue engineering. According to the structure and composition of natural bone, biodegradable polymer/hydroxyapatite (HAp) composites have been widely studied. Now, chitosan as an important biodegradable natural polymer, due to its biocompatibility, biodegradability, cationic nature, ready availability, and anti-bacteria, has been the most promising natural polymer next to collagen for bone tissue engineering.
     Presently, the fabrication techniques for porous HAp/chitosan composite bone scaffolds are based on either mixing or in situ co-precipitation methods. Though the mixing and in situ co-precipitation approaches are simple processes with low cost, it is difficult to control the surface chemistry and geometry within a large and complex structure. In addition, these methods for chitosan/HAp scaffold preparation normally use glutaraldehyde (GTA) as a crosslinker, a substance that is toxic when it is released in the host during the biodegradation process. In order to develop ideal bone-like composites with enhanced mechanical properties and improved bioactivity, biomimetic mineralization has become an effective strategy to assemble bone-like apatite that is close to natural bone with low crystallinity and nanoscale size. However, it is difficult to achieve the controlled nucleation and growth of HAp nano-crystals on a chitosan-based framework. Thus, it is critical to control and attain desirable bioactive mineral surface structures within a chitosan-based framework through a nontoxic and controllable preparation method, and it is still a great challenge for bone tissue engineering.
     Bone marrow-derived mesenchymal stem cells (BMSCs) as one of adult stem cells have attracted particular attention in bone tissue engineering, because they are readily accessible, with low immunogenicity and multilineage differentiation potential. Recent studies have indicated the surface characteristics of biomaterials including chemical composition, roughness, and topography, especially nanotopography, can profoundly affect cell functions. Thus, understanding BMSCs response to the microenvironment in scaffold can identify the effect of the microenvironment in scaffold on BMSCs behaviors at the molecular level. It can provide the basis of the theory for the application of BMSCs in bone tissue engineering and exploring tissue-inducing biomaterials that have special bioacitivity. Recently, with increased knowledge of the interactions of stem cells with biomaterial surfaces, tissue engineering is becoming increasingly oriented toward designing and engineering biomaterial surfaces that promote specific cellular phenotypes. Moreover, the surface characteristics of bone scaffold, especially regarding the sustained delivery of growth factors (such as bone morphogenetic protein-2,BMP-2), can possibly provide a novel and effective drug delivery system that can enhance osteogenesis.
     Based on the backgrounds mentioned above, the objective of this study was to control and attain desirable bioactive hydroxyapatite structures within a chitosan-based scaffold through a nontoxic and controllable preparation method, and investigate the effect of surface microenvironment of the obtained composite scaffolds on the osteogenic differentiation potential of seeded BMSCs in vitro and sustained delivery of bioactive molecules (such as BMP-2). The main topics of this dissertation are as follows:
     1. Construction of two-level three-dimensional networked chitosan/hydroxyapatite composite scaffold for bone tissue engineering and its cell biocompatibility
     Using a nontoxic cross-linker (genipin), a nano-crystallon induced biomimetic mineralization method, and hydrothermal synthesis, in situ co-precipitation and lyophilization technology, we have demonstrated the construction of a2-level3D networked chitosan/hydroxyapatite (HGCCS) by assembling HAp nanostructures on the chitosan framework for bone tissue engineering. The first level of the network is the chitosan3D interconnected macroporous framework (-150μm) that is favorable for cell immigration and mass transport; the second level is the nano-network and nanostructure of HAp self-assembled on the channel surface of the chitosan framework (-150nm) that provides the special microenvironment for cell growth and function.
     X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and fourier transform infrared spectroscopy (FTIR) analysis confirm that the continuous network-like nanostructure on the channel surface of the HGCCS is composed of crystalline HAp. Non-toxic genipin is used as a crosslinker and it endows high strength and intrinsic fluorescence to the chitosan framework. The nano-crystalline HAp seeds play a determining role in the construction of HAp nanostructure on the channel surface, and they reinforce the produced scaffold.
     The compressive elastic modulus (EM) of the HGCCS obtained increases to50.49±2.23MPa. We further explore the novel fluorescence properties of genipin-cross-linked chitosan that suggest a promising application for3D scaffold imaging and tracking, and structural observation of the degradation process. In addition, the intrinsic fluorescence may provide an effective way to image the cell-scaffold interaction and effectively monitor the adhesion, localization and migration of cells on the surface of the scaffolds.
     The results of SEM observation of cell morphology, and CLSM observation of MC3T3-E1pre-osteroblasts cultured for3days on GCF and HGCCS after nuclei and F-actin staining confirmed their good cell compatibility. Rat BMSCs were extracted and seeded in scaffolds, the results of SEM observation of cell morphology, and CLSM observation of cytoskeleton organization further confirmed that HGCCS possess good cell compatibility.
     Fetal bovine serum (FBS) as a model protein was used to evaluate the protein adsorption capacity of HGCCS. Compared to GCF and GCGF, the special surface properties of HGCCS, including increased surface area, nanocrystallinity and microporosity with nanosized pores enhanced increased adsorption of FBS for easier access to nutrients by BMSCs. The results of adsorption experiments of FBS further confirmed the results of cell proliferation assay.
     2. In vitro assessment of the osteogenic differentiation potential of BMSCs on HGCCS
     We examined the osteogenic differentiation potential of BMSCs on HGCCS in vitro. Given the same culture conditions, cell shape and cytoskeleton organization showed significant differences between cells cultured on GCF and those cultured on HGCCS after7days of incubation. The result of specific alkaline phosphatase (ALP) activity as an indicator of osteogenic differentiation showed that the ALP activity of rat BMSCs was higher on HGCCS. Based on quantitative real time PCR (RT-PCR), HGCCS induced highest mRNA expression of osteogenic differentiation markers, runt-related transcription factor2(Runx2) by7days, osteopontin (OPN) by7days and osteocalcin (OCN) by14days, respectively. The enhanced ability of BMSCs on HGCCS to produce mineralized extracellular matrix and nodules was also assessed on day14with Alizarin red staining. The results of this study suggest that in the same culture conditions, compared to GCF, the surface HAp nano-network structure of HGCCS acts as a critical signal cue promoting osteogenic differentiation in vitro.
     3. Enhanced osteogenic differentiation of BMSCs in vitro on two-level three-dimensional networked HGCCS based on surface microstructure for sustained delivery of BMP-2
     We evaluated the effect of the surface special HAp nano-network structure of HGCCS on the BMP-2adsorption and release ability, and the resulting osteogenic differentiation of rat BMSCs in vitro. HGCCS exhibited a loading efficiency of65%, which is significantly higher than28%for GCF, as quantified by an enzyme-linked immunosorbent assay (ELISA). We also found that the release of BMP-2from HGCCS was sustained for at least14days in vitro, compared to that from GCF, which consisted of burst releases on days1and3. Moreover, the BMP-2release from HGCCS induced an increase in alkaline phosphatase activity of BMSCs for14days in vitro. Based on quantitative real time PCR, HGCCS also stimulated the highest mRNA expression of osteogenic differentiation markers, Runx2for14days, OPN for3days and OCN for14days. The results of this study suggest that the surface HAp nano-network structure of two-level3D HGCCS used as a delivery system for BMP-2is capable of promoting osteogenic differentiation in vitro. As a result, HGCCS is a promising scaffold for bone tissue engineering.
     4. Study of repairing of rat cranial critical size defect with porcine accellular dermal matrix (PADM)-HAp composite scaffold in a cranial model
     In previous studies, we first demonstrated the construction of a2-level3D PADM-HAp composite scaffold. Further, critical bone defects of rat cranial about4mm in diameter were used for investigation of the bioactivity of PADM and PADM-HAp. After15weeks, the results of histochemical stainings and Micro-CT showed that compared to PADM, the defect was well repaired with use of PADM-HAp.
引文
[1]Bone structure,23.03.2004, http://www.engin.umich.edu/class/bme456/bonestructure/bonestructure.htm.
    [2]Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ. Tissue engineering of ligaments:a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 2004, 10(5-6):893-903.
    [3]Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 2007, 13(4):659-66.
    [4]Rahaman MN,Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 2005,91(3):261-84.
    [5]Marieb EN. Bones and Skeletal Tissues,03.08.2004, http://www.humankinetics.laurentian.ca/FeedStream/Content/2506_7.pdf
    [6]http://visualsunlimited.photoshelter.com/image/I0000X8.va8SioZI
    [7]Currey J D.The Mechanical Adaptations of Bones. Princeton:Princeton University Press,1984.
    [8]Hancox NM. Biology of Bone. New York:Cambridge University Press,1972.
    [9]Baer E, Cassidy JJ, Hiltner A. Hierarchical structure of collagen composite systems:lessons from biology. M. Sarikaya, I.A. Aksay (Eds.), Biomimetics—Design and Processing of Materials, AIP Press, Woodbury, NY,1995.
    [10]Weiner S, Wagner HD. THE MATERIAL BONE:Structure-Mechanical Function Relations. Ann Rev Mater Sci 1998,28:271-98.
    [11]Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 1993,110(1):39-54
    [12]Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF. Mineralization of collagen may occur on fibril surfaces:evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 1996,117(1):24-35.
    [13]Gutsmann T, Fantner GE, Venturoni M, Ekani-Nkodo A, Thompson JB, Kindt JH, Morse DE, Fygenson DK, Hansma PK. Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner. Biophys J 2003,84(4):2593-8.
    [14]Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK High-resolution AFM imaging of intact and fractured trabecular bone. Bone 2004, 35(1):4-10.
    [15]Prockop DJ, Kvirikko KI. Collagens:molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995,64:403-434.
    [16]http://www.mun.ca/biology/scarr/Collagenstructure.html
    [17]Lowenstam HA, Weiner S, On Biomineralization, Oxford University Press, NY, 1989.
    [18]Sasano Y, Zhu JX, Kamakura S, Kusunoki S, Mizoguchi I, Kagayama M. Expression of major bone extracellular matrix proteins during embryonic osteogenesis in rat mandibles. Anat Embryol (Berl) 2000.202(1):3117.
    [19]Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic p rotein gene family in bone formation and repair. Clin Orthop Relat Res 1998, (346):26-37.
    [20]Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrineloop. J Bone Miner Res 2003,18(10):1842-53.
    [21]曹谊林。组织工程学,科学出版社:2007。
    [22]Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med 1995, 1(12):1322-4.
    [23]Robison R. The Possible Significance of Hexosephosphoric Esters in Ossification. Biochem J 1923,17(2):286-93.
    [24]Robison R, Soames KM. Possible Significance of Hexosephosphoric Esters in Ossification:Part Ⅱ. The Phosphoric Esterase of Ossifying Cartilage. Biochem J 1924, 18(3-4):740-54.
    [25]Fell HB, Robison R. The development of the calcifying mechanism in avian cartilage and osteoid tissue. Biochem J 1934,28(6):2243-5.
    [26]Brown WE, Eidelman N, Tomazic B. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res 1987,1(2):306-13.
    [27]Brown WE, Chow LC. Chemical Properties of Bone Mineral. Annu Rev Mater 1976,6:213-236
    [28]Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH. Recent studies of bone mineral:Is the amorphous calcium phosphate theory valid? J Cryst Growth 1981,53(1):100-109
    [29]Termine JD, Posner AS. Infrared analysis of rat bone:age dependency of amorphous and crystalline mineral fractions. Science 1966,153(3743):1523-5.
    [30]Bonucci E. Calcification in Biological Systems, CRC Press LLC, Boca Raton, 1992,432.
    [31]崔福斋。生物矿化,清华大学出版社:2007。
    [32]Skalak R, Fox CF. Tissue Engineering, Liss:New York 1988,343
    [33]Langer R, Vacanti JP. Tissue engineering. Science 1993,260(5110):920-6.
    [34]Stock UA, Vacanti JP. Tissue engineering:current state and prospects. Annu Rev Med.2001,52:443-451.
    [35]Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2011,6(1):13-22
    [36]Archer R, Williams DJ. Why tissue engineering needs process engineering. Nat Biotechnol 2005,23(11):1353-5.
    [37]Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science 2002,295(5557):1009-14
    [38]Johnson PC, Mikos AG, Fisher JP, Jansen JA. Strategic Directions in Tissue Engineering. Tissue Eng 2007,13(12):2827-37.
    [39]Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005, 4(7):518-24.
    [40]Yang S, Leong KF, Du Z, Chua C.K. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 2001,7(6):679-89.
    [41]Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003,24(24):4353-64.
    [42]Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods.2011,8(9):731-6
    [43]Baldwin SP, Saltzman WM. Materials for protein delivery in tissue engineering. Adv Drug Delivery Rev 1998,33(1-2):71-86.
    [44]Tabata Y. Tissue Regeneration Based on Growth Factor Release. Tissue Eng 2003, 9 suppl:5-15.
    [45]Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008,60(2):229-42.
    [46]American Academy of Orthopedic Surgeons (AAOS), online: http://www.aaos.org/Research/stats/patientstats.asp.
    [47]Rose FR, Oreffo RO. Bone tissue engineering:hope vs hype. Biochem Biophys Res Commun 2002,292(1):1-7.
    [48]Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol 2000,18(9):959-63.
    [49]Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering:State of the art and future trends. Macromol Biosci 2004,4(8):743-65.
    [50]O'Keefe RJ, Mao J. Bone Tissue Engineering and Regeneration:From Discovery to the Clinic--An Overview. Tissue Eng Part B Rev 2011,17(6):389-92.
    [51]Li X, Feng Q, Liu X, Dong W, Cui F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials 2006,27(9):1917-23.
    [52]Wang C, Duan Y, Markovic B, Barbara J, Rolfe Howlett C, Zhang X, Zreiqat H. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004, 25(15):2949-56.
    [53]Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 2006, 12(3):423-33.
    [54]Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y. Repair of experimental alveolar bone defects by tissue-engineered bone. Tissu Eng 2006, 12(6):1503-13.
    [55]Lin J, Zhu J, Chen T, Lin S, Cai C, Zhang L, Zhuang Y, Wang XS. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials 2009,30(1):108-17.
    [56]Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials 2006,27(33):5651-7
    [57]Wang YJ, Yang CY, Chen HF, Zhao NR. Development and Characterization of Novel Biomimetic Composite Scaffolds Based on Bioglass-Collagen-Hyaluronic Acid-Phosphatidylserine for Tissue Engineering Applications. Macromol Mater Eng 2006,291 (3):254-262
    [58]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999,284(5411):143-7.
    [59]Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002,418(6893):41-9.
    [60]Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering:limitations and recent advances. Ann Biomed Eng 2004,32(1):160-5.
    [61]Ohgushi H, Kotobuki N, Funaoka H, Machida H. Hirose M, Tanaka Y, Takakura Y. Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 2005,26(22):4654-61
    [62]Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFp and BMP. Bone 1996,19(1 Suppl):1S-12S.
    [63]Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004,22(4):233-41.
    [64]Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 1998, 346:26-37.
    [65]Infuse FDA Approval letter. Available at:http://www.fda.gov/cdrh/mda/docs/p000058.html,2007.
    [66]OP-1 FDA letter Humanitarian Device Exemption. Available at:http://www.fda.gov/cdrh/MDA/DOCS/h020008.html-OP-1,2007.
    [67]Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003,9(6):669-76.)
    [68]Jain RK, Au P, Tarn J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005,23(7):821-3..
    [69]Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol 2008,26(8):434-41.
    [70]Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000,21(23):2347-59.
    [71]Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000,21(24):2529-43.
    [72]Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006,27(18):3413-31.
    [73]Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004,25(19):4749-57.
    [74]Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 2003,15(16):3221-26.
    [75]Rodrigues CV, Serricella P, Linhares AB, Guerdes RM, Borojevic R, Rossi MA, Duarte ME, Farina M. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 2003,24(27):4987-97.
    [76]Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 2003,24(1):181-94.
    [77]Koegler WS, Griffith LG. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 2004,25(14):2819-30.
    [78]Martin C, Winet H, Bao JY. Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 1996,17(24):2373-80.
    [79]Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 1999, (3):129-34.
    [80]LeGeros RZ. Properties of osteoconductive biomaterials:calcium phosphates. Clin Orthop Relat Res 2002, (395):81-98.
    [81]Hench LL, Splinter RJ, Allen WC, GreenleeTK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 1971, 5(6):117-141.
    [82]Schwarzwalder K, Somers AV. Methods of making porous ceramic articles, US Pat 3090094,1963.
    [83]Sumitomo Chemical Co. Osaka Japan, Patent Application No 158745.1975.
    [84]Furlong RJ, Osborn JF. Fixation of hipprostheses by hydroxyapatite ceramic coatings. J Bone Joint Surg Br 1991,73(5):741-5.
    [85]Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988,3(l):21-4.
    [86]Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement. Biomaterials 1981,2(3):185-6.
    [87]Bradt JH, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 1999, 11(10):2694-701.
    [88]Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber Scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009,9(7):2765-8.
    [89]Chang SH, Hsu YM, Wang YJ, Tsao YP, Tung KY, Wang TY. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med 2009,20(1):23-31.
    [90]Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008,19(5):2039-46.
    [91]Kamakura S, Sasaki K, Honda Y, Anada T, Suzuki O. Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006.79(2):210-217.
    [92]Thein-Han, W. and R. Misra, Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia,2009.5(4):1182-1197.
    [93]Zhang, Y., et al., Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Engineering,2003.9(2):337-345.
    [94]Li, C, et al., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials,2006.27(16):3115-3124.
    [95]Turco, G, et al., Alginate/hydroxyapatite biocomposite for bone ingrowth:a trabecular structure with high and isotropic connectivity. Biomacromolecules,2009. 10(6):1575-1583.
    [96]Lin, H.R. and Y.J. Yeh, Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering:preparation, characterization, and in vitro studies. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2004.71(1):52-65.
    [97]Takahashi, Y, M. Yamamoto, and Y. Tabata, Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and [beta]-tricalcium phosphate. Biomaterials,2005.26(17):3587-3596.
    [98]Liao, S., et al., Hierarchically biomimetic bone scaffold materials: Nano(?)\HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2004.69(2):158-165.
    [99]Yoshida, T., et al., Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. Journal of Materials Science: Materials in Medicine,2010.21(4):1263-1272.
    [100]Falini, G, M. Gazzano, and A. Ripamonti, Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices. J. Mater. Chem., 2000.10(2):535-538.
    [101]Manjubala, I., et al., Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomaterialia,2006.2(1):75-84.
    [102]Kim, H.J., et al., Bone tissue engineering with premineralized silk scaffolds. Bone,2008.42(6):1226-1234.
    [103]Tampieri, A., et al., HA/alginate hybrid composites prepared through bio-inspired nucleation. Acta Biomaterialia,2005.1(3):343-351.
    [104]Yamauchi, K., et al., Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials,2004.25(24):5481-5489.
    [105]Kokubo, T., et al., Apatite formation on ceramics, metals and polymers induced by a CaO SiO 2 based glass in a simulated body fluid. Bioceramics,1991.4: 113"120.
    [106]Lickorish, D., et al., Collagen-hydroxyapatite composite prepared by biomimetic process. Journal of Biomedical Materials Research Part A,2004.68(1): 19-27.
    [107]Marelli, B., et al., Three-Dimensional Mineralization of Dense Nanofibrillar Collagen-Bioglass Hybrid Scaffolds. Biomacromolecules,2010.11(6):1470-1479.
    [108]Kino, R., et al., Deposition of bone(?)\like apatite on modified silk fibroin films from simulated body fluid. Journal of applied polymer science,2006.99(5): 2822-2830.
    [109]Oliveira, A. and R. Reis, Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based process. Journal of Materials Science:Materials in Medicine,2004.15(4):533-540.
    [110]Zimmermann, K.A., et al., Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Materials Science and Engineering:C,2009.
    [111]Su "(?)rez(?)\Gonz"(?)lez, D., et al., Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell(?)\based bone tissue engineering. Journal of Biomedical Materials Research Part A,2010.95(1):222-234.
    [112]Liu, X., et al., Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials,2009.30(12):2252-2258.
    [113]Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008,26(1):1-21.
    [114]Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004,1049(12):6017-84.
    [115]Khor E; Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003,24(13):2339-49.
    [116]Thein-Han WW, Misra RD. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 2009,5(4):1182-97.
    [117]Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 2006,27(9):1859-67.
    [118]Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 2005,26(26):5414-26.
    [119]Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008,29(32):4314-4322
    [120]Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde cross-linking. Biomaterials 2001,22(8):763-8.
    [121]Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering:influence of hydroxyapatite on in vitro cytotoxicity and 4 dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 2009, 5(2):644-60.
    [122]Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 2006,42(12):3171-9.
    [123]Marklein RA, Burdick JA. Controlling stem cell fate with material design. Adv Mater 2010,22(2):175-89.
    [124]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. Science.2005,310(5751):1135-1138.
    [125]Burdick JA,Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009,15(2):205-19.
    [126]Guilak F, Cohen DM., Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009,5(1):17-26.
    [127]Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater 2008, 20(1):99-103.
    [128]Karla S. Brammer, Seunghan Oh, John O. Gallagher, Sungho Jin. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008,8(3):786-793.
    [129]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension,and RhoA regulate stem cell lineage commitment. Dev Cell 2004, 6(4):483-95.
    [130]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009,10(1):21-33.
    [131]Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed Engl 2009, 48(30):5406-15.
    [132]Dalby MJ, Gadegaard N, Tare R,Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007,6(12):997-1003.
    [133]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006,126(4):677-89
    [134]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006,7(4):265-75.
    [1]American Academy of Orthopedic Surgeons (AAOS), online: http://www.aaos.org/Research/stats/patientstats.asp.
    [2]Langer R, Vacanti JP. Tissue engineering. Science 1993,260(5110):920-6.
    [3]Rose FR, Oreffo RO. Bone tissue engineering:hope vs hype. Biochem Biophys Commun 2002,292(1):1-7.
    [4]Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 1996,19(1 Suppl):1S-12S.
    [5]Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006,27(18):3413-31.
    [6]Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005, 4(7):518-24.
    [7]Johnson PC, Mikos AG, Fisher JP, Jansen JA. Strategic directions in tissue engineering. Tissue Eng 2007,13(12):2827-37.
    [8]Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 2003,24(1):181-94.
    [9]Koegler WS, Griffith LG. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 2004,25(14):2819-30.
    [10]Martin C, Winet H, Bao JY. Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 1996,17(24):2373-80.
    [11]Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 2003,15(16):3221-26.
    [12]Rodrigues CV, Serricella P, Linhares AB, Guerdes RM, Borojevic R, Rossi MA, Duarte ME, Farina M. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials.2003,24(27):4987-97.
    [13]Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008,26(1):1-21.
    [14]Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004,104(12):6017-84.
    [15]Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003,24(13):2339-49.
    [17]Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Engineering 2005,11(1-2):130-40.
    [18]Jin J, Song M, Hourston D. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 2004,5(1):162-8.
    [19]Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 2002,23(1):181-91.
    [20]Chen H, Ouyang W, Lawuyi B, Prakash S. Genipin cross-Linked alginate-chitosan microcapsules:membrane characterization and optimization of cross-linking reaction. Biomacromolecules 2006,7(7):2091-8.
    [21]Thein-Han WW, Misra RD. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 2009,5(4):1182-97.
    [22]Zhao F, Gray son WL, Ma T, Bunnell B, Lu WW. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 2006,27(9):1859-67.
    [23]Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 2005,26(26):5414-26.
    [24]Ohtsuki C, Kamitakahara M, Miyazaki T. Coating bone-like apatite onto organic substrates using solutions mimicking body fluid. J Tissue Eng Regen Med 2007, 1(1):33-38.
    [25]Zhang W, Liao SS, Cui FZ. Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen. Chem Mater 2003,15(16):3221-6.
    [26]Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009,9(7):2765-8.
    [27]Lowenstam HA. Minerals formed by organisms. Science 1981,211(4487):1126-3
    [28]Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res 2001,57(3):441-8.
    [29]Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura T. Biology of alkali-and heat-treated titanium implants. J Biomed Mater Res A 2003,67(1):26-35.
    [30]Juhasz JA, Best SM, Auffret AD, Bonfield W. Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med 2008, 19(4):1823-9.
    [31]Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering:influence of hydroxyapatite on in vitro cytotoxicity and 4 dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 2009, 5(2):644-60.
    [32]Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 2006,42(12):3171-9.
    [33]Li Z, Yubao L, Aiping Y, Xuelin P, Xuejiang W, Xiang Z. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bonesubstitute materials. J Mater Sci Mater Med 2005,16(3):213-9.
    [34]Araujo AB, Lemos AF, Ferreira JM. Rheological, microstructural, and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites.J Biomed Mater Res A 2009,88(4):916-22.
    [35]O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005,26(4):433-41.
    [36]Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation:a new perspective. Mater Sci Eng R 2007, 58(3-5):77-116.
    [37]Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Nair LS, Allcock HR, Laurencin CT. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 2008,9(7):1818-25.
    [38]Lee KW, Wang S, Yaszemski MJ, Lu L. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 2008,29(19):2839-48.
    [39]Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003,67(2):531-7.
    [40]Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 2006, 27(36):6123-37.
    [41]Becher P F. Microstructural Design of Toughened Ceramics. J Am Ceram Soc 1991,74(2):255-69.
    [42]Chen H, Ouyang W, Lawuyi B, Martoni C, Prakash S. Reaction of chitosan with genipin and its fluorogenic attributes for potential microcapsule membrane characterization. J Biomed Mater Res A 2005,75(4):917-927.
    [43]Chen H, Ouyang W, Lawuyi B, Prakash S. Genipin crosslinked alginate-chitosan microcapsules:membrane characterization and optimization of cross-linking reaction. Biomacromolecules 2006,7(7):2091-8.
    [44]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997,276(5317):1425-8.
    [45]Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett,2008,8(3):786-93.
    [46]Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009,5(1):17-26.
    [47]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004, 6(4):483-95.
    [48]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions.Nat Rev Mol Cell Biol 2006,7(4)265-75.
    [49]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009,10(1):21-33.
    [50]Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005,310(5751):1135-8.
    [51]Boix T, Gomez-Morales J, Torrent-Burgues J, Monfort A, Puigdomenech P, Rodriguez-Clemente R. Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. J Inorg Biochem 2005,99(5):1043-50.
    [52]Dong X, Wang Q, Wu T, Pan H. Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 2007,93(3):750-9.
    [53]Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009,9(7):2763-8.
    [54]Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K. Influence of hydroxyapatite microstructure on human bone cell response. J Biomed Mater Res A 2006,78(2):222-35.
    [55]Benaziz L, Barroug A, Legrouri A, Rey C, Lebugle A. Adsorption of O-phospho-L-serine and L-serine onto poorly crystalline apatite. J Colloid Interface Sci 2001,238(1):48-53.
    [1]Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, Takakura Y. Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 2005,26(22):4654-61.
    [2]Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 2005,91(3):261-84.
    [3]Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005,310(5751):1135-8.
    [4]Dalby MJ, Gadegaard N, Tare R,Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007,6(12):997-1003
    [5]Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater.2008, 20(1):99-103.
    [6]Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008,8(3):786-93
    [7]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006,27(15):2907-15.
    [8]Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003,24(13):2161-75.
    [9]Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Tissue Eng 2006, 12(10):2997-3006.
    [10]Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009,9(7):2763-8.
    [11]Zhang R, Ma PX. Porous poly(1-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res 1999,45(4):285-93.
    [12]Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009,15(2):205-19.
    [13]Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003,24(24):4353-64.
    [14]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006,7(4):265-75.
    [15]Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed Engl 2009,48(30):5406-15.
    [16]Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009,5(1):17-26.
    [17]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009,10(1):21-33.
    [18]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Method 2001,24(4):402-408
    [19]Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 2004, 25(11):2039-46.
    [20]Fu Q, Rahaman MN, Bal BS, Brown RF. In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. J Mater Sci Mater Med 2009,20(5):1159-65.
    [21]Choi YA, Lim J, Kim KM, Acharya B, Cho JY, Bae YC, Shin HI, Kim SY, Park EK. Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 2010, 9(6):2946-56.
    [22]Carey LE, Xu HH, Simon CG Jr, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005,26(24):5002-14.
    [23]Byers BA, Garcia AJ. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng 2004,10(11-12):1623-32.
    [24]Jankovska I, Pilmane M, Urtane I. Osteopontin and osteocalcin in maxilla tissue of skeletal class III patients. Stomatology a 2009, 11(4):125-8.
    [25]Ekaputra AK, Zhou Y, Cool SM, Hutmacher DW. Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Eng Part A 2009, 15(12):3779-88.
    [26]Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009,5(1):17-26.
    [27]Spiegelman BM, Ginty CA. Fibronectin modulation Of cell shape and lipogenic gen eexpression in 3T3-adipocytes. Cell 1983,35(3 Pt 2):657-66.
    [28]Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulating nu-clear shape. Proc Natl Acad Sci USA 2002, 99(4):1972-77.
    [29]Vogel, V., and Sheetz, M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7,265,2006.
    [30]Beck GR Jr, Sullivan EC, Moran E, Zerler B. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem 1998,68(2):269-80.
    [31]Beck JrGR, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. J Cell Biochem 2000,97(15):8352-57.
    [32]Beck JrGR. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 2003,90(2):234-43.
    [33]Zaidi SK, Javed A, Choi JY, van Wijnen AJ, Stein JL, Lian JB, Stein GS. A specific targeting signal directs Runx2/Cbfal to subnuclear domains and contributes to transactivation of the osteocalcin gene. J Cell Sci 2001,114(Pt 17):3093-102.
    [34]Sasano Y, Zhu JX, Kamakura S, Kusunoki S, Mizoguchi I, Kagayama M. Expression of major bone extracellular matrix proteins during embryonic osteogenesis in rat mandibles. Anat Embryol (Ber1) 2000,202(1):31-7.
    [35]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004, 6(4):483-95.
    [36]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006,7(4):265-75.
    [37]Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed Engl 2009, 48(30):5406-15.
    [38]Song J, Malathong V, Bertozzi CR. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J AM Chem Soc 2005, 127(10):3366-72.
    [39]Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001,22(13):1705-11.
    [40]Bradt J, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 1999, 11(10):2694-701
    [1]Jansen JA, Vehof JW, Ruhe PQ, Kroeze-Deutman H, Kuboki Y, Takita H, Hedberg EL, Mikos AG. Growth factor-loaded scaffolds for bone engineering. J Control Release 2005,101(l-3):127-36.
    [2]Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004, 22(4):233-41.
    [3]Porter JR, Ruckh TT, Popat KC. Bone tissue engineerings review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009,25(6):1539-60.
    [4]Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 2007,59(4-5):339-59.
    [5]Datamonitor, Market dynamics:bone substitutes and growth factors-can BMPs become the new gold standard?, London NW3 5JJ, DMHC1812, December 2002.
    [6]Lin ZY, Duan ZX, Guo XD, Li JF, Lu HW, Zheng QX, Quan DP, Yang SH. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release.2010, 144(2):190-5.
    [7]Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 2007,117(3):380-6.
    [8]Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid)scaffold. Biomaterials 2007,28 (17):2763-71.
    [9]Chung YI,Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release.2007,121(1-2):91-9.
    [10]Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethy1 fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres, Biomaterials 2011,32(3):744-52.
    [11]Chen FM, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W, Wu ZF, Jin Y. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins:formulation and characteristics. J Control Release 2007,118(1):65-77.
    [12]Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release.2009,134(2):111-7.
    [13]Li B, Yoshii T, Hafeman AE, Nyman JS, Wenke JC, Guelcher SA. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora. Biomaterials 2009,30(35):6768-79.
    [14]Autefage H, Briand-Mesange F, Cazalbou S, Drouet C, Fourmy D, Goncalves S, Salles JP, Combes C, Swider P, Rey C. Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 2009,91(2):706-15.
    [15]Boix T, Gomez-Morales J, Torrent-Burgues J, Monfort A, Puigdomenech P, Rodriguez-Clemente R. Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. J Inorg Biochem 2005,99(5):1043-50.
    [16]Dong X, Wang Q, Wu T, Pan H. Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 2007,93 (3):750-9.
    [17]Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009,9(7):2763-8.
    [18]Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation, Tissue Eng Part A 2009,15(2):205-19.
    [19]Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007,18(3):241-68.
    [20]Wang G, Zheng L, Zhao H, Miao J, Sun C, Liu H, Huang Z, Yu X, Wang J, Tao X. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystalloninduced biomimetic mineralization and its cell biocompatibility. ACS Appl Mater Interface 2011,3(5):1692-01.
    [21]Choi YA, Lim J, Kim KM, Acharya B, Cho JY, Bae YC, Shin HI, Kim SY, Park EK. Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 2010, 9(6):2946-56.
    [22]Carey LE, Xu HH, Simon CG Jr, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005,26(24):5002-14.
    [23]Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008,29(32):4314-22
    [24]Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006,27(16):3115-24.
    [25]Infuse FDA Approval letter. Available at: http://www.fda.gov/cdrh/mda/docs/p000058.html. Accessed May 1,2007.
    [26]Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K. Influence of hydroxyapatite microstructure on human bone cell response. J Biomed Mater Res A 2006,78(2):222-35.
    [27]Benaziz L, Barroug A, Legrouri A, Rey C, Lebugle A. Adsorption of O-phospho-L-serine and L-serine onto poorly crystalline apatite. J Colloid Interface Sci 2001,238(1):48-53.
    [28]Nie H, Wang CH. Fabrication and characterization of PLGA/HAp scaffolds for delivery of BMP-2 plasmid composite DNA. J Control Release.2007, 120(1-2):111-21.
    [29]Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, Chung UI, Koike T, Takaoka K, Kamijo R. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem 2006,281(32):23246-53
    [30]Byers BA, Garcia AJ. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng 2004,10(11-12):1623-32.
    [31]Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-β and bone morphogenetic protein. Oncogene 2002,21(47):7156-63.
    [32]Muruganandan S, Roman AA, Sinal CJ. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells:Cross talk with the osteoblastogenic program. Cell Mol Life Sci 2009,66(2):236-53.
    [33]LeGeros RZ. Properties of osteoconductive biomaterials:calcium phosphates. Clin Orthop Relat Res 2002, (395):81-98.
    [1]Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant Immunology 2004,12(3-4):367-7.
    [2]Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 2005,73(1):61-7.
    [3]Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011,32(12):3233-43.
    [4]Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006,27(19):3675-83.
    [5]Takami Y, Matsuda T, Yoshitake M, Hanumadass M, Walter RJ. Dispase/detergent treated dermal matrix as a dermal substitute. Burns 1996,22(3):182-90.
    [6]Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995,21(4):243-8.
    [7]Chai JK, Liang LM, Yang HM, Feng R, Yin HN, Li FY, Sheng ZY. Preparation of laser micropore porcine acellular dermal matrix for skin graftan experimental study. Burns 2007,33(6):719-25.
    [8]Ng KW, Khor HL, Hutmacher DW. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials 2004, 25(14):2807-18.
    [9]Ge L, Zheng S, Wei H. Comparison of histological structure and biocompatibility between human acellular dermal matrix (ADM) and porcine ADM. Burns 2009, 35(1):46-50.
    [10]Srivastava A, DeSagun EZ, Jennings LJ, Sethi S, Phuangsab A, Hanumadass M, Reyes HM, Walter RJ. Use of porcine acellular dermal matrix as a dermal substitute in rats. Ann Surg 2001,233(3):400-8.
    [11]Ersek RA, Hachen HJ. Porcine xenografts in the treatment of pressure ulcers. Ann Plast Surg 1980,5(6):464-70.
    [12]Parker DM, Armstrong PJ, Frizzi JD, North JH Jr. Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr Surg 2006,63(4):255-8.
    [13]Zhao H, Wang G, Hu S, Cui J, Ren N, Liu D, Liu H, Cao C, Wang J, Wang Z. In vitro biomimetic construction of hydroxyapatite-porcine acellular dermal matrix composite scaffold for MC3T3-E1 preosteoblast culture. Tissue Eng Part A 2011, 17(5-6):765-76.
    [14]Schmtitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial. Clin Orthop Relat Res 1986, (205):299-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700