用户名: 密码: 验证码:
表面活性剂改性分子筛吸附三氯生的性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氯生(Triclosan,TCS)是一种广谱高效抗菌剂,属典型的药品和个人护理品(Pharmaceuticals and Personal Care Products,PPCPs)类物质,在地表水、土壤、底泥中广泛频繁检出,具有较高的生物富集性。因此,对其环境效应,生态风险评价,以及污染治理成为近年来的研究热点。吸附处理法因其操作简易、成本低、反应过程中不产生有毒副产物的优点而被广泛应用。而高效经济吸附材料的开发是吸附技术的关键。
     传统的活性炭和新型的碳纳米管材料尽管去除能力强,处理效果好,但是成本高,难以推广应用。相比活性炭和碳纳米管材料,天然沸石来源丰富、价格低廉,且具有阳离子交换容量大,比表面积大,化学稳定性强,机械强度高等优点,但是沸石晶格中可交换性阳离子的水解导致其与疏水性有机物的亲和性较弱。因此,提高沸石材料对水中疏水性有机污染物的吸附性能,以及改变沸石的表面结构成为目前研究的热点。
     本论文采用离子交换的改性方式将季铵盐阳离子表面活性剂溴化十六烷基吡啶(Cetylpyridinium bromide,CPB)负载在原沸石外表面制备改性沸石。通过元素分析、比表面积、疏水性、表面电性、傅立叶红外光谱、X射线衍射光谱以及扫描电镜等方法表征原沸石NZ和改性沸石OZs,结果表明,CPB成功负载在原沸石上,并改变了原沸石理化性质。相比原沸石,OZs的有机碳含量增大,电负性减小,疏水性增大,晶体结构维持不变。静态吸附实验表明,CPB的负载增强了沸石对TCS的吸附亲和力,当TCS的初始浓度为50mg·L~(-1)时,CPB改性沸石OZ0.5,OZ1.0,OZ2.5的平衡吸附容量分别达到了27.15mg·g~(-1),39.66mg·g~(-1),41.14mg·g~(-1),远高于原沸石NZ对TCS的平衡吸附容量(0.91mg·g~(-1))。OZs对TCS的吸附过程符合二级动力学模型。热力学计算表明吸附是自发进行的放热过程,吸附过程起主要作用的吸附力为范德华力和疏水键力作用。OZ0.5和OZ1.0均对TCS的吸附容量随pH增加而减少;随无机盐NaCl浓度的增加而增大。而OZ2.5对TCS的吸附容量仅在碱性(pH>9.14)条件下减少;随NaCl浓度的增加而减少。等温吸附曲线符合Freundlich吸附模型,因此改性沸石OZs主要通过表面吸附和分配作用对TCS进行吸附。改性沸石OZs对TCS的分配作用大小与CPB的负载量成正比;改性沸石对TCS的表面吸附作用随着沸石表面疏水性的增加和电负性的减少而增强。改性沸石OZs中,OZ1.0对TCS的平衡吸附容量较高,吸附速率大,与TCS的结合作用强。
     鉴于天然沸石的微孔结构使得季铵盐阳离子表面活性剂仅能负载在其外表面,限制了其在沸石上的负载量。为了增大表面活性剂的负载量,本论文继而采用常温一步法合成了疏水性介孔相MCM-41-dry。通过X射线衍射光谱、傅立叶红外光谱、热重、N2吸附-脱附、表面电性分析、元素分析以及疏水性分析,结果表明MCM-41-dry具有稳定的介孔相结构且表面疏水。静态吸附实验表明,MCM-41-dry对TCS能实现快速吸附,吸附容量高达241.55mg·g~(-1)。溶液pH升高和共存阴离子(Cl-,SO42-,CO32-,HCO3-)都会降低TCS吸附容量。吸附过程符合准二级动力学模型。等温吸附曲线符合Freundlich方程。热力学计算表明吸附为自发放热过程且使体系的混乱度减小。MCM-41-dry对TCS的吸附机理主要为分配作用,且同时存在疏水作用和静电作用。
     最后,通过对比上述两类吸附剂可知有机碳的利用率是影响TCS吸附效果的关键因素:对于表面活性剂改性沸石类吸附剂,有机碳含量在一定程度上提高了吸附剂对TCS的吸附容量,吸附剂表面的疏水性有利于提高TCS对有机碳的利用率。对于疏水性介孔相吸附材料,保留一部分表面活性剂,增大内部的孔容,从而提高有机碳的利用率。
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)-phenol](TCS), a widely usedantimicrobial agent in pharmaceuticals and personal care products (PPCPs), has attractedworldwide attention due to its frequent detection in natural environment and its potentialtoxicity to ecosystem. As a simple and efficient method, adsorption has been extensivelyapplied in the removal of TCS from aqueous solution.
     Activated carbon and carbon nanotubes have been proven to show high effectiveness inthe removal of TCS. However, these materials are too costly to be used in practicalapplications. As a natural mineral, natural zeolite is attracting more and more attention inenvironment applications due to its worldwide availability and excellent physiochemicalproperties. However, owing to the weak affinity of natural zeolite towards hydrophobicorganic compounds, researchers try to modify its surface from hydrophilic to hydrophobiccharacter with cationic surfactants in order to increase its adsorption capacity.
     Organo-zeolites (OZs) were prepared by loading cetylpyridinium bromide (CPB) ontonatural zeolite (NZ) and were firstly used to remove triclosan (TCS) from aqueous solution.Surface properties of NZ and OZs were evaluated by EA, BET, contact angle, zeta-potential,FT-IR, XRD, and SEM. The results indicated that NZ surface properties were considerablyaltered with CPB modification, but its mineral structures were not significantly affected.The adsorption characteristics of OZs towards TCS were studied through batch adsorptionexperiments. Batch experiments were conducted as a function of contact time, initial TCSconcentration, temperature, and pH. The adsorption capacities of OZ0.5, OZ1.0and OZ2.5, prepared with different initial concentrations of CPB, toward TCS at298K weregreatly enhanced from0.91mg·g~(-1)for NZ to27.15,39.66and41.14mg·g~(-1), respectively.The adsorption equilibrium data of OZs were found to follow the Freundlich isotherm better.The adsorption kinetics data could be well-described by the pseudo-second-order model.Further thermodynamic investigations indicated that TCS adsorption onto OZs was anexothermic and spontaneous process. The TCS adsorption capacities were found to bestrongly dependent on the solution pH and the nature of surface charge of OZs, which werea little higher in acidic and neutral pH conditions. The main mechanisms controlling the adsorption of TCS onto OZs were presumed to be partiton and surface adsorption. As aresult, OZ1.0could be used as a more effective adsorbent for TCS removal fromwastewater.
     However, since the micro pores of NZ are so small that CPB cations cannot penetrateinto them, resulting in the CPB cations can only exchange with the external cations ofzeolite. In order to increase the amounts of loaded carbon content, we synthesized thehydrophobic mesophase MCM-41material (noted as MCM-41-dry) with simple method.Surface properties of MCM-41-dry were evaluated by XRD, FT-IR, TG, N2adsorptionmeasurements, zeta-potential, EA and contact angle measurements. The results indicatedthat MCM-41-dry processes stable mesostructure. Present work also deals with theadsorption of TCS on MCM-41-dry. The effect of surfactant template in MCM-41on theremoval of TCS was investigated. It was found that MCM-41–dry shows significantadsorption for TCS because of the hydrophobicity created by surfactant template in theMCM-41-dry. Batch adsorption studies were carried out to study the effect of variousparameters like adsorbent dose, pH, initial concentration and the presence of co-existinganions. It was found that adsorption of TCS depends upon the solution pH as well asco-existing anions present in the aqueous solution. The equilibrium adsorption data for TCSwas analyzed by using Freundlich adsorption isotherm model. The adsorption kinetics datacould be well-described by the pseudo-second-order model. Further thermodynamicinvestigations indicated that TCS adsorption onto OZs was an exothermic and spontaneousprocess.
     The comparison of adsorption of TCS on OZs and MCM-41-dry was investigated. Itwas found that the efficiency of the use of organic contents is a key factor.
引文
[[1] Carson R. Silent spring [M]. Mariner Books,2002.
    [2] Daughton C G, Ternes T A. Pharmaceuticals and personal care products in theenvironment: agents of subtle change?[J]. Environmental Health Perspectives,1999,907-38.
    [3] Piccoli A, Fiori J, Andrisano V, et al. Determination of triclosan in personal health careproducts by liquid chromatography (HPLC)[J]. Il Farmaco,2002,57(5):369-72.
    [4] Singer H, Müller S, Tixier C, et al. Triclosan: occurrence and fate of a widely usedbiocide in the aquatic environment: field measurements in wastewater treatment plants,surface waters, and lake sediments [J]. Environmental Science&Technology,2002,36(23):4998-5004.
    [5] Richardson B J, Lam P K S, Martin M. Emerging chemicals of concern:Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference toSouthern China [J]. Marine Pollution Bulletin,2005,50(9):913-20.
    [6] Wu C, Spongberg A L, Witter J D. Adsorption and Degradation of Triclosan andTriclocarban in Solis and Biosolids-Amended Soils [J]. Journal of Agricultural and FoodChemistry,2009,57(11):4900-5.
    [7] Trenholm R A, Vanderford B J, Holady J C, et al. Broad range analysis of endocrinedisruptors and pharmaceuticals using gas chromatography and liquid chromatographytandem mass spectrometry [J]. Chemosphere,2006,65(11):1990-8.
    [8] Abdul Jabbar Al-Rajab, Lyne Sabourin, Andrew Scott, et al. Impact of biosolids onthe persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil[J]. Science of The Total Environment,2009,407(5978-85.
    [9] Halling-S rensen B, Nors Nielsen S, Lanzky P, et al. Occurrence, fate and effects ofpharmaceutical substances in the environment-a review [J]. Chemosphere,1998,36(2):357-93.
    [10]刘莹,管运涛,张锡辉, et al.药品和个人护理用品类污染物研究进展[J].清华大学学报:自然科学版,2009,3):368-72.
    [11] Carballa M, Omil F, Lema J M. Removal of cosmetic ingredients and pharmaceuticalsin sewage primary treatment [J]. Water Research,2005,39(19):4790-6.
    [12]FarréM, Pérez S, Kantiani L, et al. Fate and toxicity of emerging pollutants, theirmetabolites and transformation products in the aquatic environment [J]. TrAC Trends inAnalytical Chemistry,2008,27(11):991-1007.
    [13]Rogers H R. Sources, behaviour and fate of organic contaminants during sewagetreatment and in sewage sludges [J]. Science of The Total Environment,1996,185(1):3-26.
    [14]周世兵,周雪飞,张亚雷, et al.三氯生在水环境中的存在行为及迁移转化规律研究进展[J].环境污染与防治,2008,30(10):71-4.
    [15]Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of Triclosan in the RiverAire Basin, UK [J]. Water Research,2003,37(13):3145-54.
    [16]Winkler G, Thompson A, Fischer R, et al. Mass Flow Balances of Triclosan in SmallRural Wastewater Treatment Plants and the Impact of Biomass Parameters on the Removal[J]. Engineering in Life Sciences,2007,7(1):42-51.
    [17]Yu J T, Bouwer E J, Coelhan M. Occurrence and biodegradability studies of selectedpharmaceuticals and personal care products in sewage effluent [J]. Agricultural watermanagement,2006,86(1):72-80.
    [18]Ying G-G, Kookana R S. Triclosan in wastewaters and biosolids from Australianwastewater treatment plants [J]. Environment International,2007,33(2):199-205.
    [19]Canosa P, Rodriguez I, RubíE, et al. Optimization of solid-phase microextractionconditions for the determination of triclosan and possible related compounds in watersamples [J]. Journal of Chromatography A,2005,1072(1):107-15.
    [20]Wu J-L, Lam N P, Martens D, et al. Triclosan determination in water related towastewater treatment [J]. Talanta,2007,72(5):1650-4.
    [21]Lishman L, Smyth S A, Sarafin K, et al. Occurrence and reductions of pharmaceuticalsand personal care products and estrogens by municipal wastewater treatment plants inOntario, Canada [J]. Science of The Total Environment,2006,367(2-3):544-58.
    [22]Zhao J-L, Zhang Q-Q, Chen F, et al. Evaluation of triclosan and triclocarban at riverbasin scale using monitoring and modeling tools: Implications for controlling of urbandomestic sewage discharge [J]. Water Research,2012,
    [23]Peng X, Yu Y, Tang C, et al. Occurrence of steroid estrogens, endocrine-disruptingphenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta,South China [J]. Science of The Total Environment,2008,397(1-3):158-66.
    [24]Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in riverwater (Cibolo Creek, TX)[J]. Chemosphere,2004,54(5):653-60.
    [25]Hua W, Bennett E R, Letcher R J. Triclosan in waste and surface waters from the upperDetroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry[J]. Environment International,2005,31(5):621-30.
    [26]http://epa.gov/nerlesd1/chemistry/pharma/.
    [27]Li X, Ying G-G, Su H-C, et al. Simultaneous determination and assessment of4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles [J].Environment International,2010,36(6):557-62.
    [28]Heidler J, Halden R U. Mass balance assessment of triclosan removal duringconventional sewage treatment [J]. Chemosphere,2007,66(2):362-9.
    [29]Ghanem M A, Compton R G, Coles B A, et al. Microwave activation ofelectrochemical processes: High temperature phenol and triclosan electro-oxidation atcarbon and diamond electrodes [J]. Electrochimica Acta,2007,53(3):1092-9.
    [30]Bester K. Triclosan in a sewage treatment process--balances and monitoring data [J].Water Research,2003,37(16):3891-6.
    [31]Orvos D R, Versteeg D J, Inauen J, et al. Aquatic toxicity of triclosan [J].Environmental Toxicology and Chemistry,2002,21(7):1338-49.
    [32]伍筱琳,刘仁沿,李红霞, et al.三氯生对小球藻的生长效应研究[J].海洋通报,2009,28(3):117-20.
    [33]NoribisajTatarazako H I, Teshima K, Kisbi K, et al. Effects of triclosan on variousaquatic organisms [J]. Environmental Sciences,2004,11(2):133-40.
    [34]Schuur A G, Legger F F, van Meeteren M E, et al. In vitro inhibition of thyroidhormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons [J].Chemical research in toxicology,1998,11(9):1075-81.
    [35]唐丽,孙秀发,张军.三氯生对大鼠碳水化合物代谢的影响[J].中国药理学与毒理学杂志,2002,16(2):151-4.
    [36]Ellis J B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters[J]. Environmental Pollution,2006,144(1):184-9.
    [37]Coogan M A, Edziyie R E, La Point T W, et al. Algal bioaccumulation of triclocarban,triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere,2007,67(10):1911-8.
    [38]Adolfsson-Erici M, Pettersson M, Parkkonen J, et al. Triclosan, a commonly usedbactericide found in human milk and in the aquatic environment in Sweden [J].Chemosphere,2002,46(9-10):1485-9.
    [39]Allmyr M, Adolfsson-Erici M, McLachlan M S, et al. Triclosan in plasma and milkfrom Swedish nursing mothers and their exposure via personal care products [J]. Science ofThe Total Environment,2006,372(1):87-93.
    [40]刘芃岩,郝吉明.氯酚为前生体生成二噁英类的研究进展[J].化学通报,2003,2(001.
    [41]Mezcua M, Gómez M J, Ferrer I, et al. Evidence of2,7/2,8-dibenzodichloro-p-dioxin asa photodegradation product of triclosan in water and wastewater samples [J]. AnalyticaChimica Acta,2004,524(1-2):241-7.
    [42]Aranami K, Readman J W. Photolytic degradation of triclosan in freshwater andseawater [J]. Chemosphere,2007,66(6):1052-6.
    [43]Sanchez-Prado L, Llompart M, Lores M, et al. Monitoring the photochemicaldegradation of triclosan in wastewater by UV light and sunlight using solid-phasemicroextraction [J]. Chemosphere,2006,65(8):1338-47.
    [44]曹光群,陈忠良,宋启军.三氯生的光降解产物分析及相关日化产品的安全性研究[J].分析试验室,2008,27(8):58-61.
    [45]Fiss E M, Rule K L, Vikesland P J. Formation of chloroform and other chlorinatedbyproducts by chlorination of triclosan-containing antibacterial products [J]. EnvironmentalScience&Technology,2007,41(7):2387-94.
    [46]Stasinakis A S, Petalas A V, Mamais D, et al. Investigation of triclosan fate and toxicityin continuous-flow activated sludge systems [J]. Chemosphere,2007,68(2):375-81.
    [47]Ying G-G, Yu X-Y, Kookana R S. Biological degradation of triclocarban and triclosanin a soil under aerobic and anaerobic conditions and comparison with environmental fatemodelling [J]. Environmental Pollution,2007,150(3):300-5.
    [48]Inoue Y, Hata T, Kawai S, et al. Elimination and detoxification of triclosan bymanganese peroxidase from white rot fungus [J]. Journal of Hazardous Materials,2010,180(1-3):764-7.
    [49]高明哲,徐青,肖红斌, et al.三氯新降解产物的液相色谱-质谱分析[J].色谱,2003,21(3):294-.
    [50]叶文彬.碳纳米管电极催化降解典型PPCPs的研究[D];北京化工大学,2010.
    [51]Suarez S, Dodd M C, Omil F, et al. Kinetics of triclosan oxidation by aqueous ozoneand consequent loss of antibacterial activity: Relevance to municipal wastewater ozonation[J]. Water Research,2007,41(12):2481-90.
    [52]杨滨,应光国,赵建亮.高铁酸钾氧化降解三氯生的动力学模拟及反应机制研究[J].环境科学,2011,32(9):2543-8.
    [53]Son H S, Khim J, Zoh K D. Degradation of triclosan in the combined reaction of Fe2+and UV‐C: Comparison with the Fenton and photolytic reactions [J]. EnvironmentalProgress&Sustainable Energy,2010,29(4):415-20.
    [54]Huber M M, Canonica S, Park G Y, et al. Oxidation of pharmaceuticals duringozonation and advanced oxidation processes [J]. Environmental Science&Technology,2003,37(5):1016-24.
    [55]Sanchez-Prado L, Barro R, Garcia-Jares C, et al. Sonochemical degradation of triclosanin water and wastewater [J]. Ultrasonics Sonochemistry,2008,15(5):689-94.
    [56]Behera S K, Oh S Y, Park H S. Sorption of triclosan onto activated carbon, kaoliniteand montmorillonite: Effects of pH, ionic strength, and humic acid [J]. Journal ofHazardous Materials,2010,179(1):684-91.
    [57]Fang S F, Pendleton P, Badalyan A. Effects of surface functional groups of activatedcarbon on adsorption of triclosan from aqueous solution [J]. Int J Environ Tech Manag,2009,10(1):36-45.
    [58]Cho H H, Huang H, Schwab K. Effects of solution chemistry on the adsorption ofibuprofen and triclosan onto carbon nanotubes [J]. Langmuir,2011,27(12960–7.
    [59]胡翔,赵娜,魏杰.三氯生在碳纳米管上的吸附[J].环境工程学报,2009,3(008):1462-4.
    [60]Xu J, Wu L, Chang A C. Degradation and adsorption of selected pharmaceuticals andpersonal care products (PPCPs) in agricultural soils [J]. Chemosphere,2009,77(10):1299-305.
    [61]Karnjanapiboonwong A, Morse A N, Maul J D, et al. Sorption of estrogens, triclosan,and caffeine in a sandy loam and a silt loam soil [J]. Journal of Soils and Sediments,2010,10(7):1300-7.
    [62]谢晓凤.改性沸石应用于废水处理的研究[D];北京化工大学,2003.
    [63]肖举强,于连群,李桂荣, et al.活化沸石处理污染水源水的研究[J].给水排水,1997,23(6):16-8.
    [64]王娟. NiCeY改性沸石的制备及对燃料油中二苯并噻吩的吸附研究[D];哈尔滨工业大学,2009.
    [65]王本红.粉煤灰沸石处理造纸废水的研究[D];山东轻工业学院,2009.
    [66]曲燕,张超杰,周琪.有机改性沸石去除有机污染物的研究[J].工业水处理,2008,28(3):17-9.
    [67]李效红. β-环糊精改性沸石吸附水中有机污染物和重金属的研究[D];兰州交通大学,2012.
    [68]何敏祯. HDTMA改性沸石对三氯生的吸附行为与机理研究[D];华南理工大学,2012.
    [69]阮芳.氧化钛改性沸石材料处理有机废水的性能研究[D];北京化工大学2012.
    [70]Li Z. Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite [J].Langmuir,1999,15(19):6438-45.
    [71]程明.表面活性剂改性沸石处理废水技术研究[D].太原;中北大学,2005.
    [72]陈小龙.用表面活性剂改性的沸石处理DDNP生产废水技术研究[D];中北大学,2006.
    [73]Wang S-g, Gong W-x, Liu X-w, et al. Removal of Fulvic Acids from Aqueous Solutionsvia Surfactant Modified Zeolite [J]. Chemical Research in Chinese Universities,2006,22(5):566-70.
    [74]Wang S G, Gong W X, Liu X W, et al. Removal of fulvic acids using the surfactantmodified zeolite in a fixed-bed reactor [J]. Separation and Purification Technology,2006,51(3):367-73.
    [75]Li Z H, Bowman R S. Sorption of perchloroethylene by surfactant-modified zeolite ascontrolled by surfactant loading [J]. Environmental Science&Technology,1998,32(15):2278-82.
    [76]李效红,朱琨.改性沸石去除水中有机污染物的研究进展[J].净水技术,2008,27(3):5-8.
    [77]Koh S M, Dixon J B. Preparation and application of organo-minerals as sorbents ofphenol, benzene and toluene [J]. Applied Clay Science,2001,18(3):111-22.
    [78]Karapanagioti H K, Sabatini D A, Bowman R S. Partitioning of hydrophobic organicchemicals (HOC) into anionic and cationic surfactant-modified sorbents [J]. Water Research,2005,39(4):699-709.
    [79]Ranck J M, Bowman R S, Weeber J L, et al. BTEX removal from produced water usingsurfactant-modified zeolite [J]. Journal of Environmental Engineering-Asce,2005,131(3):434-42.
    [80]Torabian A, Kazemian H, Seifi L, et al. Removal of petroleum aromatic hydrocarbonsby surfactant-modified natural Zeolite: the effect of surfactant [J]. Clean-Soil, Air, Water,2010,38(1):77-83.
    [81]Seifi L, Torabian A, Kazemian H, et al. Adsorption of Petroleum Monoaromatics fromAqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: SystematicStudy of Equilibrium Isotherms [J]. Water, Air,&Soil Pollution,2011,217(1):611-25.
    [82]Ghiaci M, Abbaspur A, Kia R, et al. Equilibrium isotherm studies for the sorption ofbenzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41[J].Separation and Purification Technology,2004,40(3):217-29.
    [83]Ersoy B, elik M. Uptake of aniline and nitrobenzene from aqueous solution byorgano-zeolite [J]. Environmental Technology,2004,25(3):341-8.
    [84]Li Z, Burt T, Bowman R S. Sorption of ionizable organic solutes by surfactant-modifiedzeolite [J]. Environmental Science&Technology,2000,34(17):3756-60.
    [85]Kuleyin A. Removal of phenol and4-chlorophenol by surfactant-modified naturalzeolite [J]. Journal of Hazardous Materials,2007,144(1-2):307-15.
    [86]魏翔,朱琨,王海涛, et al.改性沸石对2,4-二氯苯酚的吸附性能研究[J].安全与环境学报,2003,3(006):57-60.
    [87]Bouffard S C, Duff S J B. Uptake of dehydroabietic acid using organically-tailoredzeolites [J]. Water Research,2000,34(9):2469-76.
    [88]Tomasevic-Canovic M, Dakovic A, Rottinghaus G, et al. Surfactant modifiedzeolites--new efficient adsorbents for mycotoxins [J]. Microporous and MesoporousMaterials,2003,61(1-3):173-80.
    [89]Lemi J, Kova evi D, Toma evi-anovi M, et al. Removal of atrazine, lindane anddiazinone from water by organo-zeolites [J]. Water Research,2006,40(5):1079-85.
    [90]Jovanovi V, Dondur V, Damjanovi L, et al. Improved materials for environmentalapplication: Surfactant-modified zeolites [J]. Materials Science Forum,2006,518(223-8.
    [91]Li Z H, Roy S J, Zou Y Q, et al. Long-term chemical and biological stability ofsurfactant modified zeolite [J]. Environmental Science&Technology,1998,32(17):2628-32.
    [92]Haggerty G M, Bowman R S. Sorption of chromate and other inorganic anions byorgano-zeolite [J]. Environmental Science&Technology,1994,28(3):452-8.
    [93]Chen C Y, Li H X, Davis M E. Studies on mesoporous materials: I. Synthesis andcharacterization of MCM-41[J]. Microporous Materials,1993,2(1):17-26.
    [94]Zhao X, Lu G. Modification of MCM-41by surface silylation withtrimethylchlorosilane and adsorption study [J]. The Journal of Physical Chemistry B,1998,102(9):1556-61.
    [95]李健芳,吴晓金,孟长功.介孔分子筛MCM-41的硅烷化改性及吸附性能研究[J].化学研究与应用,2008,20(7):916-8.
    [96]Fu J, He Q, Wang R, et al. Comparative study of phenol compounds adsorption onmesoporous sieves with different degrees of modification [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,375(1):136-40.
    [97]傅家伟.介孔分子筛MCM-41吸附行为研究[D].南京;南京大学,2011.
    [98]孙鹤,石方,王榕树.功能性介孔分子筛用于环境水体净化的研究[J].环境科学学报,2000,20(001):38-41.
    [99]Denoyel R, Rey E S. Solubilization in Confined Surfactant Mesophases [J]. Langmuir,1998,14(7321-3.
    [100] Hanna K, Beurroies I, Denoyel R, et al. Sorption of hydrophobic molecules byorganic/inorganic mesostructures [J]. Journal of Colloid and Interface Science,2002,252(2):276-83.
    [101] Huang L, Xiao H, Ni Y. Cationic MCM-41: synthesis, characterization and sorptionbehavior towards aromatic compounds [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2004,247(1):129-36.
    [102] Huang L, Huang Q, Xiao H, et al. Effect of cationic template on the adsorption ofaromatic compounds in MCM-41[J]. Microporous and Mesoporous Materials,2007,98(1):330-8.
    [103] Zhao H, Nagy K L, Waples J S, et al. Surfactant-templated mesoporous silicatematerials as sorbents for organic pollutants in water [J]. Environmental Science&Technology,2000,34(22):4822-7.
    [104] Mangrulkar P A, Kamble S P, Meshram J, et al. Adsorption of phenol ando-chlorophenol by mesoporous MCM-41[J]. Journal of Hazardous Materials,2008,160(2-3):414-21.
    [105] Sepehrian H, Fasihi J, Khayatzadeh Mahani M. Adsorption behavior studies ofpicric acid on mesoporous MCM-41[J]. Industrial&Engineering Chemistry Research,2009,48(14):6772-5.
    [106] Bruzzoniti M, Mentasti E, Sarzanini C, et al. Retention properties of mesoporoussilica-based materials [J]. Analytica Chimica Acta,2000,422(2):231-8.
    [107] Vimonses V, Lei S, Jin B, et al. Kinetic study and equilibrium isotherm analysis ofCongo Red adsorption by clay materials [J]. Chemical Engineering Journal,2009,148(2-3):354-64.
    [108]路佳.纳米分子筛组装体吸附水体中痕量甲基叔丁基醚及其机理研究[D].上海;上海交通大学,2009.
    [109] Kwok1D Y, Neumann A W. Contact angle measurement and contact angleinterpretation [J]. Advances in Colloid and Interface Science,1999,81(167-249.
    [110]韩攀.壳聚糖改性沸石对刚果红、亮绿和酸性铬蓝K的吸附研究[D];郑州大学,2010.
    [111] Zhu L, Chen B. Sorption behavior of p-nitrophenol on the interface betweenanion-cation organobentonite and water [J]. Environmental Science&Technology,2000,34(14):2997-3002.
    [112] Lee J F, Crum J R, Boyd S A. Enhanced retention of organic contaminants by soilsexchanged with organic cations [J]. Environmental Science&Technology,1989,23(11):1365-72.
    [113] Zhang Z Z, Sparks D L, Scrivner N C. Sorption and desorption of quaternaryamine cations on clays [J]. Environmental Science&Technology,1993,27(8):1625-31.
    [114] Boyd S, Jaynes W. Clay mineral type and organic compound sorption byhexadecyltrimethlyammonium-exchanged clays [J]. Soil Science Society of AmericaJournal,1991,55(1):43-8.
    [115]王巍.咪唑啉类嵌段表面活性剂对有机-无机杂化体的作用及阴离子聚氨酯的研制与改性[D];青岛科技大学,2007.
    [116] Taylor R K. Cation exchange in clays and mudrocks by methylene blue [J]. J ChemTechnol Biot,1985,35(4):195-207.
    [117] Arbeloa F L, Arbeloa T L, Arbeloa I L. Spectroscopy of rhodamine6G adsorbed onsepiolite aqueous suspensions [J]. Journal of Colloid and Interface Science,1997,187(1):105-12.
    [118] Sullivan E J, Hunter D B, Bowman R S. Fourier transform raman spectroscopy ofsorbed HDTMA and the mechanism of chromate sorption to surfactant-modifiedclinoptilolite [J]. Environ Sci Technol,1998,32(Copyright (C)2012American ChemicalSociety (ACS). All Rights Reserved.):1948-55.
    [119] Ming D W, Dixon J B. Quantitative determination of clinoptilolite in soils by acation-exchange capacity method [J]. Clays Clay Miner,1987,35(Copyright (C)2012American Chemical Society (ACS). All Rights Reserved.):463-8.
    [120] Breck D W. Zeolite Molecular Sieves: Structure, Chemistry, and Use [M]. NewYork: John Wiley and Sons,1974.
    [121] Taffarel S R, Rubio J. Adsorption of sodium dodecyl benzene sulfonate fromaqueous solution using a modified natural zeolite with CTAB [J]. Minerals Engineering,2010,23(10):771-9.
    [122] Apreutesei R E, Catrinescu C, Teodosiu C. Surfactant-modified natural zeolites forenvironmental applications in water purification [J]. ENVIRONMENTAL ENGINEERINGAND MANAGEMENT JOURNAL,2008,7(2):149-61
    [123]张铨昌.天然沸石离子交换性能及其应用[M].北京;科学出版社.1996:21-6.
    [124] Lee W, Van Deventer J. Use of infrared spectroscopy to study geopolymerization ofheterogeneous amorphous aluminosilicates [J]. Langmuir,2003,19(21):8726-34.
    [125] Rozic M, Sipusic I, Sekovanic L, et al. Sorption phenomena of modification ofclinoptilolite tuffs by surfactant cations [J]. Journal of Colloid and Interface Science,2009,331(2):295-301.
    [126] Zhao Y X, Ding M Y, Chen D P. Adsorption properties of mesoporous silicas fororganic pollutants in water [J]. Analytica Chimica Acta,2005,542(2):193-8.
    [127]于旭彪.蛭石基吸附材料的制备、改性及其对水中有机污染物的分离机理[D];华南理工大学,2011.
    [128] Wang S L, Tzou Y M, Lu Y H, et al. Removal of3-chlorophenol from water usingrice-straw-based carbon [J]. Journal of Hazardous Materials,2007,147(1-2):313-8.
    [129] Newcombe G, Drikas M. Adsorption of NOM onto activated carbon: electrostaticand non-electrostatic effects [J]. Carbon,1997,35(9):1239-50.
    [130] Grover P K, Ryall R L. Critical appraisal of salting-out and its implications forchemical and biological sciences [J]. Chemical Review,2005,105(1):1-10.
    [131]陈宝梁,朱利中.阴-阳离子有机膨润土吸附水中对硝基苯酚的性能及机理研究[J].浙江大学学报(理学版),2002,29(3):317-23.
    [132] Chefetz B, Deshmukh A P, Hatcher P G, et al. Pyrene sorption by natural organicmatter [J]. Environmental Science&Technology,2000,34(14):2925-30.
    [133]汤垣伟.改性泥炭吸附水体中疏水性有机污染物及其机理研究[D].上海;华东理工大学,2010.
    [134] Zhu L, Chen B, Shen X. Sorption of phenol, p-nitrophenol, and aniline todual-cation organobentonites from water [J]. Environmental Science&Technology,2000,34(3):468-75.
    [135] Chen B, Zhu L, Zhu J, et al. Configurations of the bentonite-sorbedmyristylpyridinium cation and their influences on the uptake of organic compounds [J].Environmental Science&Technology,2005,39(16):6093-100.
    [136] Krajisnik D, Dakovic A, Milojevic M, et al. Properties of diclofenac sodiumsorption onto natural zeolite modified with cetylpyridinium chloride [J]. Colloids andSurfaces B: Biointerfaces,2011,83(1):165-72.
    [137] Ghiaci M, Kia R, Abbaspur A, et al. Adsorption of chromate by surfactant-modifiedzeolites and MCM-41molecular sieve [J]. Separation and Purification Technology,2004,40(3):285-95.
    [138]安群力.介孔分子筛MCM-41的合成及性能研究[D].西安;西安科技大学,2005.
    [139] Kresge C, Leonowicz M, Roth W, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. nature,1992,359(6397):710-2.
    [140] Zhao X S, Lu G Q, Millar G J, et al. Synthesis and characterization of highlyordered MCM-41in an alkali-free system and its catalytic activity [J]. Catalysis letters,1996,38(1):33-7.
    [141] Kruk M, Jaroniec M, Ko C H, et al. Characterization of the porous structure ofSBA-15[J]. Chemistry of Materials,2000,12(7):1961-8.
    [142] Kruk M, Jaroniec M, Ryoo R, et al. Characterization of MCM-48silicas withtailored pore sizes synthesized via a highly efficient procedure [J]. Chemistry of Materials,2000,12(5):1414-21.
    [143] Kruk M, Jaroniec M, Sakamoto Y, et al. Determination of pore size and pore wallstructure of MCM-41by using nitrogen adsorption, transmission electron microscopy, andX-ray diffraction [J]. The Journal of Physical Chemistry B,2000,104(2):292-301.
    [144] Feng X, Yang G, Liu Y, et al. Synthesis of polyaniline/MCM‐41compositethrough surface polymerization of aniline [J]. Journal of Applied Polymer Science,2006,101(3):2088-94.
    [145] Izumi C M, Constantino V R, Temperini M L. Spectroscopic characterization ofpolyaniline formed by using copper (II) in homogeneous and MCM-41molecular sievemedia [J]. The Journal of Physical Chemistry B,2005,109(47):22131-40.
    [146]李健芳.介孔分子筛MCM-41的硅烷化改性及吸附性能研究[D].大连;大连理工大学,2008.
    [147]吴艳林.分子筛负载纳米TiO2的制备及其吸附与光催化性能研究[D];华南理工大学,2010.
    [148] Kleitz F, Schmidt W, Schüth F. Evolution of mesoporous materials during thecalcination process: structural and chemical behavior [J]. Microporous and MesoporousMaterials,2001,44(95-109.
    [149] Fu J, He Q, Liu B, et al. Study in adsorption behavior of polymer on molecularsieves by surface and pore properties [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2010,369(1):113-20.
    [150] Araujo A, Jaroniec M. Thermogravimetric monitoring of the MCM-41synthesis [J].Thermochimica Acta,2000,363(1):175-80.
    [151]王小文.疏水性介孔分子筛的制备及其吸附性能研究[D];华南理工大学,2012.
    [152] Zhao X S, GQ Lu, and, Millar G J. Advances in mesoporous molecular sieveMCM-41[J]. Industrial&Engineering Chemistry Research,1996,35(7):2075-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700