用户名: 密码: 验证码:
O_2/CO_2气氛下煤粉燃烧特性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应导致的全球气候变暖问题日益突出,而导致温室效应的主要因素是矿物燃料燃烧造成的大量CO2排放,其中燃煤电厂排放出的CO2占世界上CO2总排放量的1/3。减少CO2排放的重要途径是碳捕集与封存(CCS),其中O2/CO2燃烧技术是一种便于直接捕集高浓度CO2、综合控制燃煤污染物排放的新一代洁净煤发电技术,具有明显的优势和较强的应用前景。为此,研究煤粉在O2/CO2气氛下的燃烧特性和性能有着重要的意义。
     本文采用三种不同的标准煤样,利用热重分析仪,分别在N2和CO2气氛下进行了非等温热解实验,并在O2/N2和O2/CO2不同体积配比气氛下进行了非等温燃烧实验,计算并分析了煤粉燃烧特征参数、特性指数和化学反应动力学参数。结果表明:相同氧浓度下,CO2代替N2后,着火和燃尽滞后,反应强度减小,化学反应机理发生了变化,挥发分释放、可燃和燃尽性能变差,增加氧气浓度后有所改善;煤粉在30%O2/70%CO2和空气气氛下燃烧特性的相似性与沉降炉试验或数值模拟有一定的差别,认为是煤粉颗粒周围反应气流氧浓度变化的差别造成的。
     通过分析实验数据,了解了煤粉在O2/CO2气氛下的燃烧特性后,为了进一步研究煤粉在O2/CO2气氛下的燃烧性能,本文利用计算流体力学软件Fluent,对某电厂600MW四角切向燃烧锅炉炉内燃烧过程进行了数值模拟,通过对模拟结果的分析,验证了所建物理模型、所选数学模型及网格划分的合理性,然后进行了O2/CO2不同体积配比以及燃烧器不同配风方式下的数值模拟,分析了炉内速度、温度、组分、热流密度和吸热量等分布特点。结果表明:相比空气气氛,21%O2/79%CO2气氛燃烧滞后,炉膛温度、辐射力水平和燃尽率降低,氧气浓度增加后有所提高;O2/CO2不同体积配比中,29%O2/71%CO2燃烧状况与空气气氛最为接近,但NO排放大幅降低;减少燃尽风,炉膛壁面平均热流密度增加,旋流强度增加;上调一次风口,灰渣含碳量降低,燃尽率升高;正宝塔、倒宝塔、哑铃和双缩腰配风方式中,双缩腰配风方式炉膛壁面热流密度、总吸热量、燃尽率较高,火焰位于炉膛中心,火焰贴壁现象较轻;烟气湿式循环相对干式循环,火焰贴壁现象减轻,辐射力增强,气流的蓄热量增加,整体换热状况改善,考虑到烟气干燥的成本,宜采用烟气湿式循环。
     本文为煤粉在O2/CO2气氛下燃烧特性的研究和锅炉O2/CO2燃烧的改造、设计提供了重要而有意义的参考依据。
Global warming caused by greenhouse effect has become increasingly prominent. The major factor of greenhouse effect is massive CO2 emission followed by fossil fuel combustion and power plant emission accounts for one third emission of the total world CO2. CCS (CO2 Capture and Storage) is the most effective way to reduce CO2 emission. Among CCS technologies, O2/CO2 combustion technology is considered to be a new generation of clean coal power generation technology, with obvious advantages and good prospect, which is easy to trap high concentration CO2 directly without separation and control pollutant emission comprehensively. Therefore, the importance of study on combustion characteristics and performance of pulverized coal in O2/CO2 atmosphere is significant.
     Non-isothermal experiments of three types of pulverized coal (PC) were conducted in thermo-gravimetric analyzer including PC pyrolysis in N2 and CO2 atmospheres, PC combustion in different proportions of O2/N2 and O2/CO2 atmospheres. Combustion characteristic parameters, combustion characteristic indexes and kinetic parameters for PC were calculated and analyzed. Research shows that, at the same O2 concentration when N2 is replaced by CO2, both PC ignition and burnout temperatures are lagged, the performance of volatile releasing characteristics, flammability and burnout deteriorates, reaction intensity declines and reaction mechanism changes, with the increase of O2 concentration, PC combustion performance is improved. The results also show the similarity of PC combustion characteristics between 30%O2/70%CO2 and air atmosphere is different from the results from tube furnace tests or numerical simulations due to the different oxygen concentration around pulverized coal particles.
     After analyzing the experimental data, the characteristics of coal combustion in O2/CO2 atmosphere were learned. PC combustion process of a 600MW tangential boiler was numerically simulated with the Computational Fluid Dynamics software FLUENT, based on the analysis, the rationality of the physical, mathematic model and the method of meshing were verified. The conditions in different proportion of O2/CO2 and different air distribution mode were numerical simulated, flow field, temperature profile, components concentrations, wall heat flux, heat absorption and so on were analyzed. Research shows that:comparing to air condition, the combustion of 21%02/79%C02 atmosphere is lagged, the boiler temperature and radiation levels reduces, burnout rate declines, with the increase of O2 concentration, PC combustion performance is improved; the combustion of 29%02/71%CO2 atmosphere is most closest to air atmosphere, but the emission of NO significantly reduces; after reducing the amount of OFA, the average wall heat flux increases, boiler flue gas rotation intensity increases; after increasing the height of primary air tuyere, the unburned carbon in slag reduces, burnout degree increases; among the type of secondary air distribution (Equal, Normal pagoda, Waist drum, Dumbbell, Double waist), the Double waist type's combustion performance is the best, whose flame is closed to the furnace center, the phenomenon of flame attachment reduces, furnace wall heat flux, total heat absorption and burnout degree are high; comparing to dry flue gas recycle, the phenomenon of flame attachment of wet flue gas recycle reduces, rotation intensity increases, the amount of storage heat increases, the overall heat transfer conditions is improved, then taking into account the cost of evaporation of flue gas, should adopt the wet recycle.
     The research results gained in this paper could provide significant reference to research on the combustion characteristics of pulverized coal and O2/CO2 combustion alteration or design of boiler.
引文
[1]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2009.
    [2]闰志勇,张虹,陈昌和,曾宪忠.CO2排放导致的地球温升问题及基本技术对策[J].环境科学进展,1999,7(6):175-181.
    [3]黄纯亮,陈美端,李宽.低碳经济下电厂O2/CO2煤粉燃烧技术的应用[J].东北电力大学学报,2010,30(4):18-21.
    [4]MIT. The future of coal. Massachusetts Institute of Technology,2009.
    [5]相震.CO2捕获发展现状与障碍分析[J].环境污染与防治,2010,32(12):105-106.
    [6]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究[J].中国电力,1997,30(6):59-62.
    [7]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究[J].中国电机工程学报,2007,35(27):39-43.
    [8]刘靖昀.富氧环境下煤粉燃烧特性试验研究[D].杭州:浙江大学,2006.
    [9]薛宪阔,刘彦丰.O2/CO2燃烧技木研究进展[J].煤炭燃烧,2003,18(6):584-588.
    [10]邹维祥.富氧燃烧方式下煤粉燃烧特性研究[D].武汉:华中科技大学,2007.
    [11]刘志强,刘志华,黎晓林.炉内配风方式对燃烧特性影响的数值模拟与试验研究[J].锅炉技术,2007,38(3):49-53.
    [12]刘丽萍.四角切圆煤粉炉炉内燃烧及配风的数值模拟[D].大连:大连理工大学,2008.
    [13]T. Wall, Combustion processes for carbon capture[J]. Proceeding of the Combustion Institute, 2007,31(1):31-47.
    [14]M.B. Toftegaard, J. Brix, P.A. Jensen, et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy and Combustion Science.2010,21:673-684.
    [15]T. Nozaki, S. Takano, T. Kiga, et al. Analysis of the Flame During Oxidation of Pulverized Coal by an O2-CO2Mixrure[J]. Energy,1997,22(2/3):199-205.
    [16]S.P. Pyong, D. L. Young, K. Young. Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission[J]. Energy, 2010,46:233-243.
    [17]T. Wall. An overview on oxyfuel coal combustion-State of the art research and technology development[J]. Chemical Engineering Research and Design,2009,87:1003-1016.
    [18]安丽娜,冯振兴,王素平.O2/CO2燃煤锅炉机组与传统燃煤锅炉机组的差异[J].科学综述,2009,37(12):46-48.
    [19]李金锁,李志.新型高效O2/CO2煤粉燃烧技术[J].吉林电力,2011,39(1):15-17
    [20]殷亚宁.燃煤电站富氧燃烧及二氧化碳捕集技术研究现状及发展[J].锅炉制造,2011,24(6):41-44.
    [21]C.S. Wang, G.E. Berry, K.C. Chang, et al. Combustion of pulverized coal using waste carbon dioxide and oxygen[J]. Combustion and Flame,1989,52:283-290.
    [22]R. Payne, S.L Chen, A.M Wolsky, et al.CO2 recovery via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas[J]. Combustion Science and Technology,1989,67:1-16.
    [23]T. Suda, K. Masuko..Effect of carbon dioxide on flame propagation of pulverized Coal clouds in CO2/O2 combustion[J]. Fuel,2007.
    [24]T. Kiga, S. Takano, N. Kimura, et al. Characteristics of pulverized coal in the system of oxygen/recycled flue gas combustion. Energy Conversion and Management[J].1997,38: 129-134.
    [25]L. Santoro, S. Vaccaro, A. Aldi, et al. Fly ashes reactivity in relation to coal cmbustion under flue gas recycling conditions[J]. Thermochimica acta.1997,296:67-74.
    [26]刘彦丰,阎维平,刘之平.炭/碳粒在CO2/O2气氛中燃烧速率的研究[J].工程热物理学报,1999,20(6):769-772.
    [27]刘彦丰.煤粉在高浓度CO2下的燃烧与气化[D].保定:华北电力大学,2001.
    [28]唐强,王丽朋,李建雄,等.O2/CO2气氛下煤粉燃烧热重分析及动力学特性[J].重庆大学学报,2009,32(12):1440-1445.
    [29]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析[J].热力发电,2004,33(6):14-18.
    [30]李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展[J].热能动力工程,2007,22(3):231.
    [31]刘彦.O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究[D].北京:华北电力大学.
    [32]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].杭州:浙江大学,2003.
    [33]牛胜利,路春美,赵建立,等.O2/CO2气氛下煤粉的燃烧规律与动力学特性[J].动力工程,2008,28(5):769-773.
    [34]刘宁,薛宪阔,韩庆祝.空气分离/烟气再循环燃烧对烟气及炉膛换热的影响[J].研究与分析,2008,36(10):22-24.
    [35]H. Liu, R. Zailani, M. Bernard. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel,2005,84(7-8):833-840.
    [36]A. Klas, J. Filip. Flame and radiation characteristics of gas-fired O2/CO2 combustion [J]. Fuel, 2007,86(5-6):656-668.
    [37]J.C Schouten, C.M Van. The influence of oxygen-stoichtometry on desulphurization during FBC:A Simple sure modeling approach. Chem.Eng.Sci.1988,43(8):2051-2059.
    [38]M. Okawa, N. Kimura, T. Kiga, et al. Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2[J]. Energy Conversion and Management.1997,38: 197-204.
    [39]张礼知,王宏.O2/CO2气氛下燃烧的钙基脱硫规律的实验研究[J].燃料化学学报,2000,28(6):508-512.
    [40]王宏,张礼知,陆晓华,等.O2/CO2煤粉燃烧钙基吸收剂在脱硫过程中的微观结构变化研究[J].工程热物理学报,2001,22(1):127-129.
    [41]H. Hosoda, T. Flirama. NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas, marcroscopic characterietics of their formation and reduction [J]. Energy &fuels,1998,12(1):102~108.
    [42]温昶,徐明厚.煤粉O2/CO2燃烧时PM2.5及其FeS的生成特性[J].化工学报,2011,62(4):1062-1069.
    [43]赵立业,辛国华.600MW四角切圆燃烧锅炉炉内过程的数值模拟[J].东北电力大学学报,2008,28(6):48-52.
    [44]B.J.P. Buhre, L.K. Elliott, C.D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science,2005,31(4):283-307.
    [45]H. Eddy. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel, 2003.82:1201-1210.
    [46]A. Haryanto, K.S. Hong. Modeling and Simulation of an Oxy-fuel Combustion Boiler System with Flue Gas Recirculation[J]. Computers and Chemical Engineering,2010.56:903-916.
    [47]王建强.300MW电站锅炉富氧燃烧的数值模拟与分析[D].保定:华北电力大学,2007.
    [48]刘宏卫.O2/CO2气氛下炉内燃烧过程数值模拟研究[D].北京:华北电力大学,2009.
    [49]米翠丽.富氧燃煤锅炉设计研究及其技术经济性分析[D].北京:华北电力大学,2010.
    [50]傅维标译.煤的燃烧及气化[M].北京:科学出版社,1992.
    [51]傅维标译.粉煤燃烧与气化[M].北京:清华大学出版社,1983.
    [52]容銮恩.工业锅炉燃烧[M].北京:水利电力出版社,1992.
    [53]马毓义译.锅炉燃烧过程[M].北京:中国工业出版社,1966.
    [54]严传俊,范玮.燃烧学[M].陕西:西北工业大学出版社,2006.
    [55]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [56]王文钊.纤维素热重分析及热解动力学研究[D].重庆:重庆大学,2008.
    [57]刘彦,刘彦丰,徐江荣.O2/CO2煤粉燃烧污染物特性实验和理论研究[J].科学出版社,2009.
    [58]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究[J].动力工程,2008,28(3):447-452.
    [59]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002.
    [60]王威.利用热重分析仪研究煤的氧化反应过程及特征温度[D].陕西:西安科技大学.
    [61]张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析[J].太原理工大学学报,2005,3(5):549-552.
    [62]夏少武.活化能及其计算[M].北京:高等教育出版社,1993.
    [63]周遗品,赵永金Arrhenius公式与活化能[J].石河子农学院学报,1995,4:76-80.
    [64]胡荣祖,高胜利,赵凤起.热分析动力学[M].北京:科学出版社,2008.
    [65]吴颂平,刘赵淼译.计算流体力学基础及其应用[M].北京:机械工业出版社,2007.
    [66]周光炯,严宗毅,许世雄,等.流体力学[M].北京:高等教育出版社,2006.
    [67]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [68]徐旭常,周力行.燃烧技术手册[M].北京:化学工出版社,2008.
    [69]温正,石良辰,任毅如FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.
    [70]朱彤,马喜辰,董鹏,等.切向燃烧炉膛中网格划分方法对数值模拟的影响[J].哈尔滨工业大学学报,1997,29(5):59-61.
    [71]G..V Davias. An evaluation of upwind and central difference approximations by a study of recirculating flow[J].Computers & Fluids,1976,4(1):29-43.
    [72]秦岭,班金城.电站锅炉数值计算建模及网格划分的探讨[J].能源工程,2009,1(4):13-16.
    [73]王致均译.炉内空气动力学[M].北京:水利电力出版社,1984.
    [74]王绍周.管道输运工程[M].北京:机械工业出版社,2004.
    [75]杨伦,谢一华.气力输送工程[M].北京:机械工业出版社,2006.
    [76]吴东垠,魏小林,盛宏至,等.炉内配风方式对锅炉经济性的影响[J].工程热物理学报,2005,26(1):163-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700