用户名: 密码: 验证码:
长服役期重力坝整体安全性研究与加固施工数值仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期建造的混凝土重力坝随着龄期的增长,坝体的老化特征日益严重和突出,寻求解决坝体老化问题的理论研究与工程处理措施变得越来越重要和紧迫。大坝老化隐患的研究需要对多种老化现象及其根源进行详细分析,相关的理论研究可以形成一个系统的理论体系。本论文就与长服役期混凝土重力坝纵缝力学特性相关的大坝整体安全性问题及坝体修复加固措施的数值仿真分析方法进行了详细研究,具体包括如下几项研究内容:
     基于长服役期混凝土重力坝纵缝中存在大量堆积、沉淀物质的特殊现象(因早期施工原因和坝体老化而出现的一种特殊的工程现象),提出了该类型接缝的有限元数值计算模型。根据有限元接触力学基本理论建立了适合模拟这种纵缝结构的具有厚度的接触面单元(接缝单元),该单元不仅能够模拟纵缝接触界面的张开、闭合与滑移特性,还能考虑缝内物质的本构关系,尤其是在接缝单元的法向刚度特性上提供了新的计算模式,既能有效地控制法向嵌入,又能较好地模拟出接缝单元的法向受力特性:在有限元求解方法上,通过采用增量迭代法实现了强度校核时的结点不平衡力计算与控制单元法向嵌入时的接触状态调整同步进行。在这些研究的基础上编制了简单实用的有限元求解程序Joint 2D,通过数值算例验证了该程序的接触界面模拟能力和计算精度。之后,将该程序应用到实际工程问题中,明确了纵缝界面不同力学参数对纵缝结合程度的影响。
     在实际工程中,混凝土重力坝接缝特征力学参数的确定是工程接触力学应用的难点。已有的研究表明,基于计算智能的位移反分析方法是一种非常有效的参数反演方法,采用智能化反演分析方法确定大坝接缝的力学参数是一个新兴的课题。本论文在对重力坝纵缝这一非线性结构的力学特性参数进行分析研究后,提出了基于遗传算法的优化反演方法,创新性地实现了带纵缝重力坝坝体弹性参数及坝体纵缝摩擦系数两个方面参数的联合反演。在研究过程中,应用了两个强有力的工具:一个是用于模拟纵缝的大型通用有限元软件ANSYS中的面一面接触单元,ANSYS中采用高效的接触迭代算法可合理、有效地求解纵缝接触问题,这为纵缝的合理模拟和接触界面参数的识别提供了强有力的保障:另一个是遗传算法,它是目前计算智能方法中相对最为成熟的一种算法。本论文通过数据接口实现了两个工具的有机结合。相应的研究结果证明了本论文提出的联合反演方法的高效性、合理性与实用性,可为明确纵缝的力学特性及其对坝体整体安全性的影响提供了一种有效手段。
     本论文还提出了接触非线性坝体结构的静、动荷载组合作用的实用分析方法体系,用于带纵缝混凝土重力坝抗震特性分析。该方法体系主要包括LS-DYNA3D程序的显式动力学有限元方法,模拟纵缝的对称罚函数接触算法,考虑结构—地基相互作用的黏弹性人工边界以及该边界上地震波动的输入方法,结构静力问题的动力学求解方法四项主要内容。本论文对该方法体系中的关键问题进行了理论推导和算例证明。相关研究表明,该方法体系计算效率高,计算过程容易实现,可为求解大型工程问题提供有效的解决方案。然后,采用该方法体系对带纵缝混凝土重力坝的静、动力特性进行了分析,研究了纵缝在静、动力荷载作用下的反应特性及其对大坝抗震性能的影响。
     最后,本论文提出了既能模拟大体积混凝土动态施工方式、施工进度计划,又能够模拟边界条件、荷载、材料性能的变化,尤其是能够对施工过程中坝体结构温度变化和新浇混凝土的热力学影响进行计算分析的大坝修复加固施工数值仿真分析方法。该方法的技术手段是以大型商业通用有限元软件ANSYS为计算平台,利用该软件自带的APDL(ANSYS Program Design Language)程序语言进行二次开发,编写施工过程有限元数值仿真程序。本论文结合长服役期混凝土重力坝的创新性全面修复加固方案——坝体内置换混凝土防渗墙加固方案,编写了针对该方案的施工过程数值仿真程序,并利用该仿真程序研究了方案施工期的坝体结构安全性状况,明确了方案施工过程中的部分关键施工技术问题和所需采用的安全措施,为修复加固方案的论证和实施提供了理论支撑。
More and more serious aging problems have appeared in early constructed concrete dams with their age increasing, so the theoretical research and engineering treatments for solving aging problems of the dam have become more and more important and emergent. Aging phenomena and their origins must be studied in detail and the relative theoretical work can form a theory system. In this dissertation, the main subject is about the mechanical behavior analysis of a long-term operating concrete gravity dam with longitudinal joints and numerical simulation of its reinforcing and regenerating construction using Finite Element Method (FEM). The major contributions are summarized as follows:
     A typical characteristic of the longitudinal joints of the long-term operating dam is that many deposits and sediments are in the joints caused by early worse construction and aging of the dam concrete. Based on analyzing of the normal and shear characteristics of the longitudinal joints of the dam, the constitutive model of this type of longitudinal joint is provided, especially a new normal constitutive function is developed reasonably for contact surface elements with thickness simulating such joints, and then all of the ideas are written in a nonlinear finite element code, Joint_2D, including increment iterating method. The non-balance force at each node and the normal penetration of the two interfaces of each joint element are adjusted simultaneously in the code, and three testified examples prove it is reliable, precise and general. Furthermore, the actual gravity dam with longitudinal joints is numerical simulated, and the variation of the resultant deformation and stress distributions of the dam are analyzed definitely by changing different key mechanical parameters of the joint elements, and some valuable conclusions are obtained reasonably.
     In fact, analysis of the longitudinal joint in numerical simulation is a kind of nonlinear contact problem and the joints are always modeled by contact elements in FEM. However, it is a difficult problem to determine directly the mechanical parameters about these contact elements. Herein, a new displacement inverse method based on calculating intelligent method is provided to identifying the elastic parameters of the dam body and the frictional coefficients of the joints. During the inverse calculating process, the surface-to-surface contact element, which is developed in ANSYS solving by efficient iterating contact algorithm, has been used to simulate the longitudinal joint of the dam. Also, genetic algorithm (GA) is utilized in the inverse process since GA is a much more mature and more reliable one among many calculating intelligent methods. In the displacement inverse method, the surface-to-surface element and GA are two powerful tools assuring the whole inverse process is performed successfully and efficiently. The calculating results indicate that the inverse procedure is reasonable, efficient, and reliable, and can be successfully applied to obtain the frictional coefficients of the longitudinal joints of the actual gravity dam or other similar dams.
     A methodological system, which includes explicit time integration dynamic finite element method (developed in LS-DVNA3D codes), symmetric penalty method, visco-spring dynamic artificial boundary method, and method of static load response being calculated by dynamic codes, is introduced in detail and applied to solve the nonlinear static and dynamic responses of the structural system composed from the aging concrete gravity dam and the rock foundation, as a result that the combined action of dynamic and static loads is performed and the characteristic responses of these joints are obtained reasonably and easily. It proves that the methodological system can be used to settle the complex and large-scale engineering project feasibly and efficiently.
     Finally, a numerical simulation method of structural construction is provided about modeling constructing technique, constructing schedule, and as well as the variation of the boundary situation, loads and material behavior during process of construction for mass concrete structures. Based on the new reinforcing and regenerating technique for the long-term operating concrete dam and the numerical simulation method mentioned above, constructing process modeling and safety analyzing are performed utilizing the FE software, ANSYS, which has its own program design language, APDL, to make a constrction simulating program. The conclusion are drawn resonablly and the simulating method could provide suggestion about constructing treatments not only to this engineering but also to other similar projects since it can predict the systematic safety of dam construction and provide effective reference for technique of construction.
引文
[1]祁庆和.水工建筑物.北京:中国水利水电出版社,1996.
    [2]刘崇熙,汪在芹.坝工混凝土耐久寿命的现状和问题.长江科学院院报,2000,17(1):17-20.
    [3]张燎军.水工结构接触问题的力学模型及其在三峡工程中的应用:(博士学位论文).南京:河海大学,2005.
    [4]Muskhelishvili V I.Singular integral equations.Moscow,1946.
    [5]Muskhelishvili V I.The fundamental general problem of the theory of elasticity.Moscow,1949.
    [6]Galin.弹性理论的接触问题.王君健译.北京:科学出版社,1958.
    [7]Johnson K L.接触力学.徐秉业,罗学富等译.北京:高等教育出版社,1992.
    [8]Panagitopoulos P D.On the unilateral contact problem of structures with a non-quadratic strain energy.Int.J.Solids Struct.,1977,13:253-261.
    [9]崔俊芝.关于有间隙的弹性接触问题.力学学报,1980,3:261-268.
    [10]Kalarbring A,Bjorkman G.A mathematical programming approach to contact problems with friction and varying contact surface.Comp.Struct.,1988,30:1185-1198.
    [11]Kalarbring A.On discrete and discretized nonlinear elastic structures in unilateral contact.Int.J.Solids Struct.,1988,24:459-479.
    [12]卓家寿,陈振雷.非线性介质摩擦接触问题的变分不等式及其应用.北京:科学出版社,1992.
    [13]Bathe K J,Chaudhary A.A solution method for planar and axisymmetric contact problems.Int.J.Num.Meth.Eng.,1985,21:65-88.
    [14]Chaudhary A,Bathe K J.A solution method for static and dynamic analysis of three-dimensional contact problems with friction.Int.J.Comp.Struct.,1986,24(6):855-873.
    [15]Wriggers P,Simo J C.A note on tangent stiffness for fully nonlinear contact problems.Comp.Meth.Appl.Mech.Eng.,1985,50:199-203.
    [16]陈万吉.用有限元混合法分析弹性接触问题.大连工学院学报,1979,18:16-28.
    [17]陈万吉.裂缝重力坝的非线性分析.计算结构力学及其应用,1985,2:11-17.
    [18]钟万勰.弹性接触问题的变分原理及参数二次规划求解.计算结构力学及其应用,1985,2:1-9.
    [19]钟万勰.弹性接触问题的势能原理及其算法.计算结构力学及其应用,1985,2:21-29.
    [20]陈万吉,陈国庆.三维弹性接触问题的互补变分原理和非线性互补模型.计算结构力学及其应用,1996,13:138-146.
    [21]陈国庆,陈万吉,冯恩民.三维接触问题的非线性互补-接触柔度法.计算结构力学及其应用,1996,13:138-146.
    [22]孙苏明,钟万勰.摩擦接触弹塑性分析的数学规划法.力学学报,1991,23:323-331.
    [23]李学文,陈万吉.三维接触问题的非光滑算法.计算力学学报,2000,17(1):143-149.
    [24]李学文.三维摩擦接触问题的非光滑方程组方法研究:(博士学位论文).大连:大连理工大学,2000.
    [25]Christensen P W,Klarbring A,Pang J S et al.Formulat ion and comparison of algorithms for frictional contact problems.Int.J.Num.meth.Engrg,1998,42:145-173.
    [26]胡志强.考虑坝-基动力相互作用的有横缝拱坝地震响应分析:(博士学位论文).大连:大连理工大学,2003.
    [27]Francavilla A,Zienkiewicz O C.A note on numerical computation of elastic contact problems.Int.J.Num.Meth.Engrg,1975,9:913-924.
    [28]Fredriksson B et al.Numerical solutions to contact,friction and crack problems with applications.Eng.Comput.,1994,1:133-143.
    [29]Ngo D,Scordelis A C.Finite element analysis of reinforced concrete.J.American Concrete lust,1967,46(14):152-163.
    [30]Goodman R E,Taylor R L,Brekke T L.A model for the mechanics of jointed rock.Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1968,94(3):637-660.
    [31]Goodman R E,Dubois J.Duplication of blatancy in analysis of jointed rocks:Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1972,98(4):399-422.
    [32]Clough G W,Duncan J M.Finite element analysis of retaining wall behavior.Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1971,97(12):1657-1673.
    [33]Gens A,Carol I,Alonso E E.An interface element formulation for the analysis of soil-reinforcement interaction.Computers and Geotechnics,1988,7:133-151.
    [34]Kaliakin V N,Li J.Insight into deficiencies associated with commonly used zero-thickness interface element.Computers and Geotechnics,1995,17:225-252.
    [35]Ghaboussi J,Wilson E L,Isenberg J.Finite element for rock joints and interface.Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1973,99(10):833-848.
    [36]Desai C S,Zaman M M et al.Thin layer element for interfaces of joints.Int.J.Num.Anal.Meth.in Geomech.,1984,8(1):19-43.
    [37]Schweiger H F,Haas W,Handel E A.A thin-laxer element for modeling joints and faults.In:Barton,Stephenson,ed.Rock Joints:Berkma Rotter Dam,1990.
    [38]Fishman K L,Derb C et al.Verification for numerical modeling of joint rock mass using thin layer elements.Int.J.Num.Anal.Meth.in Geomech.,1991,15:61-70.
    [39]邵炜,金峰.用于接触面模拟的非线性薄层单元.清华大学学报(自然科学版),1999,39(2):34-38.
    [40]殷宗泽.土体本构模型剖析.岩十工程学报,1996,18(4):95-97.
    [41]张冬霁,卢廷浩.土与结构接触面模拟的建立与应用.岩土工程学报,1998,20(6):62-66.
    [42]Katona M G.A simple contact-friction interface element with applications to buried culverts.Int.J.Num.Anal.Meth.in Geomech.,1983,7:371-384.
    [43]雷晓燕,Swoboda G,杜庆华.接触摩擦单元的理论及应用.岩土工程学报,1998,20(6):62-66.
    [44]Hallquist J O,Goundreau G L,Benson D J.Sliding interfaces with contact-impact in large-scale lagrangian computations.Comput.Meth.Appl.Mech.Eng.,1985,51:107-137.
    [45]Benson D J,Ilallquist J O.A single surface contract algorithm for the post-buckling analysis of structures.Comput.Meth.Appl.Mech.Eng.,1990,78:141-163.
    [46]Heinstein M W,Bello F J et al.Contact-impact modeling in expl ici t transient dynamics.Comput.Beth.Appl.Mech.Eng.,2000,187:621-640.
    [47]Liu J B,Sharan S K,Wang D et al.A contact force model for the dynamic response of cracks.Computers and Structures,1994,52(4):659-666.
    [48]Liu J B,Sharan S K.Analysis of dynamic contact of cracks in viscoelastic media.Comput.Methods Appl.mech.Engrg.,1995,121:187-200.
    [49]Liu J B,Sharan S K,wang D et al.A dynamic contact force model for contactable cracks with static and kinetic friction.Comput.Methods Appl.Mech.Engrg.,1995,123:287-298.
    [50]Chen W H,Yeh J T.A new finite element technique for dynamic contact problems with friction.J.Theor.Appl.Mech.,1988,7(1):287-298.
    [51]Chen W H,Yeh J T.Three-dimensional finite element analysis of static dynamic contact problems with friction.Computers and Structures,1990,35(5):541-552.
    [52]Wu S C,Hang E J.A substructure technique for dynamics of flexible mechanical with contact-impact.Trans.of the ASME,1990,112(9).
    [53]Mahmoud F F,Hassan M M,SaIamon N J.Dynamic contact of deformable bodies.Computers and Structures,1990,36(1):
    [54]Simo J C,Wriggers P,Taylor R L.A perturbed lagrangian formulation for the finite element solution of contact problems.Comput.Methods Appl.Mech.Engrg.,1985,50:163-180.
    [55]Chen W H,Tsai P.Finite element analysis of elastodynamic sliding contact problems with friction.Computers and Structures,1986,22(6):925-938.
    [56]Kanto Y,Yakawa G.A dynamic contact buckling analysis by the penalty finite element method.Int.J.Num.meth.Eng.,1990,29:755-774.
    [57]Asano N.A penalty function type of virtual work principle for impact contact problems of two bodies.Bulletin ASME,1986,29(257):3701-3709.
    [58]Belytschko T,Mullen R.Stability of explicit-implicit mesh partition in time integration.Int.J.Numer.Meths.Eng.1979,12:1575-1586.
    [59]Hughes T J R,Liu W K.Implicit-explicit finite elements in transient analysis:stability theory.J.Appl.Mech.,1978,45(6):371-374.
    [60]Itughes T J R,Liu W K,Implicit-explicit finite elements in transient analysis:implementation and numerical examples J.Appl.Mech.,1978,45(6):375-378.
    [61]崔俊芝.水工结构有限元计算--回顾与展望中国水利水电技术发展与成就.北京:中国电力出版社,1997.
    [62]杜修力,陈厚群,候顺载.拱坝系统三维非线性地震波动分析.地震工程与工程振动,1996,16(3):.
    [63]涂劲.有缝界面的混凝土高坝-地基系统的非线性地震波动反应分析:(博士学位论文).北京.中国水利水电科学研究院,1999.
    [64]陈厚群,侯顺载,涂劲等.丰满大坝抗震动力分析与安全.大坝与安全,1999,(3):27-35.
    [65]KavanaghK,Clough R W.Finite elementapp]ication in the characterization of elastic solid.International.Journal of solids structure,1971,(7):ll-23.
    [66]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel.Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [67]Arai R.An inverse problem approach to the prediction of multi-dimensional consolidation behavior.Soil and Foundations,1984,21(1):95-108.
    [68]Gioda G,Jurina G.Numerical identification of soil structure interaction pressures.International Journal for Numerical and Analytical Methods in Geomechanics,1981,5(1):33-56.
    [69]Bonaldi P,Fanelli M,Giusepptti G.Displacement forecasting for concrete dams via deterministic mathematical models.International Water Power and Dam Construction,1977,29(9):143-148.
    [70]Giusepptti G.Basic theory underlying the computation of influence coefficients.ISMES,1986,241-247
    [71]陈久宇,林见.观测数据的数学处理.上海:上海交通大学出版社,1986.
    [72]陈久宇.应用实测位移资料研究刘家峡重力坝横缝的结构作用.水利学报,1982,(12):.
    [73]陈久宇.利用实测位移资料估计坝体混凝十的实际弹性模量.水电自动化与大坝监测,1983,7(2):.
    [74]吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000.
    [75]吴中如,顾冲时,沈振中.大坝安全综合分析和评价的理论方法及其应用.水利水电科技进展,1998,18(3):2-6.
    [76]顾冲时,诸渭林.探讨大坝与岩基的反馈分析的新理论和新方法.大坝观测与土工测试,2000,24(1):8-12.
    [77]顾冲时,吴中如.综论大坝原型反分析及其应用.中国工程科学,2001,3(8):76-81.
    [78]吴中如,顾冲时。炅相豪.碾压混凝十坝安全监控理论及其应用.北京:科学出版社,2001.
    [79]吴中如,顾冲时,吴相豪.碾压混凝土坝安全监控理论和方法.水利学报,2002,(9):112一116.
    [80]吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003.
    [81]杨杰,吴中如,顾冲时等.坝体与坝基材料参数的薄层单元有限元反分析.岩石力学与工程学报,2005,25(2):3087-3092.
    [82]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [83]郑璀莹.混凝土坝中各种接触面的数值模拟方法研究及工程应用:(博士学位论文).北京:中国水利水电科学研究院,2006.
    [84]杜成斌,任青文.用于接触面模拟的三维非线性接触单元.东南大学学报,2001,31(4):92-96.
    [85]Kaiser P,Zou D,i,ang P.Stress determination by back-anal ysj s of excavation induccd stress changes.Rock Mechani cs and Rock Engineering,1990,23(3):185-200.
    [86]刘维倩,黄光远,穆永科等.岩土工程中的位移反分析法.计算结构力学及其应用,1995,12(1).93-101.
    [87]Swoboda G,Ichikawa Y,Dong Q et al.Back analysis of large geogechnical models.International Journal for Numerical and Analytical Methods in Geomechamics,1999,23(12):1455-1472.
    [88]刘怀恒.支护简载反演及安全度预测.西安矿业学院学报,1991,11(4):1-8.
    [89]王银芝,杨忠发,王思敬.岩石力学位移反演分析回顾与进展.力学进展,1998,28(4):488-498.
    [90]杨志发,丁恩保,张三旗.地下工程平面问题弹性有限元图谱.北京:科学出版社,1989.
    [91]吕爱钟.地下巷道弹性位移反分析各种优化问题的探讨.岩土力学,1996,17(2):29-34.
    [92]吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1989.
    [93]孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法.岩石力学与工程学报,1992,11(3):221-229.
    [94]王平,朱维中,千可钧.单纯形法及其住广蓄电站围岩变形反分析中的应用.岩土力学,1991,12(2):.
    [95]周志芬,顾长程,吴跃东,拉西瓦水电工程岩体裂隙透水性反分析研究.水文地质工程地质,1993,(6):.
    [96]吴相豪,吴中如,顾冲时等.碾压混凝土拱坝徐变度反演分析方法.大坝观测与土工测试,2000,24(1):22-25.
    [97]李守巨,刘迎曦,周承芳.岩土渗流问题反分析的非线性最小二乘法.中国有色金属学报,1998,8(s.1.2):488-498.
    [98]刘迎曦,李守巨,陈吕林等.丰满混凝土重力坝材料参数识别研究.水利学报,1999,(9):38-43.
    [99]刘迎曦,李守巨,周承芳等.丰满混凝土重力坝渗透系数反演分析.武汉水利电力大学学报,1999,32(1):1-4.
    [100]刘迎曦,王登刚,张家良等.材料物性参数识别的梯度止则化方法.计算力学学报,2000,17(1):69-75.
    [101]李守巨,刘迎曦,王登刚等.混凝土重力坝材料参数识别的正则化最小二乘法.计算物理,2000,17(6):702-706.
    [102]李守巨,刘迎曦,王登刚等.岩石和混凝土材料参数识别的修正高斯-牛顿算法.岩石力学与工程学报,2000,19(1):93-96.
    [103]李守巨,刘迎曦,王登刚.混凝土重力坝弹性参数识别的灵敏度分析及实例.岩土工程学报,2000,22(3):381-383.
    [104]王登刚,刘迎曦,李守巨.混凝土重力坝振动参数识别研究.水力发电,2001,(2):17-19.
    [105]李守臣,刘迎曦,张正平等.基于神经网络的混凝土大坝弹性参数识别方法.大连理工为大学学报,2000,40(5):531-535.
    [106]李守巨,刘迎曦,王登刚等.云峰大坝弹性参数识别的神经网络方法.水利水电技术,2000,31(8):51-55.
    [107]练继建,王春涛,赵帮吕.基于BP神经网络的李家峡拱坝材料参数反演.水力发电学报,2004.23(2):44-49.
    [108]刘健,练继建.李家峡拱坝坝体弹性模量及基岩变形模量的反演.岩石力学与工程学报,2005,24(24):4466-4471.
    [109]赵斌,吴中如,沈振中等.应用hopfield网络反演分层分区变形模量.水电能源科学,2000,18(3):4-6.
    [110]刘先珊,余成学,张立君.RBFNN模型和渗透系数反演中的应用.岩土力学,2003,24(3):1025-1029.
    [111]朱国金,胡灵芝,顾冲时等.基于神经网络模型的某大坝混凝土弹性模量时变规律反演分析.水电自动化与大坝监测,2005,29(4):32-34.
    [112]刘迎曦,王登刚,李守巨.识别混凝土重力坝弹性模量的一种新方法.大连理工大学学报,2000,40(2):144-147.
    [113]李守巨.基于计算智能的岩土力学模型参数反演方法及其工程应用:(博士学位论文).大连:大连理工大学,2004.
    [114]郭雪莽,田明俊,秦理曼.土石坝位移反分析的遗传算法.华北水利水电学院院报,2001,22(3):94-98.
    [115]向衍,苏怀智,顾冲时.基于遗传算法的物理力学参数反演.长江科学院院报,2003,20(6):55-58.
    [116]向衍,苏怀智,吴中如.基于大坝安全监测资料的物理力学参数反演.水利学报,2004,(8):98-102.
    [117]向衍,郑东健,何旭升.基丁MSC.Marc物理力学参数反演.水电能源科学,2003,21(4):7-10.
    [118]张宁鑫.人体积混凝土温度应力仿真分析与反分析:(博士学位论文).大连:大连理工大学,2002.
    [119]朱伯芳.多层混凝十结构仿真应力分析的并层算法.水力发电学报.1994,(3):21-30.
    [120]朱伯芳.不稳定温度场时间域分区异步长解法.水利学报.1995,(8):46-52.
    [121]朱伯芳.弹性徐变体时间域分区异步长解法.水利学报.1995,(7):24-27.
    [122]王建江,陆述远,魏锦萍.RCCD温度应力分析的非均匀单元方法.力学与实践.1995,17(3):41-44.
    [123]陈尧隆,何劲.用三维有限元浮动网格法进行碾压混凝土重力坝施工期温度场和温度应力仿真分析.水利学报(增刊).1998:2-5.
    [124]赵代深,薄钟禾.混凝土拱坝的动态模拟方法.水利学报.1994,(8):18-26.
    [125]黄达海,殷福新,宋玉普.碾压混凝土坝温度场仿真分析的波函数法.大连理工大学学报.2000,,10(2):214-217.
    [126]李荣湘,马杰.大体积混凝土温度场计算的边界元法.水利学报.1991,(8):57-64.
    [127]曾昭扬,马黔.高碾压混凝土拱坝的构造缝研究.水力发电.1998,(2):30-33.
    [128]刘光廷,张国新,刘志辫.含灌浆横缝碾坟混凝土拱坝仿真应力和双轴强度判别.清华大学学报.1996,36(1):13-19.
    [129]张国新,刘光延.简谐热荷载多裂隙体断裂问题及碾压混凝土拱坝的稳定性.北京:RCC会议论文集.1991.
    [130]美国内务部垦务局编.候建功译.混凝土坝的冷却.北京:水利水电出版社.1958.
    [131]朱伯芳.考虑水管冷却效果的混凝土等效热传导方程.水利学报.1991,(3):28-34.
    [132]友家煊.水管冷却理论解与有限元结合的计算方法.水利发电学报.1998,(4):31-41.
    [133]刘宁,刘光廷.水管冷却效应的有限元子结构模拟技术.水利学报.1997,(12):43-50.
    [134]蔡建波.用杂交元求解有冷却水管的平面不稳定温度场.水利学报,1998,(5):18-25.
    [135]赵代深,侯朝胜,李梅杉.混凝土坝接缝浠浆水管冷却三维仿真计算研究.水利水电技术.2000,31(8):8-12.
    [136]陈里红,傅作新.采用一期水管冷却的混凝土坝施工期数值模拟.河海大学学报,1991,19(2):22-28.
    [137]Stucky A,Derron M H.Problems thermiques poses par la construction des barrage-reservoires.Lausanne.Sciences & Technique.1957.
    [138]朱伯芳.聚乙烯冷却水管的等效间距.水力发电.2002,(1):20-22.
    [139]朱伯芳.人体积混凝土温度应力与温度控制.北京:中国电力出版社.1998.
    [140]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [141]潘正君,康立山,陈毓屏.演化计算.北京:清华大学出版社,1998.
    [142]林皋.混凝土大坝抗震安全评价的发展趋向.防灾减灾工程学报,2006,26(1):1-12.
    [143]尚晓江,苏建宁.ANSYS/LS-DYNA动力分析方法与工程实例.北京:中国水利水电出版社,2006.
    [144]何涛,杨竞,金鑫.ANSYS10.0/LS-DYNA 非线性有限元分析实例指导教程.北京:机械工业出版社.2007.
    [145]Hallquist J O,Benson D J.User' s manual for DYNA3D:Nonlinear Dynamic Analysis of Structures.USA:Lawrence Livermore National Laboratories,1987.
    [146]杜修力.局部解耦的时域波分析方法.水利学报,2004,(8):98-102.
    [147]Deeks A J,Randolph M F.Axisymmetric time-domain transmitting boundaries.Journal of Engineering Mechanics,1994,120(1):25-42.
    [148]Lysmer J,Kulemeyer R L.Finite dynamic model for infinite media.J.Engng.Mech.Div ASCE,1969,95:759-877.
    [149]杜修力,赵密.基于黏弹性边界的拱坝地震反应分析方法.水利学报,2006,37(9):1063-1069.
    [150]赵建锋,杜修力,韩强.外源波动问题数值模拟的一种实现方法.工程力学,2007,24(4):52-58.
    [151]廖维张,杜修力,赵密等.开放系统非线性动力反应分析的一种算法.北京工业大学学报,2006,32(2):115-119.
    [152]向衍,苏怀智,吴中如.基于大坝安全监测资料的物理力学参数反演.水利学报,2004,(8):98-102.
    [153]贺向丽,李同春.粘-弹性人工边界在重力坝动力分析中的应用.水电能源科学,2006,24(1):30-31.
    [154]牛志伟.李同春,赵兰浩.粘弹性边界在流固耦合系统动力分析中的应用.水电能源科学,2007,25(4):68-71.
    [155]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55-64.
    [156]赵兰浩.考虑坝体-库水-地基相互作用的有横缝拱坝地震相应分析:(博士学位论文).南京:河海大学,2006.
    [157]王刚.老化混凝土坝防渗加固施工温度应力仿真分析:(硕士学位论文).大连:大连理工大学,2005.
    [158]王刚,马震岳,陈吕林.老混凝土坝防渗加固施工中温度应力仿真分析.水利水电科技进展,2005,25(6):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700