用户名: 密码: 验证码:
西司他丁合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西司他丁是一种肾脱氢二肽酶抑制剂,其与亚胺培南复配的抗菌药物——泰能在临床上应用广泛。我国目前还没有西司他丁的工业化生产工艺,开发其高效率低污染的合成工艺十分必要。本文对西司他丁的全合成工艺进行了研究,在设计并研究了西司他丁的两个关键中间体——S-(+)-2,2-二甲基环丙烷甲酰胺和7-氯-2-氧代庚酸的合成路线的基础上,优化了西司他丁的合成过程。
     采用新工艺合成了2,2-二甲基环丙烷甲酸。以异戊烯酸为起始原料,经酯化、环丙烷化、水解得到2,2-二甲基环丙烷甲酸,三步总收率为48%。此路线避免使用氰化物,反应时间短,可降低生产成本。其中,采用超声波—乙酰氯协同催化,具有酯基的贫电子烯烃与活性较低的二溴甲烷也可以顺利进行环丙烷化反应。将这个催化体系用于其他烯烃的环丙烷化,结果表明,协同催化效果优于单一催化体系。
     改进了2,2-二甲基环丙烷甲酸的拆分及S-(+)-2,2-二甲基环丙烷甲酰胺的合成。首先,用L-肉碱盐酸盐拆分2,2-二甲基环丙烷甲酸,单次拆分收率21.4%,产物的比旋光度为[α]_D~(20)+139.5°(c=0.85,CHCl_3)。S-(+)-2,2-二甲基环丙烷甲酸酰化后与氨水反应,得到S-(+)-2,2-二甲基环丙烷甲酰胺,收率76%。其次,在改进的拆分工艺中,直接用L-肉碱草酸盐拆分2,2-二甲基环丙烷甲酸。经酰化、酯化、部分结晶与氨解,得到s-(+)-2,2-二甲基环丙烷甲酰胺,熔点135.5~137.5℃,[α]_D~(20)+95.5°(c=1.0,CHCl_3),总收率为19.5%。 L-肉碱草酸盐拆分法与L-肉碱盐酸盐拆分法相比,减少了离子交换与成盐两步,简化了工艺。最后,R-(-)-2,2-二甲基环丙烷甲酸酰化后进行消旋,收率86%,对提高对映体利用率有重要意义。
     用动态法和激光监视技术测定了S-(+)-2,2-二甲基环丙烷甲酰胺在甲苯、二氯甲烷、三氯甲烷、乙酸乙酯、乙醇与水六种溶剂中的溶解度,并用半经验模型法对实验数据进行拟合,模型计算值与实验值吻合良好。根据溶解度数据对S-(+)-2,2-二甲基环丙烷甲酰胺的重结晶过程进行了优化,结果表明对于经手性草酸盐直接氨解制得的酰胺,用70%乙醇水溶液重结晶,结晶收率80%;经酰化、氨解制得的酰胺,乙酸乙酯的结晶效果较好,结晶收率78%。
     改进了7-氯-2-氧代庚酸的合成。以二氯乙酸、1,3-丙二硫醇与1-溴-5-氯-戊烷为起
Cilastatin is an important inhibitor of dehydropeptidase-I, which can enhance the antibacterial activity of Imipenem and has widely clinic applications. In our country, there has not been the industrial procedure for Cilastatin, and it is necessary to research the synthesis route with high efficiency and low pollution. This thesis is mainly about the total synthesis of Cilastatin. On the base of design and study for the synthesis of S-(+)-2,2-dimethylcycloproprane carboxamide and 7-chloro-2-oxoheptanoic acid, which are the key intermediates of Cilastatin, the total synthesis procedure of Cilastatin was optimized.Using 2-methylbutenoic acid as starting material, 2,2-dimethylcyclopropane carboxylic acid was synthesized via esterification, cyclopropanantion and hydrolysis, with 48% yield. This route had advantages such as avoiding cyanide, short reaction time and lower cost. Especially, using ultrasonic-acetyl chloride catalyst system, cyclopropanation of alkenes with withdrawing-electron group and low active dibromomethane could proceed smoothly. This catalyst system was applied in the cyclopropanation of other alkenes, and the results indicated that the catalyst system excelled mono-catalyst.The chiral resolution of 2,2-dimethylcyclopropane carboxylic acid and the synthesis of S-(+)-2,2-dimethylcycloproprane carboxamide were improved. Firstly,2,2-dimethylcyclopropane carboxylic acid was resolved by L-carnitine hydrochloride with21.4% yield, [α]_D~(20) + 139.5° (c=0.85, CHCl_3). The product S- (+)-2,2-dimethylcyclopropranecarboxylic acid was converted to S-(+)-2,2-dimethylcycloproprane carboxamide with 76% yield. Then, L-carnitine oxalate was used in the improved chiral resolution of 2,2-dimethylcyclopropane carboxylic acid. In the improved procedure, S-(+)-2,2-dimethylcycloproprane carboxamide was obtained with 19.5% yield via four steps: converted to acid chloride, formed oxalate, fractional crystallization and hydrolysis. Themelting point of product was 135.5~137.5℃, [α]_D~(20) +95.5° (c=1.0, CHCl_3). Comparing two chiral resolutions, the steps of ion exchange and oxalate formation was omitted by using L-carnitine oxalate as the resolution reagent. At last, R-(-)-2,2-dimethylcycloproprane
    carboxylic acid was converted to acid chloride and racemized with the yield was 86%, which is important for the utilization of enantiomer.The solubilities of S-(+)-2,2-dimethylcycloproprane carboxamide in toluene, dichloromethane, trichloromethane, ethyl acetate, ethanol and water were measured experimentally using a synthetic method with a laser monitoring observation technique. The solubility data were correlated with a semi-empirical correlation, and the calculated values were in good agreement with those of the experimental. The re-crystallization process of S-(+)-2,2-dimethylcycloproprane carboxamide was optimized according to the solubility data. The result indicated that the carboxamide produced through different process needed different crystallization solvents. To the carboxamide obtained from the ammonolysis of chiral oxalate, 70% ethanol-water solution was good re-crystallization solvent, and could get 80% yield. But ethyl acetate obtained good result to the carboxamide produced from S-(+)-2,2-dimethylcycloproprane carboxylic acid via ammonolysis, 78% yield.The synthesis of 7-chloro-2-oxoheptanonic acid was improved. Using dichloroacetic acid, 1,3-propanedithiol and l-bromo-5-chloro-pentane as starting materials, 7-chloro-2-oxoheptanoic acid was produced via five steps with 31% yield: esterification, cyclization, alkylation* oxidation and transesterification. In the alkylation, l-bromo-5-chloro-pentane was used instead of 1,5-dibromopentane, which increased the conversion rate of l,3-dithiane-2-carboxylate and deceased the byproduct of di-alkylation. Then, the oxidation mechanism of 2-(5-chloropentane)-l,3-dithiane-2-carboxylate by NBS was induced. The HOBr produced by NBS and H2O is considered the main oxidant, and the bromine produced by NBS and HBr is subsidiary oxidant.In addition, the new synthesis techniques of 7-chloro-2-oxoheptanoic acid using Grignard method was studied. The ethyl 7-chloro-2-oxoheptanoate was synthesized from the addition of mono-Grignard reagent of l-bromo-5-chloro-pentane to diethyl oxalate, then, the transesterification was carried out between the ester and formic acid to give 7-chloro-2-oxoheptanoic acid. The total yield was 43%. After that, the techniques conditions were optimized. Using the addition of NaHSO3 to ketones, the enol form of a -keto esters could be transformed to the keto form.Finally, Cilastatin was synthesized via two steps. First step was the reaction of S-
    (+)-2,2-dimethylcycloproprane carboxamide and 7-chloro-2-oxoheptanoic acid, which gave (+)-(Z)-7-chloro-2-(2,2-dimethylcyclopropanecarboxamido)-2-heptenoic acid. In this reaction, dimethylbenzene was used as solvent to increase the ratio of Z- product and E-product. Consequently, the yield was improved to 35% (literature value 28%). Second step produced the aim product Cilastatin from the reaction of heptenoic acid and L-cysteine hydrochloride anhydrous, which needed following process: preparation of the sodium L-cysteine, thiolation, ion exchange and column chromatography. The yield was 61%,[aj° +17.9° (c=0.51, CH3OH). The product was characterized by *H NMR and 13C NMR.Especially, L-cysteine hydrochloride anhydrous was used instead of L-cystine used in the literature, so the reaction could carry out under mild condition.
引文
[1] Kahan FM, Kropp H et al. Thienamycin: development of imipenem-cilastatin [J]. J Anitimicrob Agents Chemother, 1983, 12: S1-S35.
    [2] 张铸基,几种新型抗生素[J].中国医学杂志,1989,24(7):430.
    [3] 樊德厚,泰能的药理作用及临床应用概述[J].临床荟萃,2002,17(6):369-372.
    [4] 国家药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2002年版 (二部),647-649.
    [5] 徐济民,汪复,边友珍.临床实用新药手册[M].上海:上海科学技术出版社,1997,30.
    [6] 孟凡军,时培瑞,李广伦.亚胺培南对粒细减少症合并感染病人的疗效[J].青岛医学院学报,1998,34(4):262.
    [7] 曹晓颖,谢之芳,李秀松.亚胺培南/西司他丁治疗血液系统恶性肿瘤并发感染[J].上海第二医科大学学报,2000,20(6):558.
    [8] 王勇,傅研等.亚胺培南/西司他丁治疗急症重症感染的临床观察[J].中国急救医学,2002,22(7):414-415.
    [9] 陈革,唐健雄,罗思剑.泰能在急性胰腺炎病人中的应用[J].国外医学和成药、生化药、制剂分册,2000,21(4):207.
    [10] 蒋宏传,王克有,马凤藻.抗生素在介入治疗急性重症胰腺炎中的应用[J].九江医学,2000,15(3):127.
    [11] 程德云,陈文彬.泰能治疗下呼吸道感染的疗效[J].四川医学,1999,20(1):27.
    [12] 孙莉,吴燕子.亚胺培南/西司他丁治疗老年急性呼吸道感染疗效观察.中华医院感染学杂志,2002,12(7):542.
    [13] Donald W. Graham et al. Inhibition of the Mammalian O-Lactamase Renal Dipeptidase (Dehydropeptidase-I) by (2)-2-(Acylamino)-3-substituted-propenoic Acids[J]. JMedChem., 1987, 30: 1074-1089.
    [14] TadatoshiAratani, Catalytic asymmetric synthesis of cyclopropanecarboxylic acids: an application of chiral copper carbenoid reaction[J]. Pure & Appl. Chem., 1985, 57 (12): 1839-1844.
    [15] Singh V K., Arpita DattaGupta, Sekar G.. Catalytic enantioselective cyclopropanation of olefins using carbenoid chemistry[J]. Synthesis, 1997: 137-149.
    [16] Atsunori Mori, Isao Arai, Hisashi Yamamoto, Asymmetric Simmons-Smith reactions using homochiral protecting groups[J]. Tetrahedron, 1986, 42 (23): 6447-6458.
    [17] Tamotsu Fujisawa et al, Regioselective ring cleavage of chiral β-trichloromethyl-β-propiolactone with organoaluminum compounds for the synthesis of optically active intermediates[J]. TetrahedronLetters, 1998, 39: 9735-9738.
    [18] Qinwei Wang, Fukang Wang et al. The synthesis of S-(+)-2, 2-dimethylcyclopropane carboxylic acid: a precursor of cilastatin[J]. Tetrahedron: Asymmetry, 1998, 9: 3971-3977.
    [19] 徐晓莉,王海山等.西司他丁的合成[J].中国医药工业杂志,1994,25(3): 51-54.
    [20] Meul et al. Process for the production of dimethylcyclopropanecarboxylic acid[P]. EP0491330, 1992.
    [21] Ootsubo, Kazumasa, Yamamoto, Keizo. Manufacture of optically active carboxamides with microorganisms[P]. JP07303491, 1995.
    [22] Karen, Robins; Thomas, Gilligan. Microbial resolution of racemic 2, 2-dimethylcyclopropanecarboxamide in the manufacture of the acid[P]. EP356912, 1992.
    [23] Tomas, Zimmermann et al. Preparation of S-(+)-2,2-dimethylcycloproapane carboxamide with a microorganism expressing an heterologous gene for a stereospecifichydrolase[P]. EP524604, 1993.
    [24] Tomas, Zimmermann et al. Genetic engineering process for the production of S-(+)-2,2-dimethylcycloproapanecarboxamide by microorganisms[P]. US5427934, 1995
    [25] Optically active N-methylephedrine esters of 2,2-dimethylcyclopropanecarboxylic acid and its salts[P]. JP60056942, 1983.
    [26] Minai, Masayoshi; Katsura, Tadashi; Hamada, Kazuhiko; Suzukamo, Gohfu Method for producting an optically active 2,2-dimethylcyclopropanecarboxylic acid[P]. EP0093511, 1985.
    [27] Meul, Thomas. Process for resolution of racemates of 2,2-dimethyl cyclopropanecarboxylic acid [P]. EP0474200, 1992.
    [28] Suzukamo, Gohfu; Sakito, Yoji. Menthyl 2,2-dimethylcyclopropanecarboxylate and resolution of the same[P]. US4487956, 1984.
    [29] 铃鸭刚夫,先砥庸治.2,2-二甲基环丙羧酸的拆分[P].JP60025956,1985.
    [30] 金洁,杨细文等.西司他丁中间体(+)-(S)-2,2-二甲基环丙羧酸的合成[J].中国新 药杂志,2004,13(5):419-420.
    [31] Meul, Thomas. Process for resolution of racemates of 2,2-dimethyl cyclopropanecarboxylic acid [P]. EP0461541, 1993.
    [32] Meul, Thomas. Process for preparation of optically active carboxylic acids [P]. CH682485, 1993.
    [33] Fujita, Kohichi; Minomura, Masafumi; Koizumi, Junko. Process for preparing optically active carboxylic acid derivative[P]. WO2002022543, 2002.
    [34] Copper J. L., Ginos J. Z., MeisterAlton. Synthesis andpropertiesofthe α-ketoacids[J]. Chem. Rev., 1983, 83: 321-358.
    [35] Friedrich E. C., DomekJ. M., PongR. Y.. Cyclopropanations of alkenesusing dibromomethane[J]. J. Org. Chem., 1985, 50: 4640-4642.
    [36] FriedrichE. C., LunettaS. E., Lewis E. J.. Titannium(Ⅳ) chloride catalyzed cycloproanations of alkenes using zinc dust copper(Ⅰ) chloride, and dihalomethanes[J]. J. Org. Chem., 1989, 54: 2388-2390.
    [37] Friedrich E. C., Lewis E. J.. Acetyl chloride promoted cyclopropanations of alkenes with dibromomethane using zinc dust and copper(Ⅰ) chloride in ether[J]. J. Org. Chem., 1989, 54: 2491-2494.
    [38] K. L. Waters. Chem. Revs., 1947, 41: 585.
    [39] A. MeisterandP. A. Abendschein. Anal. chem., 1956, 28: 171.
    [40] A. Meister. MethodsEnzymol, 1957, 3: 404.
    [41] A. Meister. Biochemistry oftheAminoAcids[M], 2nd ed, Academic Press, New Tork, 1965, 161-167.
    [42] 王宇婷等.α-酮酸酯的合成研究进展[J].有机化学,1996,16:210-322.
    [43] ArashibaN.; Asano, S.. JP68126840, 1986.
    [44] ThorsettE. D.. TetrahedronLett., 1982, 23 (18): 1875.
    [45] Reutrakul. V., Spikirin. Y., Panichanun. S.. Chem. Lett., 1982, 879.
    [46] Zong-xing Si, Xian-yun Jiao, Bing-fang Hu. Afacile general route to a -keto Esters and ta-diketones[J]. Synthesis, 1990, 509-560.
    [47] 司宗兴,焦献云.α-酮酸酯和α-二酮制备方法的改进[J].化学通报,1994,(2):29-30.
    [48] Fischer R., Wieland. T.. Chem. Ber., 1960, 93: 1387.
    [49] ElielE. L. et al. A convenient synthesis of α-ketoEsters[J]. J. Org. Chem., 1972, 37 (3): 505-506.
    [50] V. V. ChelinztevandW. N. Schmidt. Ber. Dtsch. Ges., 1929, 62B: 2210.
    [51] NeefG. and EderU.. TetrahedronLett., 1977, 32: 2825.
    [52] L. M. Weinstock, R. B. CurrieandA. V. Lovell. A general one stepsynthesis of α-keto esters [J]. Synthetic Communications, 1981, 11 (12): 943-946.
    [53] Janak Singh, Thomas P. Kissick, Richard H. Mueller. Improved procedure for the one-step synthesis of α-keto esters [J]. Organic Preparations and Procedures Int., 1989, 21 (4): 501-503.
    [54] 李裕林,李绍白等.α-酮酸酯的合成[J].高等学校化学学报,1983,4(3):389-391.
    [55] 祝馨怡,苏桂琴等.α-酮酸、α-酮酸酯及α-酮酰氨的合成进展[J].合成化学,2001,9(5):390-396.
    [56] PerronRobert, Ger. Offen. [P], 2600541, 1976.
    [57] CollinJ.. Bull. Soc. Chim. Fr. [J], 1988, 6: 976-981.
    [58] 朱道亚,金子林.CO与有机卤化物的酮酸化反应[P].天然气化工,1991,16 (2):48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700