用户名: 密码: 验证码:
反渗透浓水中有机污染物去除方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双膜工艺的广泛应用使得反渗透(RO)浓水产生量剧增,RO浓水中的难生物降解有机物和高含盐量成为其资源化无害化处理的难题,尤其是有机物对RO膜危害严重,成为RO浓水进一步回收利用的最大障碍。本文中采用两种不同工艺针对RO浓水中的有机污染物进行去除,使浓水中溶解性有机碳(DOC)含量低于10 mg/L,能够达到反渗透进水的水质要求,在提高RO工艺回收率的同时减小RO浓水的直接排放量。
     生化处理法作为有机物降解最彻底最经济的方法,首先被用来去除RO浓水中有机污染物。本研究采用臭氧和曝气生物滤池组合工艺,利用臭氧的强氧化性提高RO浓水的可生化性,然后在高盐水中驯化微生物进行有机物降解。实验中原水臭氧投量20 mg/L,接触时间25 min,臭氧氧化后的水在储水罐放置12 h后进入曝气生物滤池,水力停留时间2 h。实验结果显示,该组合工艺对有机物去除效果不明显,COD去除率仅为11.8%,难以达到处理要求。
     膜分离技术的日益成熟,为粉末活性炭(PAC)吸附-微滤(MF)组合工艺的工业化应用提供了技术保障。研究中提出了PAC-MF累积二级逆流吸附方法去除RO浓水中有机物,利用微滤高效截留PAC颗粒的能力,延长了PAC在反应器中的停留时间,充分发挥了PAC的吸附容量。根据理论计算,在相同吸附效果下,累积二级逆流吸附较单级吸附操作节约42.3%的PAC,通过静态烧杯实验和动态反应柱实验均验证了理论计算的正确性。采用该工艺技术,DOC能达到出水目标值,且PAC的投加对微滤膜污染控制也很有利,运行结束后仅物理清洗即可使膜比通量值恢复至原来的89.1%。同时,PAC-MF组合工艺相比于其他RO浓水处理工艺,经济可行,是很有发展前途的处理工艺。
The extensive application of dual-membrane process makes a rapid increase of reverse osmosis (RO) concentrate. Due to the biorefractory pollutants and high salt content, RO concentrate is difficult to reuse and harmlessly dispose, particularly organics cause a serious fouling to RO membrane, becoming the biggest obstacle for the further recovery of RO concentrate. Two different processes for the removal of organic pollutants from RO concentrate were studied in this paper, aimed to reduce the dissolved organic carbon (DOC) to less than 10 mg/L, which was required by the RO feeding. As a result, the RO system’s recovery rate would be improved while discharge of RO concentrate could be reduced.
     Biochemical treatment as the most cost-effective and thorough method for organic matter degradation was firstly used to remove the organic pollutants from RO concentrate. The combination of ozonation and biological aerated filter was used in the study. Ozone with its strong oxidation was introduced to improve the biodegradability of RO concentrate and acclimated microorganism in high salinity wastewater system was intended to degrade organic pollutants. In the experiments, the dosage of ozone was 20 mg/L and contact time was 25 minutes for raw water. After ozonation, RO concentrate was stored for 12 hours in a storage tank, and then elevated into BAF with the hydraulic retention time of 2 hours. The result showed that the combined process had a little effect on degradation of organics, with only 11.8% of COD removal, which was difficult to reach the processing demands.
     Technical guarantee for industrial application was provided by the hybrid process with wide use of membrane technology. Powdered activated carbon (PAC) adsorption and microfiltration (MF) accumulative two-stage countercurrent adsorption process was put forward in this study. In the process, PAC was retained in the reactor by microfiltration, which could prolong the adsorption time of PAC, and play a great role in use of adsorption capacity. According to the theoretical calculation, accumulative two-stage countercurrent adsorption could save approximately 42.3% PAC than single-stage operation in the same adsorption. Moreover, the theoretical calculation was proved by jar test and bench-scale test, and DOC in the effluent could reach the target. In addition, it was favorable to control MF membrane fouling by adding PAC. MF membrane specific flux was recovered to 89.1% of the original one by physical cleaning after bench-scale test. Meanwhile, compared to other RO concentrate treatment technologies, hybrid process of PAC and MF as a promising treatment process was cost-effect and feasible.
引文
[1]沙中魁,李永河,王同春.微滤膜及微滤技术用于反渗透预处理的研究[J].电力建设, 2001, 22(10): 26-29.
    [2] Nghiem L D, Schafer A I. Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications[J]. Desalination, 2006, 187(1-3): 303-312.
    [3] Radjenovic J, Petrovic M, Ventura F, et al. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J]. Water Research, 2008, 42(14): 3601-3610.
    [4]赵春霞,顾平,张光辉.反渗透浓水处理现状与研究进展[J].中国给水排水, 2009, 25(18): 1-5.
    [5]戴昆仑,宋若春.浅析反渗透浓水应用[J].工业水处理, 2006, 26(7): 71-73.
    [6] Lew C H, Hu J Y, Song L F, et al. Development of an integrated membrane process for water reclamation[J]. Water Science and Technology, 2005, 51(6-7): 455-463.
    [7]汤云峰,邓建袤.舟山大中型海岛海水淡化技术研究[J].水利科技与经济, 2007, 13(11): 829-831.
    [8]杨守智,李姝娟,危双峰.反渗透工艺高压浓水能量回收新技术应用[J].节能, 2005(5): 25-28.
    [9] Ning R Y, Troyer T L. Tandom reverse osmosis process for zero-liquid discharge[J]. Desalination, 2009, 237(1-3): 238-242.
    [10]刘东,武春瑞,吕晓龙.减压膜蒸馏法浓缩反渗透浓水试验研究[J].水处理技术, 2009, 35(5): 60-63.
    [11] Emmanuel D, Dionissios M, Evan D. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater[J]. Water Research, 2008, 42(18): 4603-4608.
    [12] Mohammad B, Oppenheimer J, Adham S, et al. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes[J]. Journal of Membrane Science, 2009, 326(2): 392-399.
    [13] Hege K V, Verhaege M, Verstraete W. Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes[J]. Electrochemistry Communications, 2002, 4(4): 296-300.
    [14]席彩文,刘彬彬.臭氧氧化法处理难降解有机废水[J].工业安全与环保,2005, 31(11): 15-17.
    [15]凌珠钦,汪晓军,王开演.臭氧-曝气生物滤池工艺深度处理石化废水[J].应用化工, 2008, 37(8): 917-920.
    [16]江祥明,裴元生.臭氧深度处理含油废水可行性研究[J].兰州铁道学院学报, 1995, 14(2): 36-41.
    [17]许芝.臭氧氧化难生物降解有机物的研究[J].大连铁道学院学报, 2001, 22(4): 82-86.
    [18]何辉,张玉先,张叶来,等.臭氧-生物活性炭处理反渗透浓排水工艺研究[J].给水排水, 2008, 34(11): 180-183.
    [19]段希磊,田志强,段韦江,等.臭氧-生物联合处理桉木硫酸盐浆漂白废水[J].造纸化学品, 2009, 21(5): 60-64.
    [20]姚宏,马放,李圭白,等.臭氧-生物活性炭工艺深度处理石化废水[J].中国给水排水, 2003, 19(6): 39-41.
    [21] Baig S, Liechti P A. Ozone treatment for biorefractory COD removal[J]. Water Science and Technology, 2001, 43(2): 197-204.
    [22]杨岸明,常江,甘一萍,等.臭氧氧化二级出水可生化性研究[J].环境科学, 2010, 31(2): 363-367.
    [23] Ried A, Mielcke J,马乐宁.臭氧处理-处理废水达到不同目的的关键技术[J].中国建筑信息(水工业市场), 2008(3): 38-42.
    [24]姚宏,马放,田盛,等.臭氧-固定化生物活性炭滤池深度处理石化废水的试验研究[J].环境污染治理技术与设备, 2005, 6(5): 83-86.
    [25] Lai Y L, How Y N, Say L O, et al. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery[J]. Water Research, 2009, 43(16): 3948-3955.
    [26]崔翔宇,邓皓,刘光全,等.臭氧-活性炭技术处理石油微污染地下水[J].油气田环境保护, 2010, 20(1): 33-36.
    [27] Qi Luqing, Wang Xiaojun, Xu Qikun. Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse[J]. Desalination, 2011, 270(1-3): 264-268.
    [28]蒋维钧,雷良恒,刘茂林,等.化工原理[M].北京:清华大学出版社, 2010.
    [29]许培源.青茶茶叶吸附甲醛速率的研究[D].广州:中山大学环境科学与工程学院, 2009.
    [30]张小璇,任源,韦朝海,等.焦化废水生物处理尾水中残余有机污染物的活性炭吸附及其机理[J].环境科学学报, 2007, 27(7): 1113-1120.
    [31]陈永.多孔材料制备与表征[M].合肥:中国科学技术大学出版社, 2010.
    [32] Ozgur A, Ferhan C. Effect of type of carbon activation on adsorption and its reversibility[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(1): 94-101.
    [33] Ozgur A, Ferhan C. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon[J]. Journal of Hazardous Materials, 2007, 141(3): 769-777.
    [34]孙丽娜.活性炭对水中微量有机物的净化效能与处理工艺中试研究[D].天津:天津大学环境科学与工程学院, 2004.
    [35]陈伟,李田.粉末活性炭与颗粒活性炭的特点及在给水处理中的应用[J].西南给排水, 1997(2): 23-27.
    [36]王绍斌,王宝贞.活性炭联用在饮用水深度处理的试验研究[J].广州环境科学, 2003, 18(2): 11-13.
    [37]潘海祥,熊珍奎,王群标.粉末活性炭强化常规处理工艺的试验研究[J].城镇供水, 2008(3): 30-32.
    [38]季明.膜生物反应器深度处理碱法草浆中段废水研究[D].济南:山东大学环境科学与工程学院, 2009.
    [39]刘百仓,韩帮军,马军,等.粉末活性炭吸附去除松花江原水中有机物的研究[J].中国给水排水, 2008, 24(21): 38-41.
    [40] Mohiuddin M T K, Zbigniew L, Satoshi T, et al. Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC[J]. Desalination, 2009, 249(2): 713-720.
    [41] Shirra G R, Ilan K, Carlos G D. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research, 2008, 42(6-7): 1595-1605.
    [42]于海琴,杨成永,张惠.粉末活性炭导入超滤系统去除水中天然有机物的性能研究[J].膜科学与技术, 2009, 29(6): 85-89.
    [43] Johannes M, Thomas M. Wastewater reclamation by the PAC-NF process[J]. Desalination, 2005, 178(1-3): 27-40.
    [44] Hu A Y, Stuckey D C. Activated carbon addition to a submerged anaerobic membrance bioreactor:effect on performance transmembrance pressure,and flux[J]. Journal of Environmental Engineering, 2007, 132(2): 190-198.
    [45] Lin Hongjun, Wang Fangyuan, Ding Linxian, et al. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment[J]. Journal of Hazardous Materials, 2011, 192(3): 1509-1514.
    [46] Remy M, Temmink H, Brink P, et al. Low powdered activated carbon concentrations to improve MBR sludge filterability at high salinity and low temperature[J]. Desalination, 2011, 276(1-3): 403-407.
    [47]傅金祥,王锋,由昆,等.粉末活性炭吸附工艺应急处理苯酚污染[J].沈阳建筑大学学报(自然科学版), 2008, 24(4): 633-636.
    [48] Canan A B, Ahmet K, Avni C, et al. Removal of surfactants by powdered activated carbon and microfiltration[J]. Water Research, 2004, 38(8): 2117-2124.
    [49] Lee J W, Choi S P, Ramesh T, et al. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dye[J]. Water Research, 2006, 40(3): 435-444.
    [50] Farida H, Abdelaziz A, Abdelrani Y, et al. Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon[J]. Desalination, 2009, 235(1-3): 330-339.
    [51]中华人民共和国住房和城乡建设部. CJ/T322-2010水处理用臭氧发生器标准[S].北京:中国标准出版社, 2010.
    [52]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. GB/T 7702.1~7702.22-2008煤质颗粒活性炭试验方法[S].北京:中国标准出版社, 2008.
    [53]彭跃莲,秦振平,孟洪,等.膜技术前沿及工程应用[M].北京:中国纺织出版社, 2009.
    [54]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [55] Anja K, Udo W. Ozonation of polycyclic aromatic hydrocarbons in oil water emulsions: mass transfer and reaction kinetics[J]. Water Research, 2003, 37 (5): 1023-1032.
    [56]陈力行,史惠祥,沈涤清,等.造纸废水臭氧-曝气生物滤池深度处理技术研究[J].水处理技术, 2010, 36(8): 88-91.
    [57] Wang Xiaojun, Chen Sili, Gu Xiaoyang, et al. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment[J]. Water Science and Technology, 2008, 58(4): 919-923.
    [58]顾晓扬,汪晓军,陈思莉,等.臭氧-曝气生物滤池对纺织洗水的回用处理[J].中国给水排水, 2008, 24(7): 42-44.
    [59]汪晓军,顾晓扬,简磊.纺织印染厂废水的深度处理中试及工程应用[J].环境工程, 2009, 24(6): 3-5.
    [60]汪晓军,林德贤,顾晓扬,等.臭氧-曝气生物滤池处理酸性玫瑰红染料废水[J].环境污染治理技术与设备, 2006, 7(7): 43-46.
    [61] Zhang Changping, Gu Ping, Zhao Jun, et al. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate[J]. Journal of Hazardous Materials, 2009, 167(1-3): 1057-1062.
    [62] Li D, Vernon L S, Benito J M, et al. Effects of powdered activated carbon pore size distribution on the competitive adsorption of aqueous atrazine and natural organic matter[J]. Environmental Science and Technology, 2008, 42(4): 1227-1231.
    [63]张婧怡,石宝友,解建坤,等.活性炭物化性质对吸附天然水体中有机污染物的影响[J].环境科学, 2011, 32(2): 494-500.
    [64]叶挺进,何君,刘超斌,等.珠江水中有机物分子量分布及其去除研究[J].供水技术, 2010, 4(3): 12-16.
    [65]刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除[J].净水技术, 2006, 25(1): 31-33.
    [66] Zhang Ling Ling, Gu Ping, Zhong Zi Jie, et al. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment[J]. Journal of Hazardous Materials, 2009, 168(2-3): 753-759.
    [67] Priscilla C T, Benito J M, Vernon L S, et al. Effect of pore-blocking background compounds on the kinetics of trace organic contaminant desorption from activated carbon[J]. Environmental Science and Technology, 2008, 42(13): 4825-4830.
    [68] Ho Y S. Review of second-order models for adsorption system[J]. Journal of Hazardous Materials, 2006, 136(3): 681-689.
    [69] David W H, Scott L W, Metin A, et al. Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory[J]. Environmental Science and Technology, 1985, 19(11): 1037-1043.
    [70] Lu Q L, Sorial G A. A comparative study of multicomponent adsorption of phenolic compounds on GAC and ACFs[J]. Journal of Hazardous Materials, 2009, 167(1-3): 89-96.
    [71] Vasanth K, Ramamurthi V, Sivanesan S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash[J]. Journal of Colloid and Interface Science, 2005, 284(1): 14-21.
    [72] Arvind K, Prasad B, Mishra I M. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design[J]. Journal of Hazardous Materials, 2008, 150(1): 174-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700