用户名: 密码: 验证码:
前缘弯掠(扭)斜流转子内流机制的数值分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯掠叶片的成型方法自六十年代初提出以来,受到世界各国研究人员的高度重视。随着相关学科的发展,弯掠叶片成型规律的研究逐渐形成了“弯掠叶片动力学”分支学科。合理运用弯掠能够改变叶轮机械的静压梯度分布、抑制二次流发展和端壁低能流体的聚集,达到提高气动性能的目的。为此,本文设计和研制了前缘弯掠(扭)斜流转子,并对其内流机制进行了数值分析和实验研究,探索弯掠设计和实验研究对提高风扇/压气机失速裕度的有效途径。
    文中详细给出了基于假想等价速度三角形和1/7边界层法则的前缘弯掠(扭)斜流转子的准三元设计方法,以及为保持叶栅性能不变的Schlichting理论修正公式和修正方法,编写了设计计算程序。本文设计的前缘弯掠(扭)斜流转子的主要特点是:转子叶片顶部和叶片根部前缘弯掠(扭),叶片中弧线保持不变,即叶片出口气流角与常规叶片相同,因此可以在不变更常规设计系统条件下进行前缘弯掠设计。
    文中自行设计并研制了前缘弯掠(扭)斜流转子,在自行设计和集成制造的(符合AMCA210-85,GB1236-2000标准)全自动风机外特性实验台上进行的气动特性测试结果表明,前缘弯掠(扭)斜流转子消除了常规斜流转子在低流量时的失速区域,扩大了运行工况范围。前缘弯掠(扭)斜流转子的计算结果和性能实验结果吻合。
    研究并数值分析了前缘弯掠(扭)斜流转子内部复杂的流动现象,揭示了前缘弯掠(扭)斜流转子内的流动机制;即前缘弯掠(扭)斜流转子消除了常规斜流转子吸力面叶根前缘存在的回流,将端壁区域的低能流体吸收到叶片中部高能主流中,减弱了端部低能流体的聚集,从而减弱了流动损失和流动阻塞。计算结果的比较表明,前缘弯掠(扭)斜流转子的叶片尾迹比常规斜流转子弱,机壳和轮毂端壁对转子尾迹的影响减弱,抑制了低能流体的堆积,扩大了运行工况范围。
    文中数值分析了前缘弯掠(扭)斜流转子叶顶间隙泄漏涡在不同间隙时的流动机制。研究发现:大间隙时,叶顶间隙泄漏流与主流发生了强烈的卷吸;叶顶泄漏涡产生于弦长33%的轴向位置,靠近吸力面,泄漏涡沿着与转子旋向相反的方向朝相邻叶片的压力面向下游发展。叶顶间隙增加时,泄漏涡增强。当流量减小时,叶顶泄漏涡
    
    国家自然科学基金项目No: 50176012;教育部博士学科点专项基金项目No: 20020487025
    
    
    的作用区域扩大,损失增加,间隙泄漏流与主流的卷吸作用更加强烈。
    本文应用PIV技术首次对前缘弯掠(扭)开式斜流转子的叶尖涡流动特性进行了测量并与CFD结果作了比较。PIV测量结果表明,叶尖涡是由沿子午面流动的主气流与从叶顶外侧吸入的气流相互卷吸而产生,叶尖涡产生于叶片吸力面近叶顶区域,大致沿着一条与叶轮旋转方向相反的斜线向转子下游发展,持续到转子叶顶出口下游65%弦长位置。叶尖脱落涡的强度及其卷吸区域随叶轮转速的提高而增强,随背压的提高而减弱,当背压增加到一定程度时,叶尖脱落涡消失。实验结果和计算结果吻合,验证了本文计算方法的妥当性和PIV实验结果的可靠性。
Since the molding methods of the skewed-swept blade were proposed from 1960’s, the Researches from all over the world attach high importance to it. With the development of the related subjects, the Research on the skewed-swept blade-molding rule gradually develop into a subject of “sweep aerodynamics”. It can change the static pressure grads distribution; restrain the development of the secondary flow; reduce the conglomeration of the low-momentum fluid near the wall region and improve the aerodynamic characteristic of the turbomachinery by sweeping and skewing the blade properly. In order to explore the effective approach of improving the stall margin of fans and compressors by sweeping and skewing the rotor, the leading edge skewed-swept diagonal rotor is designed and studied, its internal flow mechanism is analyzed by numerical simulation and experimental research in this dissertation.
    The quasi-three-dimensional design method of the leading edge skewed-swept diagonal rotor is given in detail. This design method is based on the virtual-equivalent velocity triangle diagram and the one-seventh boundary layer rule. In order to keep the blade cascade characteristic is the same with the practical data, the theoretical correcting equations and methods, which was originally proposed by Schlichting, is also given. The computer software is programmed to design the leading edge skewed-swept diagonal rotor in this dissertation. The designed skewed-swept diagonal rotor has the following distinctive features: The leading edge is skewed and swept near the hub and casing wall region. The blade’s camber line is the same as the conventional rotor; that is to say, the rotor’s exit flow angle is the same as the conventional rotor. So the leading edge skewed-swept diagonal rotor can be designed under the conventional design system.
    The leading edge skewed-swept diagonal rotor is designed. Its aerodynamic characteristic curve is measured on the own-made automatic testing equipment that was designed according to the AMCA210-85 and GB1236-2000 standards. The tested results show that the skewed-swept diagonal rotor diminished the stall region that was usually existed at the lower flow rate for the normal diagonal rotor. The newly designed diagonal rotor increased the working range. The calculated characteristic curve of the skewed-swept
    
    It is supported by the National Natural Science Foundation of China (No: 50176012 ) and the Doctorate Foundation of the Ministry of Education(No: 20020487025)
    
    
    diagonal rotor is in good agreement with the tested data.
    The complex internal flow phenomena of the leading edge skewed-swept diagonal rotor are calculated and analyzed by using commercial CFD software. The internal flow mechanism of the skewed-swept diagonal rotor is revealed. The backflow that existed at the suction surface near the leading edge and hub wall region of the normal diagonal rotor is eliminated by the leading edge skew and sweep. The low energy fluid near the hub wall region is sucked into the high-energy fluid near the blade’s middle region. The conglomeration of low energy near the hub wall region is reduced. The fluid block and loss is decreased. The calculated results showed that, the wake of the skewed-swept diagonal is weaker than that of the normal diagonal rotor; the influence of the casing and hub wall on the wake is weakened; the blockage of the low energy fluid near the hub wall region is reduced and the working range of the leading edge skewed-swept diagonal rotor is increased.
    The leakage vortex and the tip clearance flow mechanism is revealed and discussed at different clearance size and different flow rate by using CFD simulation. At large tip clearance size, there exists the strong rolling up of the fluid between the clearance flow and the main flow. The leakage vortex is generated at the axial position of 33% chord length of the blade tip, and it is near the blade’s suction surface. The leakage vortex moves toward the adjacent blade’s pressure surface in the blade’s flow passage along the rever
引文
Deich M. E., Gubalev A. B., Wang Zhongqi, A New Method of Profiling the Guide Vane Cascade of Stages with Small Ratios of Diameter to length. Teplien ergetika. 1962(8): 42-46
    Mikkelson D. C., Summery of Recent NASA Propeller Research. NASA TM 83733,1982
    Garrent, Turbine Co. Makers Lead in Computer. Uses Aviation Week and Space Technology, 1983(8): 58-59
    徐建中. 叶轮机械气动热力学的回顾与展望. 西安交通大学学报,1999(9)
    Zhongqi Wang, Aerodynamic Calculation of Turbine Cascades with curvilinear leaned blades and some experimental results. In: symposium paper of 5th ISABE 1981
    Filiov G. A., Zhongqi Wang, The Calculation of axial symmetric flow in a turbine stage withsmall ration of diameter to blade length. Journal of Moscow Power Institute, 1963(47): 63-78
    IHPTET. Air Dominance Through Propulsion Superiority. Ten Years of Progress, 1997(10)
    美国国防部提交国会的关键技术计划, 1989-1994. 航天科技信息研究所译
    杜幸民. 压缩机系统跨音进口级弯掠叶片空气动力学概述. 航空动力学报,1995,10(4): 407-411
    Neal A., Brown, The use of Skewed blades for ship propellers and Truck Fans. Noise and Fluids Engineering. In: The Winter Annual Meeting of the American Society of Mechanical Engineers, Atlanta, Georgia. Nov.27-Dec2, 1977
    Dugan J. F., Gatzen B. S., Adamson W. M. Propeller fan Propulsions States and Potential. SAE Paper, 780995, 1978.
    Sulliran J. P., The Effect of Blade Sweed on Propeller Performance. ASME Paper 77-716, 1976
    Fuji S., Aeroacoustics of An Advanced Propeller Design Under Take off and Landing anditions. Journal of Aircraft. 1986, 33(2)
    Farassat F., Some Quantitive Results on the Thickness and Loading Noise of
    
    
    Rotation Blades. Journal of Sound and Vibration. 1985 101(2)
    王仲奇,郑严. 叶轮机械弯扭叶片的研究现状及发展趋势. 中国工程科学. 2000.6, 2(6): 40-48
    Wennerstorm A. J., Highly Loaded Axial Flow Compressors: History and Current Developments. ASME Journal of Turbomachinery. 1990,112: 567-578
    Wadia A. R., Szucs P. N., Crall D. W., Inner Workings of Aerodynamic Sweep. ASME Journal of Turbomachinery. 1998, 120: 671-682
    Sasaki T.,Breugelmans F., Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. ASME Journal of Turbomachinery. 1998, 120: 454-464
    Beller M. G.,Carolus T. H., Computation and Measurement of the Flow in Axial Flow Fans with Skewed Blades. ASME Journal of Turbomachinery. 1999, 121: 59-66
    王仲奇. 一代新型的轴流式透平机械叶片-叶片的弯扭联合成型理论及其实验结果.见:工程热物理与能源利用原料气动热力学发展战略研讨会专题报告汇编,北京,1989: 55-65
    王仲奇,韩万今. 弯扭联合气动成型叶片研究的历史, 现状与展望. 见:中国机械工程学会动力工程学会透平专业重大技术与工艺问题学术讨论会. 1987.9
    王松涛, 吴猛, 冯国泰, 王仲奇. 正弯叶片降低叶栅内部损失的数值模拟. 热能动力工程. 2000.3(15) : 151-152
    王会社, 钟兢军, 王仲奇. 正倾斜叶片压气机叶栅二次流的数值研究. 热能动力工程. 2002,7(17) : 375-378
    钟兢军, 苏杰先, 王仲奇. 压气机叶栅中应用弯曲叶片的研究. 航空动力学报. 1998.1, 13(1): 7-13
    黄洪雁, 韩万今, 冯国泰, 王仲奇. 采用弯扭叶片提高汽轮机运行性能. 节能技术.1999 17(93) :12-13
    王仲奇, 韩万今, 徐文远. 低弦展比透平叶片弯曲方法研究. 工程热物理学报.1995.2, 16(1) : 35-38
    顾发华, 王仲奇, 杨弘, 冯国泰. 叶片的周向弯曲与弦向弯曲及其数值分析. 工程热物理学报. 1994.8, 15(3) : 264-269
    
    王松涛, 吴猛, 冯国泰, 王仲奇. 叶片弯曲对跨音速涡轮叶栅流场的影响. 热能动力工程. 2000.5,15(87) : 239-244
    王东, 钟兢军, 苏杰先, 丁海彬, 王仲奇. 叶片弯曲对扩压叶栅出口流场的影响. 热能动力工程. 2000.9,15(89) : 480-483
    王东, 苏杰先, 王仲奇, 黄震. 叶片弯曲对压气机叶栅损失与速度的影响. 上海交通大学学报. 2003.7,37(7) : 1045-1049
    韩万今, 黄洪雁, 王仲奇. 叶片弯曲对叶顶间隙流动影响的实验研究. 航空学报. 1999.9,20(5) : 399-404
    韩万今, 黄洪雁, 侯建东, 王仲奇. 叶片正弯对间隙流动的影响. 工程热物理学报. 1997.7,18(4) : 429-434
    黄洪雁, 韩万今, 王仲奇. 叶片弯曲对叶顶间隙流动损失的影响. 航空动力学报. 1999.9,12(3) : 263-268
    杨科, 王会社, 钟兢军, 王仲奇. 叶片周向弯曲角度对扩压叶栅气动性能的影响. 哈尔滨工业大学学报. 2002.8,12(3) :459-463
    韩万今, 黄洪雁, 权生林, 王仲奇. 有间隙弯叶片近壁面静压分布对叶栅气动性能的影响. 工程热物理学报. 1998.11,19(6) : 692-696
    宋彦平, 王仲奇, 徐文远, 卢文才. 在大高径比环形透平叶栅中叶片弯曲对二次流影响的实验研究. 工程热物理学报. 1997.11,18(6) : 705-708
    钟兢军, 苏杰先, 王仲奇, 陈莹. 叶片倾斜和弯曲对扩压叶栅出口流场的影响. 工程热物理学报. 1995.2,16(1) :29-34
    黄洪雁, 韩万今, 冯国泰, 王仲奇. 直叶片积叠方式对涡轮性能的影响. 汽轮机技术.1999.4,41(1) : 82-85
    顾忠华, 冯国泰, 王松涛, 王仲奇. 涡轮动叶采用弯叶片的数值模拟及流场结构分析.工程热物理学报. 2001.9,22(5) : 572-574
    卢文才, 钟兢军, 苏杰先, 王仲奇. 弯叶片压气机叶栅在不同进口附面层厚度下的特性研究. 工程热物理学报. 1998.2,30(6) : 8-12
    安柏涛, 韩万今, 王仲奇. 弯叶片降低损失机理的实验研究. 热能动力工程. 2002.9,15(89) : 498-502
    王会社, 袁新, 岳国强, 钟兢军, 王仲奇. 弯曲叶片积叠线对压气机叶栅气动性
    
    
    能的影响. 航空动力学报. 2002.7,17(3) : 327-331
    贾剑波, 钟兢军, 王仲奇. 弯曲叶片压气机叶栅内二次流的数值研究. 工程热物理学报. 1999.11,20(6) : 685-689
    王仲奇, 苏杰先, 钟兢军. 弯扭叶片栅内减少能量损失机理研究的新进展. 工程热物理学报. 1994.5,15(2) :147-152
    刘凤军, 顾发华, 杨弘, 冯国泰, 王仲奇. 弯扭叶片对涡轮三维压力场的影响. 工程热物理学报.1996.12,17(2) : 48-52
    徐文远, 于清, 杨弘, 王仲奇. 弯扭静子叶片的环形叶栅实验. 工程热物理学报. 1994.8,15(3) : 280-283
    王东, 钟兢军, 苏杰先, 王仲奇. 环型扩压叶栅中应用弯曲叶片的研究. 高技术通讯. 2000 3 : 90-94
    韩万今, 吕红卫, 芦文才, 王仲奇. 高负荷叶片弯曲对壁面流动的影响. 航空动力学报. 1995.4,10(2) : 175-179
    王松涛, 王仲奇, 冯国泰, 孙玺淼. 非定常条件下叶片弯曲对流场参数的影响. 航空动力学报. 2002.7,17(3) : 314-318
    钟兢军, 苏杰先, 王仲奇, 陈莹. 从扩压因子看叶片倾斜和弯曲对叶栅出口流场的改善. 哈尔滨工业大学学报. 1994.10,26(5) : 30-33
    钟兢军, 王苇, 苏杰先, 王仲奇. 稠度对弯叶片压气机叶栅特性的影响.航空动力学报. 1997.4,12(2) : 163-168
    吴猛, 王松涛, 王仲奇, 冯国泰. 不同攻角下叶片弯曲对涡轮静叶流场的影响. 上海理工大学学报. 2001,23(3) : 193-196
    邢秀清, 单鹏, 周盛. 风扇转子前缘曲线相对掠对性能的影响. 航空动力学报. 2000.1,15(1) : 39-43
    邢秀清, 周盛, 赵晓路. 掠弯叶片前缘曲线同流场结构的关联. 航空动力学报. 2000.10,15(4): 337-341
    单鹏, 桂幸民, 周盛,etc. 高负荷后掠风扇设计若干基本问题. 工程热物理学报. 1999.9,20(5) : 576-580
    周盛, 袁巍, 郭恩民. 跨音弯掠风扇转子叶片的气动弹性剪裁. 航空动力学报. 1998.1,13(1) : 1-7
    
    季路成, 项林, 刑秀清, 周盛, 徐建中. 由两个风扇转子设计得到的启示. 工程热物理学报. 2001.1, 22(1) : 48-50
    蔡娜, 李地, 钟芳源. 弯掠动叶叶尖径向间隙对气动—声学性能的影响. 航空动力学报. 1997.1,12(1) : 21-26
    蔡娜, 钟芳源. 弯掠动叶旋转失速工况下气动声学的实验分析与计算. 空气动力学学报. 1997.12,15(4) : 479-483
    蔡娜, 李地, 钟芳源. 弯掠动叶气动-声学优化设计及实验研究. 上海交通大学学报. 1997,31(2) : 81-85
    蔡娜, 钟芳源. 弯掠动叶扩大稳定工作范围的实验研究. 航空动力学报. 1996.7,11(3) : 229-233
    蔡娜, 李地. 一种高效节能轴流风机的实验及计算(I)稳定工况性能.现代电力. 1997.3,14(1) : 13-19
    蔡娜, 李地. 一种高效节能轴流风机的实验及计算(II)旋转失速工况性能. 现代电力. 1997.6,14(2) : 46-51
    蔡娜, 李地, 钟芳源. 新型弯掠动叶风机性能实验. 流体机械. 1996,24(11) : 3-7
    钟芳源, 王建民, 蔡娜, 李中. 双激盘理论及其在轴流式弯掠动叶栅气动计算中的应用.航空动力学报. 1994.10,9(4) : 394-399
    蔡娜, 李地, 常连生. 电厂中高稳定性节能轴流风机的实验研究. 中国电机工程学报. 1999.1,9(1) : 42-46
    刘富斌, 钟芳源, 杜朝辉. 前弯动叶片变工况性能的估计方法. 航空动力学报. 2000.4,15(2) : 147-150
    刘富斌, 杜朝辉, 钟芳源. 动叶周向前弯对附面层的影响. 航空动力学报. 2000.7,15(3) : 233-236
    刘富斌, 杜朝辉, 钟芳源. 轴流通风机动叶前弯对扩大稳定工况的试验研究. 风机技术. 1999.6 : 5-10
    蔡娜, 钟源芳. 轴流式弯掠动叶变工况气动—声学的实验研究. 工程热物理学报. 1996.8, 17(3) : 280-285
    欧阳华, 钟芳源. 叶轮机械气动噪声及周向前弯动叶降噪技术的研究. 风机技术. 2002.5 : 11-15
    
    Wei Jun, Fangyuan Zhong, The Effect of Forward Skewed Rotor Blades on Aerodynamic and Aero-acoustic Performance of Axial Flow Fan. AIAA Paper No.88~3783. In: The First National Fluid Dynamics Congress. Cininnati, USA, July 24-28, 1988
    Weingold,Bowed Stators:An Example of CFD APPlied to Improve Multistage Compressor Efficiency. SME Journal Turbomachinery. 1997.119, : 162-168
    Furukawa M., Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors. ASME Journal of Turbomachinery. 1998.120 : 683-694
    Arjun S. R., A Study of the Behaviour of Flow in a Diagonal Flow Turbomachinery. ASME Paper. 1996,96-GT-61
    Inoue M., Controlled Endwall Flow Blading For Multistage Axial Compressor Rotor. ASME Paper. 1997,97-GT-248
    Inoue M., Vortex and Turbomachinery. In: The fifth Asian International Conference on Fluid Machinery. Seoul,Korea,October 6-8,1997 :117-131
    陈矛章. 风扇/压气机技术发展和对今后工作的建议. 航空动力学报. 2002.1. 17(1) : 1-15
    方昌德. 美国综合高性能涡轮发动机技术计划和我国的对策. 中国航空工业第一集团第628研究所. HY99018,1999.9
    Wennerstrom A. J., Frost G. R., Design of a 1500ft/sec Transonic,High-Through-Flow,Axial-Flow Compressor with Low Hub/Tip Ratio. [R].AD-B016386,1971.
    Frank B. J., King P. I., Effects of Leading Edge Sweep on Stall Inception in a High-Speed Single-Stage Compressor. AIAA Paper,94-2696,1994
    Boger K. M.,King P. I., Copenhaver W. W., Stall Inception in Single Stage High-Speed Compressor with Straight and Swept Leading Edges. AIAA,93-1870,1993
    Frank B. J., Analysis and Characterization of Compressor Stall Precursor Signals in Forward and Aft Swept High Speed Compressors. Master Thesis. Air Force Inst. Of Tech,WPAFBOH,1993.12
    Neubert R. J.,Hobbs D. E.,Weingold H. D., Application of Sweep to Improve the Efficiency of a Transonic Fan :Part I-Design. AIAA. 90-1915,1990
    
    Rabe D.,Hoying D., Application of Sweep to Improve the Efficiency of a Transonic Fan:Part II –Performance and Laser Test Results. AIAA. 91-2544,1991
    Hagden R. E.,Analysis and Design of a High Speed,Low Noise Aircraft Fan Incorporating Swept Leading Edge Rotor and Stator Blades. NASACR 135092
    横跨三大洲的国际合作计划—V2500涡扇发动机.国外航空技术. 发动机. 1986.1 : 23-29
    Tubbs H.,Rea A., Aerodynamic Development of the High Pressure Compressor for the IAEV2500 Aeroengine. ImechEC423/023,1991
    Gummer V.,Venger U, Kau H. P., Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stator of an Axial Compressor. ASME Paper,2000-GT-491 : 40-48
    Hah C.,Wennerstrom A. J., Three Dimensional Flow Fields Inside a Transonic Compressor with Swept Blades. ASME Paper, 90-GT-359,1990
    苏杰先, 王仲奇. 弯扭叶片动力学——回顾与展望. 见:中国工程热物理学会热机气动热力学学术会议982033
    王仲奇. 在低弦展比静叶栅中叶片的弯曲作用. 工程热物理学报. 1990 11(3)
    李根深, 陈乃兴, 强国芳. 船用燃汽轮机轴流式叶轮机械气动热力学:原理, 设计与试验研究(下册). [M]. 北京: 国防工业出版社, 1985
    蒋洪德. 美国航空发动机和计算流体力学发展情况介绍. 见:气动热力学发展战略研讨会专题报告汇编. 北京,1989,: 29-36
    钟兢军, 苏杰先. 压气机叶栅壁面拓扑和二次流结构分析. 见: 中国工程热物理学学会热机气动热力学学术会议论文集. 珠海,1996
    Breugelmans F. A.,Carels Y., Influence of Dihedral on the Secondary Flow in a Two-Dimensional compressor Cascade. ASME Journal of Engineering for Gas Turbine and Power. 1984. 106(3) : 578-584
    肖柳. 系列化发展的PW4084型发动机. 国际航空. 1992.6: 50-52
    Kandebo S. W., General Electric Tests Forward Swept Fan Technology. Aviation Week & Space Tech. 1996.9(23)
    Wadia A. R., Szucs P. N., Crall D. W., Inner Workings of Aerodynamic Sweep. ASME Journal of Turbomachinery. 1998 120: 671-682
    
    蔡运金, 钟玉玲, 钱鲁泓. 应用端弯叶片增加压气机喘振裕度. 航空动力学报. 1988 3(3) : 215-218
    高金满. 倾斜叶片在某型发动机上的初步应用.航空动力学报. 1990 5(2) : 113-117
    鲍秀珍. 端弯技术在压气机上的应用. 见:中国航空学会第七届叶轮机学术会议,CSAA94-PT-42,成都,1994
    刘仪,陈铁,刘斌. 级环境下叶片弯曲气动特性理论的研究探讨. 汽轮机技术. 1997. 39(4) : 244~250
    Weingold H. D., Neubert R. J.,Beblke R. F.,etc. Bowed stators an esample of CFD Applied to improve multistage compressor efficiency. ASME Journal of Turbomachinery. 1997.119(4) : 161~168
    Behlke R. F., The Development of a Second Generation of Controlled Diffusion Airfoils for Multistage Compressors. ASME Journal of Turbomachinery. 1986. 108: 32-41
    Robinson C. J.,Northall J. D.,Mcfarlane C. W. R., Measurement and Calculation of the Three-Dimensional Flow in Axial Compressor Stators, With and Without End-bends. ASME Paper,No.89-GT-6,1996
    Inoue M., Kuroumaru M., Pressure Fluctuation on Casing Wall of Isolated Axial Flow Compressor Rotors. ASME Journal of Turbomachinery. 1993. 115: 19~27
    Inoue M., Kuroumaru M.,Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors. ASME Journal of Turbomachinery. 1991 113: 281~289
    Wisler D. C., Loss Reduction in Axial Flow Compressors Through Low Speed Model Testing. ASME Journal of Gas Turbine and Power.1985. 107: 354~363
    Sanger N. L.,Shreeve R. P., Comparison of the Calculated and Experimental Cascade Performance for Controlled Diffusion Compressor Stator Blading. ASME Journal of Turbomachinery. 1986. 108: 42~50
    Dejc M. E.,Trojanovskij B. M., Untersuchung und Berechnung axialer Turbinen-stufen. VEB Verlag Technik,Berlin, 1973
    Mohammed K. P., Raj D. P., Investigations on Axial Flow Fan Impellers With Forward Swept Blades. ASME Journal of Fluids Engineer. 1977.7: 543-547
    
    Wright T.,Simmons W. E., Blade Sweep for Low Speed Axial Fans. ASME Journal of Turbomachinery. 1990.1 112: 151~158
    Yamaguchi N.,Tominaga T.,Hattori S.,Mitsuhashi T. Secondary Loss Reduction by Forward Skewing of Axial Compressor Rotor Blading. In: Proc. Yokohama International Gas Turbine Congress. 1991. II.61-II.68
    Breugemans F. A. E., Energy Efficient Design Through Fluid Dynamics Improvements in Turbocomponents. In: International Seminar on Thermal and Fluid Engineering for Advanced Energy Systems. Institute of Advanced Material Study. Kyushu University,Kasuga,Japan. (Lecture note, Von Karman Institute for Fluid Dynamics), July 23-24. 1997
    Wennerstrom A. J., Puterbaugh S. L., A Three Dimensional Model for the Prediction of Shock Losses in Compressor Blade Rows. ASME Journal of Engineering for Gas Turbines and Power. 1984. 106: 295-299
    Lakshminarayana B., Fluid Dynamics and Heat Transfer of Turbomachinery. John Wiley & Sons Incorporation. 1996
    Kodama H.,Namba M., Lifting Surface Theory for Steady Aerodynamic Analysis of Ducted Counter Rotation Profan. ASME Paper. 92-GT-14,1992
    Srivastava R.,Mehmed O., On the Static Stability of Forward Swept Propfans. AIAA Paper.No. 93-1634-CP,1993
    Friedrichs J.,Baumgarten S., Kosyna G.,Stark U., Effect of Stator Design on Stator Boundary Layer Flow in a Highly Loaded Single-Stage Axial-Flow Low Speed Compressor. ASME Journal of Turbomachinery. 2001.7, 123: 483~489
    Denton J. D., Loss Mechanisms in Turbomachines. ASME Journal of Turbomachinery. 1993, 115 : 621-651
    Vandewall A. G., Kadami J. R.,Boyle R. J., Adamczyk J. J., The Transport of Vortices Through a Turbine Cascade. ASME Journal of Turbomachinery. 1996, 118 : 654-662
    Lakshminarayana B.,Horlock J. H., Review: Secondary Flows and Losses in Cascades and Axial Flow Turbomachines. International Journal of Mechanical Science. 1963, 5: 287-307
    Inoue M.,Kuroumaru M., Structure of Tip Clearance Flow in an Isolated Axial
    
    
    Compressor Rotor. ASME Journal of Turbomachinery. 1989, 111: 250-256
    Adamczyk J. J.,Celestina M. L.,Greitzer E. M., The role of Tip Clearance in High Speed Fan Stall. ASME Journal of Turbomachinery. 1993, 115: 28-39
    Goto A., Study of Internal Flows in a Mixed Flow Pump Impeller at Various Tip Clearances Using Three Dimensional Viscous Flow Computations. ASME Journal of Turbomachinery. 1992,114: 373-382
    Smith G. D.,Cumpsty N. A., Flow Phenomena in Compressor Casing Treatment. ASME Journal of Engineering for Gas Turbine and Power. 1984, 106: 532-541
    Mcdougall N. M., A Comparison Between the Design Point and Near-Stall Performance of an Axial Compressor. ASME Journal of Turbomachinery. 1990, 112: 109-115
    Cumpsty N. A., Annulus Wall Boundary Layer Measurements in a Four Stage Compressor. ASME Journal of Engineering for Gas Turbine and Power. 1986, 106: 532-541
    Inoue M.,Kuroumaru M., Fukuhara M., Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor. ASME Journal of Engineering for Gas Turbine and Power. 1986, 108: 7-14
    Lakshminarayana B.,Zaccaria M.,Marathe B., The Structure of Tip Clearance Flow in Axial Flow Compressor. ASME Journal of Turbomachinery. 1995, 117: 336-347
    Storer J. A., Cumpsty N. A., Tip Leakage Flow in Axial Compressors. ASME Journal of Turbomachinery. 1991, 113 : 252-259
    Goto A., The Effect of Tip Leakage Flow on Part Load Performance of a Mixed Flow Pump Impeller. ASME Journal of Turbomachinery. 1992, 114: 383-391
    Foley A. C.,Ivey P. C., Measurement of Tip Clearance Flow in a Multistage, Axial Flow Compressor. ASME Journal of Turbomachinery. 1996,118: 211-217
    Suder K. L.,Celestina M. L., Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. ASME Journal of Turbomachinery. 1996, 118: 218-229
    Xinwen Xiao,Mccarter Andrew A.,Lakshminarayana B., Tip Clearance Effects in a Turbine Rotor: Part I-Pressure Field and Loss. ASME Journal of Turbomachinery. 2001, 123: 296-304
    Mccarter Andrew A.,Xinwen Xiao,Lakshminarayana B., Tip Clearance Effects in a
    
    
    Turbine Rotor: Part I-Velocity Vector and Flow Physics. ASME Journal of Turbomachinery. 2001, 123: 305-313
    Bindon J., The Measurement and Formation of Tip Clearance Loss. ASME Journal of Turbomachinery. 1989, 111: 257-263
    Yamamoto A., Endwall Flow Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance. ASME Journal of Turbomachinery. 1988, 111: 264-275
    Tallman J.,Lakshminarayana B., Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part I-Effect of Tip Clearance Height. ASME Journal of Turbomachinery. 2001, 123: 314-323
    Furukawa M.,Saiki K.,Nagayoshi K.,Kuroumaru M.,Inoue M., Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors. ASME Journal of Turbomachinery. 1998, 120: 683-694
    Furukawa M., Inoue M., Saiki K., Yamada K., The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics. ASME Journal of Turbomachinery. 1999, 121: 469-480
    Hoying D. A.,Tan C. S.,HuuDue V.,Greitzer E. M., Role of Blade Passage Flow Structure, in Axial Compressor Rotating Stall Inception. ASME Journal of Turbomachinery. 1999, 121: 735-742
    Copenhaver W. W.,Mayhew E. R.,Hah C.,Wadia A. R., The Effect of Tip Clearance on a Swept Transonic Compressor Rotor. ASME Journal of Turbomachinery. 1996, 118: 230-239
    Gerolymos G. A.,Vallet I., Tip Clearance and Secondary Flows in a Transonic Compressor Rotor. ASME Journal of Turbomachinery. 1999, 121: 751-762
    Chunghua Wu., A General Theory of Three-Dimensional Flow with subsonic and Supersonic Turbomachine of Axial, Radial and Mixed Flow Types, ASME paper No.50-A-79, Trans. ASME Nov. 952 or NACA TN 2604, 1952
    Hirsch C. H., Denton J. D., Throughflow Calculations in axial Turbomachines. AGARD AR 175, 1981
    Jennions I. K.,Stow P., The Importance of Circumferential Nonuniformities in a Passage Averaged Quasi-Three-Dimensional Turbomachinery Design System. ASME J. Eng. Gas Turbine Power, 1986, 108: 240-245
    Howard M. A., Gallimore S. J., Viscous Throughflow Modeling for Multi-Stage
    
    
    Compressor Design. ASME Journal of Turbomachinery, 1993, 115: 296
    Gallimore S. J., Viscous Throughflow Modeling of Axial Compressor Bladerows Using a Tangential Blade Force Hypothesis. ASME Journal of Turbomachinery, 1998, 120: 662-671
    Denton J. D., Designing in three dimensions. AGARD Lecture Series. 195, 1994
    Demeulenaere A.,Van Den., Braembussche R., Three dimensional inverse design method for turbomachinery blading design. ASME Paper 96-GT-421,1996
    Denton J. D.,Xu L., The Expoitation of Three Dimensional Flow in Turbomachinery Design. Proceedings of. International. Mechanical Engineers,Part C,Journal of Mechanical Engineering Science,1999, 213(C2): 125-137
    Khalid S. A.,Khalsa A. S.,Waitz I. A.,Tan C. S.,etc. Endwall Blockage in Axial Compressors. ASME Journal of Turbomachinery. 1999, 121: 499-509
    VanZante D. E.,Strazisar A. J. M., Wood J. R., Hathaway M. D., etc. Recommendations for Achieving Accurate Numerical Simulationg of Tip Clearance Flow in Transonic Compressor Rotors , ASME Paper , 99-GT-309,1999
    Wellborn S. R., Tolchinsky I., Oskiishi T. H., Modeling Shrouded Stator Cavity Flows Calculations. ASME Journal of Turbomachinery. 2000, 122: 55-61
    Shabbir A., Celestina M. L.,Adamczyk J. J., Strazisar A. J., The Effect of Hub Leakage on Two High Speed Axial Flow Compressor Rotors. ASME Paper 97-GT-346,1997
    Denton J. D., Singh U. K., Time Marching Methods for Turbomachinery Flow Calculations , VKI-LEC-SER-1979-7, VKI. 1979
    Fritsch G., Giles M. B., An Asymptotic analysis of mixing loss. ASME Paper 1993, 93-GT-345
    Dawes W. N., Toward Improved Throughflow Capability: The Use of Three Dimensional Viscous Flow Solvers in a Multistage Environment. ASME Journal of Turbomachinery. 1992, 114: 8-17
    Denton J. D., The Calculation of Three Dimensional Viscous Flow Through Multistage Turbomachines. 1992, 114: 18-26
    Hall E. J., Delaney R., A. Investigation of Advanced Counter Rotation Blade Configuration Concepts for High Speed Turboprop System. 1993, NASA CR
    
    
    187126
    Adamczyk J. J., Model Equation for Simulating Flows in Multistage Turbomachines. ASME Paper 1985, 85-GT-226
    Lejambre C. R., Zacharias R. M., Biederman B. P., etc. Development and A: lication of a Multistage Navier Stokes Flow Solver: Part II-APPlication to a High Pressure Compressor Design. ASME Journal of Turbomachinery. 1998, 120: 215-225
    VanZante D. E., Adamczyk J. J.,Strazisar A. J., Okiishi T. H., Wake Recovery Performance Benefit in a High Speed Axial Flow Compressor. ASME Paper. 1997, 97-GT-253
    Valkov T. V., Tan C. S., Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressor Stators, Part I-Framework of Technical APProach and Wake Stator Blade Interactions. ASME Journal of Turbomachinery, 1999, 121 : 386-396
    Wellborn S. R., Okiishi T. H., Effects of Shrouded Stator Cavity Flows on Multistage Compressor Aerodynamic Performance. NASA CR 1998, 198536
    Adamczyk J. J., Rathaway M. D., Shabbir A., Wellborn S. R., Numerical Simulation of Multi Stage Turbomachinery Flows. In: Applied Vehicle Technology Symposium on Design Principles and Methods for Aircraft Gas Turbine Engines, Toulouse, France, 1998, May 11-15
    Graf M. B., Greitzer E. M., Marble F. E., Sharma O. P., Effects of Stator Pressure Field on Upstream Rotor Performance. ASME Paper. 1999, 99-GT-99
    Anton W., Heinz A. S., Reinhold F., 3-D Transonic Flow in a Compressor Cascade With Shock Induced Corner Stall. ASME Journal of Turbomachinery. 2002, 124: 358-366
    Michele M., Roberto P., Claudia S., Ennio S., Numerical Investigation of Airfoil Clocking in a Three Stage Low Pressure Turbine. ASME Journal of Turbomachinery, 2002, 124 : 61-68
    Kaneko K., Setoguchi T., Inoue M., Passive Control of Unstable Characteristics of a High Specific Speed Diagonal Flow Fan by an Annular Wing. ASME Journal of Turbomachinery. 1991, 113: 703-709
    Schlichting H., Berechnung der. Reibungslosen Inkompressiblen Stromung furein. Vorgegebenes Ebenes Schaufelgitter, VDI Forschungsheft, 447,1955
    Manish S., Joseph K., Quantitative Visualization of the Flow in a Centrifugal Pump
    
    
    With Diffuser Vanes—I: On Flow Structures and Turbulence. ASME Journal of Fluids Engineering. 2000, 122: 97-107
    Carl D. M., Steve T. W., Juan G. S., A PIV Algorithm for Estimating Time Averaged Velocity Fields. ASME Journal of Fluids Engineering. 2000, 122: 97-107
    Balzani N., Scarano F., Riethmuller M. L., Breugelmans F. A. E., Experimental Investigation of the Blade to Blade Flow in a Compressor Rotor by Digital Particle Image Velocimetry. ASME Journal of Turbomachinery. 2000. 122: 743-750
    Post M. E., Goss L. P., Brainard L. F., Two-Color Particle-Imaging Velocimetry in a Turbine Cascade. AIAA Paper. 1991, 91-0274
    Bryanstoncross P. J., Towers C. E., Judge T. R., Towers D. P., Harasgama S. P., Hopwood S. T., The Application of Particle Image Velocimetry(PIV)in a Short-Duration Transonic Annular Turbine Cascade. ASME Journal of Turbomachinery. 1992, 114: 504–509
    Tisserant D., Breugelmans F. A. E., Rotor Blade-to-Blade Measurements Using Particle Image Velocimetry. ASME Journal of Turbomachinery. 1997, 119: 176–181
    Day K. M., Lawless P. B., Fleeter S., Particle Image Velocimetry Measurements in a Low-Speed Research Turbine. AIAA Paper, 1996, 96-2569
    FunesGallanzi M., BryanstonCross P. J., Chana K. S., Wake Region Measurements of a Highly Three-Dimensional Nozzle Guide Vane Tested at DRA Pyestock Using Particle Image Velocimetry. ASME Paper. 1994, 94-GT-349
    Day K. M., Lawless P. B., Particle Image Velocimetry of Vane–Rotor Interaction in a Turbine Stage. AIAA Paper. 1998, 98-3599
    Ehrlich D. A., Fleeter S., Particle Image Velocimetry Characterization of a Chordwise Bending Cascade Flow field. AIAA Paper. 1997, 97-3022
    YiChin Chow, Oguz U., Joseph Katz, Charles Meneveau, An Investigation of Axial Turbomachinery Flow Using PIV in an Optically Unobstructed Facility. In: The 9th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2002, February 10-14: 1-9
    Mark P. W., PIV Applications in Turbomachinery. In: SPIE Conference on Optical Diagnostics in Fluid and Thermal Flow. San Diego. NASA TM 107525, 1997
    Gogineni S., Goss L., Copenhaver W., Gorrell S., Development of Digital Two-Color PIV for turbomachinery Applications. AIAA Paper. 1997, 97-0494
    
    Wernet M. P., Development of Digital Particle Imaging Velocimetry for use in Turbomachinery. Experiments in Fluids. 2000, 28: 97-115
    Willer C., Raffel M., Stasicki B., etc. High Speed Video Camera System and Related Software For Application of PIV in Wind Tunnel Flow. In: Proceeding of 8th International Symposium Application of Laser Technology Fluid Flows,Lisbon,1996: 18.1.1-18.1.18
    Estevadeordal J., Gognneni S., Copenhaver W., etc. Flow Field in a Low Speed Axial Fan: a DPIV Investigation. Experimental thermal and Fluid Science. 2000, 23(1-2): 11-21
    Sanders A. J., Papalia J., Fleeter S., Multi-Blade Row Interactions in a Transonic Axial Compressor: Part I-Stator Particle Image Velocimetry (PIV) Investigation. ASME Journal of Turbomachinery. 2002, 124: 11–18
    Senoo A., Mizuki S., Tsujita H., Yamamoto A., Investigation of Internal Flow in Ultra-Highly Loaded Turbine Cascade by PIV Method. Journal of Thermal Science. 2000, 9(3)
    Lourenco L., Krothapalli A., Application of PIV in High Speed Wind Tunnel Testing.1994, AIAA-94-0084
    刘宝杰, 严明, 刘胤, 王同庆. 跨音风扇转子尖部非定常流场的PIV初步测量. 航空动力学报. 2001.4, 16(2): 147-152
    刘宝杰, 王光华, 高歌. 翼型近尾迹流动的PIV研究. 工程热物理学报. 1999.7, 20(4): 431-435
    Chen N. X., Wang Z. Q., Wang S. T., etc. A study on secondary flow pattern and blade bowing effects in turbine bladings. In: The 5th international symposium on Experimental and Computational aerothermodynamics of internal flows. Poland, 2001.9 :19-42
    Sharma O. P., Butler T. L., Predictions of Endwall losses and Secondary Flows in Axial Flow Turbine Cascades. ASME Journal of Turbomachinery. 1987, 109: 229-236
    Jang C. M., Furukawa M., Inoue M., Analysis of Vortical Flow Field in a Propeller Fan by LDV Measurements and LES. ASME Journal of Fluids Engineering. 2001, 123(12): 748-761
    Jang C. M., Furukawa M., Inoue M., Noise Reduction by Controlling Tip Vortex in a
    
    
    Propeller Fan. JSME International Journal. Series B. 2001, 44(4): 748-755
    Bhagwat M. J., Leishman J. G., Correlation of Helicopter Rotor Tip Vortex Measurement. AIAA Journal. 2000, 38(2) : 301-308
    Inoue M., Keqi Wu, A Design of Diagonal Impeller by means of SCM and Cascade Data. In: China-Japan Joint Conference on Hydraulic Machinery and Equipment. Hangzhou, China. 1984
    Inoue M., A Design of Axial Flow Compressor Blades with Inclined Stream Surface and Varying Axial Velocity. Bulletin of JSME. 1979-9
    Launder B. E., Spalding D. B., Lectures in Mathematical Models of Turbulence. Academic Press, London, England, 1972
    Pantankar S. V., Spatding D. B., Calculation Procedure for heat transfer, mass and momentum in three dimensional parabolic flows International journal of heat and mass transfer. 1972, 15
    Pantankar S. V., Numerical heat transfer and Fluid flow. MC Graw-Hill, 1980
    Kerrebrock J. L., Mikolajczak, Intra-stator transport of Rotor wakes and its Effect on compressor performance. ASME J. Eng. Power, 1970 :359-368
    Laboratory methods of testing fan for rating. In: ANSI/AMCA 210-85standard, ANSI/ASHRAE 51-1985 Standard
    中华人民共和国风机性能实验标准. GB/T 1236-2000
    丁良尹, 游斌. 空调器风扇性能测试系统的设计与实现. 流体机械. 2002.1, 30: 51-53
    Kaneko K., Shiomi N., Muraoka A., etc. Internal Flow of High Specific Speed Diagonal Flow Fan with Rotating Stall. In: The Fifth Asian International Conference on Fluid Machinery, Seoul, Korea, October 6-8,1997, :795-802
    Denton J. D., Dawes W. N., Computational Fluid Dynamics for Turbomachinery Design. Proceedings of the Institution of Mechanical Engineers. Journal of Mechanical Engineering Science, Part C. 2000, 213(02) : 103-120
    Sjolander S. A., Secondary and Tip-Clearance Flows in Axial Turbines: Physics of Tip Clearance Flows I. Von Karman Institute for Fluid Dynamics, Lecture Series 1997, 1997–01
    Wantanabe T., Nozaki O., Kikuchi K., Tamura A., Numerical Simulation of the Flow Through Cascades With Tip Clearance. ASME FED-120, Numerical
    
    
    Simulations in Turbomachinery. 1991
    Staubach J. B., Sharma O. P., Stetson G. M., Reduction of Tip Clearance Losses Through 3-D Airfoil Designs. In: Proc. R. ASME/IGTI Conference, Singapore. 1991
    Moyle I. N., Walker G. J., Shreeve R. P., Stator Averaged, Rotor Blade-to-Blade Near Wall flow in a Multistage Axial Compressor With Tip Clearance Variation. ASME Journal of Turbomachinery. 1992, 114: 668-674
    盛森芝,徐月亭,袁辉靖. 日新月异的现代流体测量技术. 北京:北京大学力学与工程科学系,2000
    Adrian R. J., Particle Imaging Techniques for Experimental Fluid Mechanics. Annual Review of Fluid Mechanics. 1991 : 261-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700