用户名: 密码: 验证码:
含铁大气气溶胶催化氧化SO_2的反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气颗粒物或气溶胶对全球气候、人类健康和地球环境影响巨大。SO_2是大气中最主要的人类污染物,也是形成酸雨和硫酸盐气溶胶的前体之一,影响生态环境和人类健康。其在大气中可以通过云层和液滴氧化转化成硫酸和硫酸盐粒子,也可以与气溶胶粒子发生复相反应形成含硫酸根的二次气溶胶,而后者的转化机理和转化能力尚未被完全认识。气溶胶中的铁是许多大洋海区中海洋表层水中的浮游生物所必需的微量营养物的主要来源,在很多海区,尤其在某些高氮低铁海区,矿物气溶胶中的铁是这些地区海洋生产力的限制因素。基于以上原因,人们对SO_2与气溶胶,尤其是含铁气溶胶的复相反应及可溶性铁的来源非常关注。
     本论文通过实验室模拟SO_2与Fe_2O_3及Fe_2O_3和NaCl混合颗粒物的复相反应来探讨气溶胶中的铁在SO_2复相反应中的作用及反应机理,分为三个主要部分:
     第一部分选择和优化了反应产物Fe(Ⅱ)的测定方法。在综述Fe(Ⅱ)测定方法的基础上,确定用反相高效液相色谱法测定复相反应产物,对测定条件进行优化。得出最佳实验条件并使用pH5.6琥珀酸-硼砂缓冲溶液直接提取复相反应产物中Fe(Ⅱ),六次测定RSD为3.48%,回收率为90-102%,精密度及准确度均较好,此法用于复相反应产物Fe(Ⅱ)的测定。
     第二部分重点研究了SO_2与Fe_2O_3复相反应机理。利用DRIFT、XPS、HPLC、IC和pH计对反应产物进行了定性和定量分析,结果表明:SO_2与Fe_2O_3的复相反应可以产生Fe(Ⅱ)(aq)和SO_4~(2-),表面吸附水有利于Fe(Ⅱ)(aq)和SO_4~(2-)的生成。SO_2浓度增加,Fe_2O_3表面酸度增加,可溶性Fe(Ⅲ)(aq)、Fe(Ⅱ)(aq)及SO_4~(2-)含量随之增加。室温下(T=291 K,RH=68%),每毫克Fe_2O_3在30min内可消耗53.6μg SO_2,生成12.6ng Fe(Ⅱ)(aq)和56.2μg SO_4~(2-)。反应产物SO_4~(2-)的浓度比三价铁被还原的产物Fe(Ⅱ)(aq)的浓度高出3个数量级,根据以上结果,提出Fe(Ⅱ)(aq)和硫酸盐的生成机理。同时表明Fe(Ⅱ)(aq)除了作为SO_2氧化的催化剂外,也是复相反应的产物之一。SO_2与Fe_2O_3的复相反应实验室模拟结果为大气海洋体系中,尤其是气溶胶在长距离传输中可能存在的铁硫耦合反馈机制提供了重要的实验依据。
     第三部分初步探讨了SO_2与Fe_2O_3和NaCl混合颗粒物复相反应机理。利用HPLC、IC和pH计对复相反应产物进行了定性和定量分析。结果表明:相对湿度大有利于Fe(Ⅱ)(aq)的生成;NaCl的加入有利于Fe(Ⅱ)(aq)的生成,但NaCl对
    SO_2与Fe_2O_3的反应有缓冲作用,随时间增加,反应体系的pH先下降后升高,Fe(Ⅱ)量增加,提取液中硫酸盐先达到最大,再下降而后平衡。根据测定结果初步探讨了复相反应产物形成机理。由于NaCl的存在,使海洋上空的铁硫耦合机制变得相当复杂。因此大气海洋中的铁和硫相互耦合机制是值得进一步探讨的可能影响全球气候变化的机制之一。
Atmospheric particles or aerosols play an important role in global climate, human health and many aspects of earth environment. Sulfur dioxide, the principal sulfur-containing anthropogenic pollutant, acts as a precursor of sulfuric acid which contributes to acid rain and particulate sulfate. It can cause the adverse health effects and destroy the ecosystem. The oxidation of SO_2 in the atmosphere may occur in the gas phase, in the aqueous phase of clouds and fogs, and on the surface of aerosol particles, but the latter reaction mechanisms has not been elucidated in detail yet. Iron in aerosols is the major source of phytoplankton's micronutrient in surface seawater. Moreover, it has been demonstrated to be the limiting nutrient factor for primary productivity especially in high nutrient, low chlorophyll (HNLC) regions.
    Based on above reasons, a better understanding of the heterogeneous reaction between SO_2 and aerosols, especially iron-containing dust, and the source of soluble iron is of interest.
    In this thesis, the heterogeneous reaction between SO_2 and Fe_2O_3 (or: Fe_2O_3 + NaCl) was investigated to explore the role of iron in oxidation of SO_2 and the reaction mechanism. In the first section, the determination method of Fe(II) by HPLC was selected , modified and the optimal condition was obtained. Fe(II) was extracted using succinic acid-disodium tetraborate buffer solution (pH5.6). It can complex with the reagent ferrize to form [Fe(FZ)_3]~(2+), then determinate at 254 nm. RSD was 3.48% and the recovery was 90-102%. The concentration of Fe(II), one of the heterogeneous reaction products, had been determined by this method.
    The second part is to study the heterogeneous reaction mechanism between SO_2 and Fe_2O_3. A combined technique of DRIFTS, XPS, HPLC, IC and pH meter is employed to demonstrate the formation of Fe(II)(aq) and SO_4~(2-) in the heterogeneous reaction between SO_2 and Fe_2O_3. The results revealed that absorbed water is the most crucial factor in the formation of Fe(II)(aq) and SO_4~(2-) Under ambient condition (T = 291 K, RH = 68 %) within 30 min, for 1 mg of Fe_2O_3 with the exhaustion of 53.6 μg SO_2, it could produce 12.6 ng Fe(II)(aq) and 56.2 μg SO_4~(2-) The concentration of the product [SO_4~(2-)], was three orders of magnitude higher than that of Fe(II)(aq), indicating that large amount of SO_4~(2-) production was formed via catalysis by the transitional metal Fe. The reaction mechanism of SO_2 oxidation on Fe_2O_3 is proposed. It could be concluded clearly that Fe(II)(aq) is not only a catalyst involved in this
    heterogeneous SO_2 oxidation , but also one of the end products of this heterogeneous reaction. This important finding provides the strong evidence to support the hypothesis of the coupling and feedback of iron with sulfur in aerosols during their long-range transport.
    The final part is a pilot study on the reaction mechanism between SO_2 and mixed particles of Fe_2O_3 and NaCl. The products were analyzed by HPLC、IC and pH meter. The results showed that the higher relative humility and the addition of NaCl were favorable for the formation of Fe(II)(aq). A buffering role that prevented the pH from decreasing was found when NaCl presented. With the reaction time increasing, pH decreased and then increased; Fe(II) increased; SO_4~(2-) was formed rapidly, subsequently decreased and finally reached a plateau. A possible mechanism was proposed. The presence of NaCl complicates the coupling and the feedback of iron with sulfur in marine atmosphere. So Fe-S coupling and the possible positive feedback in marine atmosphere is an important mechanism which may affect the global climate change and is worthy to be further studied.
引文
1.戴树桂,环境化学[M],高等教育出版社,1999,75-84.
    2.唐孝炎,大气环境化学[M],高等教育出版社,1989,166-169.
    3. Penter J. E., Climate Change [M], Cambridge Univ. Press, 2001, 289-348.
    4. Andreae M. O. In future Climates of the world: A Modeling Perspective, World Survey of Climatology, ed. Henderson-Sellers, A. (Elsevier, Amsterdam), 16, 341-392.
    5. Ramamathan V., Crutzen P. J., Kiehl J. T. and Rosenfeld D. Aerosols, climate, and the hydrological cycle [J]. Science, 2001, 294:2119-2124.
    6. Reichardt T. Weighing the health risks of airborne particulates [J]. Environment Science & Technology, 1995, 29(8), A360-A364.
    7. Surny K. R. Aerosol air pollution its chemistry and size dependent health effects [J]. Journal of Aerosol Science, 1996, 27: S473-S474.
    8. Hsu D J, Swift D L. The measurements of human inhalability of ultralarge aerosols in calm air using manikins [J]. Journal of Aerosol Science, 1999, 30: 1331-1343.
    9. Harrison R. M., Yin Jianxin. Particulate matter in the atmosphere: which particle properties are important for its effects on health? [J]. Science Total Environment, 2000, 49: 85-101.
    10. Salma I, Balashazy I, Winkler H R, et al. Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system [J]. Journal of Aerosol Science, 2002, 33: 119-132.
    11. Moskal A, Gradon L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycling [J]. Journal of Aerosol Science, 2002, 33: 1525-1539.
    12. Friedlander, S. K., Lippmann, M., Revising the particulate ambient air quality standard [J]. Environment Science & Technology, 1994, 28(3):A 148-A 150.
    13. Kalberer M., Yu J., Cocker D. R., Flagan R. C., Seihfeld J. H., Aerosol Formation in the Cyclohexene-Ozone System[J]. Environment Science &. Technology, 2000, 34(23):4894-4901.
    14. Haywood J., Boucher O. Estimates of the direct and indirect radioactive forcing due to tropospheric aerosols: A review [J]. Reviews of Geophysics, 2000, 38:513.
    15. Levitus S., Antonov J. I., Wang J., Anthropogenic warming of Earth's climate system [J]. Science, 2001, 292:267-270
    16. Groblicki P. J., Woll G. T., Countess R. J. Visibility- Reducing species in the Denver "Brown cloud" -I. Relationships between extinction and chemical composition[J]. Atmospheric Environment, 1981, 15: 2473-2484.
    17. Conner W. D., Bennett R. L., Weathers W. S., Wilson W. E. Particulate characteristics and visual effects of the atmosphere at Research Triangle Park[J]. Journal of Air and Waste Management Association, 1991, 41 (2): 154-160.
    18. Chan Y. C., Simpson R. W., Mctainsh G. H., Vowles P. D. Characterization of chemical species in PM_(2.5) and PM_(10) aerosols in Brisbane, Australia[J]. Atmospheric Environment, 1997, 31: 3773-3785.
    19. Pope, C. A., Bates, D. V., Raizenne, M. E. Health effects of particulate air pollution: time for reassessment? [J]. Environmental Health Perspective, 1995 103: 472-480.
    20. Dockery D. W., Pope C. A., Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Speizer F. E. An association between air pollution and mortality in six US cities [J]. New England Journal of Medicine, 1993, 329: 1753-1759.
    21. Coale K. H., Johnson K. S., Fitzwater S. E., et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean [J]. Nature, 1996, 383:495-501.
    22. Boyd P. W., Watson A. J., Law C. S., Abraham E. R., Trull T., Murdoch R., Bakker D. C. E., Bowie A. R., Buesseler K. O., Chang H., Charette M., Croot P., Downing K., Frew R., Gall M., Hadfield M., Hall J., Harvey M., Jameson G., LaRoche J., Liddicoat M., Ling R., Maldonado M. T., McKay R. M., Nodder S., Pickmere S., Pridmore R., Rintoul S., Safi K., Sutton P., Strzepek R., Tanneberger K., Turner S., Waite A., Zeldis J. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated byiron fertilization [J]. Nature, 2000, 407: 695-702.
    23. Zhuang Guoshun, Yi Zhen, Duce, R. A. Brown P. R. Link between iron and sulfur cycles suggested by detection of iron(Ⅱ) in remote marine aerosols[J]. Nature, 1992, 355(6360):537-539.
    24. Zhuang G. S., Huang R. H., Wang M. X., Zhou Q., Guo J. H., Yuan H., Rao Z. M. Great progress in study on aerosol and its impact on the global environment [J]. Progress in Natural Science, 2002, 12: 407-413.
    25.庄国顺,郭敬华,袁蕙,张兴赢.大气海洋物质交换中的铁硫耦合反馈机制[J].科学通报,2003,48:1080-1086.
    26. Usher C.R., Michel A.E., and Grassian V.H. Reactions on Mineral Dust. Chemical. Review [J]. 2003, 103:4883-4939.
    
    27. Seinfeld J. H., Pandis S. N., Atmospheric Chemistry and Physics[M], Wiley, New York, 1998.
    
    28. Harrison R.M., Deacon A.R., Jones M.R. Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan) [J]. Atmospheric. Environment, 1997A, 31: 3309-3321.
    
    29. Jacob D. J. Heterogeneous chemistry and tropospheric ozone [J]. Atmospheric. Environment, 2000, 34:2131-2159.
    
    30. Clark A. D., Davis D., Kapustin V. N., Particle nucleation in the boundary layer and its coupling to the marine sulfur sources [J]. Science, 1998, 282:89-92.
    
    31. Baltensperger U. Ammann M., Kalberer M., Gaggeler H.W. Chemical reaction on aerosol particle surface: concept and methods [J]. Journal of Aerosol Science. 1996,27:S651-S652.
    
    32. Keene W. C, Sander R., Pszenny A. A. P., Vogt R., Crutzen P.J., Galloway J. N., Aerosol pH in the marine boundary layer: A review and model evaluation[J], Journal of Aerosol Science,1998,29:339-356.
    
    33. Sievering H., Boatman J. F., Galloway J. N., Keene W. C., Kim Y., Luria M., Ray J. D. Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution [J]. Atmospheric. Environment, 1991,25A: 1487-14491.
    
    34. Sievering H., Gorman E., Ley T., Pszenny A., Springer-Young, M., Boatman J., Kim Y, Nagamoto C, Wellman D. Ozone oxidation of sulfur in sea-salt aerosol-particles during the Azores Marine Aerosol and gas-exchange Experiment[J]. Journal of Geophysical Research, 1995, 100:23075-23081.
    
    35. Vogt R., Crutzen P.J. and Sander R. A mechanism for halogen release from sea-salt aerosol in the remote boundary layer [J]. Science, 1996,383: 327-330.
    
    36. Buseck P.R. and Posfai M. Airborne minerals and related aerosol particles: Effects on climate and the environment [J]. Proceedings of the National Academy of Sciences. 1999,96:3372-3379.
    
    37. Brandt C. and Eldik R.Van., 1995. Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant processes and mechanisms [J]. Chemical Review, 1995, 95:119-190.
    38. Brandt C, Elding L. I. Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV) [J]. Atmospheric Environment, 1998, 32(4):797-800.
    
    39. Brant C, Fabian I. and Eldik R.van, Kinetics and Mechanism of the Iron(III)-Catalyzed Autoxidation of Sulfu(IV) Oxides in Aqueous Solution.Evidence for the Redox Cycling of Iron in the Presence of Oxygen and Modeling of the Overall Reaction Mechanism [JJ. Inorganic. Chemistry. 1994, 33:687-701.
    
    40. Dentener F. J., Carmichael G. R., Zhang Y., Lelieveld J., Crutzen, P. J., Role of mineral aerosol as a reactive surface in the global troposphere[J]. Journal of Geophysical Research, 1996, 101:22869-22889.
    
    41. Li-Jones X., Prospero J. M. Variations in the size distribution of non-sea salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust [J]. Journal of Geophysical Research, 1998; 103(23): 16073-16084.
    
    42. Usher C. R., Al-Hosney H., Carlos-Cuellar S. and Grassian V. H. A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles [J]. Journal of Geophysical Research, 2002,107(D23): 4713-4721.
    
    43. Ullerstam M., Vogt R., Langer S. and Ljungstrom E. The kinetics and mechanism of SO_2 oxidation by O_3 on mineral dust [J]. Physical Chemistry Chemical Physics, 2002, 4:4694-4699.
    
    44. Goodman A. L., Li P. and Usher C. R. Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles [J]. Journal of Physical Chemistry A, 2001,105, 6109-6120.
    
    45. Toledano D.S. and Henrich V. E. Kinetics of SO_2 adsorption on photoexcited α-Fe_2O_3 [J]. Journal of Physical Chemistry B, 2001, 105: 3872-3877.
    
    46. Goldberg E. D. Atmospheric dust, the sedimentary cycle, and man [J]. Geophysics, 1971,1:117-132.
    
    47. Martin J. H. and Fitzwater S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J], Nature, 1988, 331: 341-343.
    
    48. Malcolm KW. Ko and Poulet G. Very Short-Lived Halogen and Sulfur Substances [M], Scientific Assessment of Ozone Depletion, 2002.
    
    49. Wojcik G. S. and Chang J. S. A Re-Evaluation of Sulfur Budgets, Lifetimes, and Scavenging Ratios for Eastern North America [J]. Journal of Atmospheric Chemistry, 1997, 26:109-145.
    
    50. Howard W. S., Charles C. B., George E. J., and Jack G. C. Photooxidation of Sulfur Dioxide [J]. Environment Science & Technology, 1972,6:72-79.
    51. Wameck P., Chemistry of the Natural Atmosphere (Second Edition) 2000, 557-655, 499-510.
    52. Hoffmann P., Dedik A. N., Ensling J., Weinbruch S., Weber S., Sinner T., Gutlich P. and Ortner H. M. Speciation of iron in atmospheric aerosol samples [J]. Journal of Aerosol Science, 1996, 27(2):325-327.
    53. Weber S., Hoffmann P., Ensling J., Dedik A. N., Weinbruch S., Miehe G., Gutlich P. and Ortner H. M. Characterization of iron compounds from urban and rural aerosol sources [J]. Journal of Aerosol Science, 2000, 31(8):987-997.
    54.李爱国,童永彭,倪新伯,王基庆,郭盘林,张桂林.空气中含铁悬浮颗粒的穆斯堡尔研究[J].中国环境科学,2001,21(3):198-202.
    55.李爱国,张桂林,童永彭,李晓林,陆荣荣,朱节清,张元勋,李燕.上海市大气气溶胶中铁的来源的化学形态研究[J].环境科学学报,2005,25(2):148-154.
    56. Yongpeng Yong, Aiguo Li, Yingwen Cai, et al. Mossbauer Study of atmospheric aerosols of Shanghai[J]. Environment Science & Technology, 2001, 35:1432-1436.
    57. Zuo Y. and Hoigne J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ)-oxalato complexes [J]. Environment Science & Technology, 1992, 26:1014-1022.
    58. Zuo Y. and Hoigne J. Photochemical decomposition of oxalic, glyoxylic and pyruvic acid catalyzed by iron in atmospheric waters [J]. Atmospheric Environment, 1994, 28:1231-1239.
    59. Zuo Y. and Zhan J. Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water [J]. Atmospheric Environment, 2005, 39:27-37.
    60. Behra P. and Sigg L. Evidence for redox cycling of iron in atmospheric water droplets [J]. Nature, 1990, 344:419.
    61. Titoff A. Z. Phys. Chem. 1903, 45:641-683.
    62. Penkett S. A. B., Jones M. R. and J. Eggleton A. E. A study of SO_2 oxidation in stored rainwater samples [J]. Atmospheric. Environment. 1979a, 13:323-337.
    63. Clarke A. G., and Radojevic M. Oxidation of SO_2 in rainwater and its role in acid rain chemistry [J]. Atmospheric. Environment, 1987, 21:1115-1123.
    64. Martin L. R., Hill M. W., Tai A. E. and Good T. W. The iron catalyzed oxidation of S (Ⅳ) in aqueous solution. Differing effects of organics at high and low pH [J]. Journal of Geophysical Research, 1991, 96:3085-3097.
    
    65. Novic M., Grgic I., Poje M. and Hudnik V. Iron-catalyzed oxidation of S(IV) species by oxygen in aqueous solution: influence of pH on the redox cycling of iron [J]. Atmospheric Environment, 1996, 30: 4191-4196.
    
    66. Grgic I., Hudnik V., Bizjak M. and Levec J. Aqueous S(IV) oxidation. III. Catalytic effect of soot particles [J]. Atmospheric Environment, 1993, 27A: 1409-1416.
    
    67. Ziajka J., Beer F. and Warneck P. Iron-catalysed oxidation of bisulfite in aqueous solution: evidence for a free radical chain mechanism [J]. Atmospheric Environment, 1994, 28: 2549-2552.
    
    68. Kotronarout A. and Sigg L. SO_2 Oxidation in Atmospheric Water: Role of Fe(II) and Effect of Ligands [J]. Environment Science & Technology, 1993, 27: 2725-2735.
    
    69. Backstorm H., Der Kettenmechanisms Bei der autoxydation von natriumsulfitulosungen. Z. Phys. Chem.1934, 25B:122-138.
    
    70. Conklin, M. H., and Hoffmann M. R. Metal Ion-Sulfur(IV) Chemistry. 3. Thermodynamics and Kinetics of Transient Iron(III)-Sulfur(IV) Complexes [J]. Environment Science & Technology, 1988, 22:899-907.
    
    71. Kraft J. and Rudi van Eldik. Kinetics and Mechanism of the Iron(III)-Catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 1. Formation of transient iron(III)-sulfur(IV) complexes [J]. Inorganic Chemistry, 1989, 28: 2297-2305.
    
    72. Kraft J. and Rudi van Eldik. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 2. Decomposition of transient iron(III)-sulfur(IV)) complexes [J], Inorganic Chemistry, 1989, 28: 2306-2312.
    
    73. Betterton, E.A. On the pH dependent formation constants of iron (III)-sulfur (IV) transient complexes [J]. Journal of Atmospheric Chemistry, 1993, 17:307-324.
    
    74. Bal Reddy, K., and R. van Eldik, Kinetics and mechanism of the sulfite- induced autoxidation of Fe (II) in aqueous solution [J]. Atmospheric Environment, 1992, 26A:661-665.
    
    75. Prasad D. S. N., Rani A., Gupta K. S. Surface-catalyzed autoxidation of sulfur (IV) in aqueous silica and copper(II) oxide suspensions [J]. Environment Science & Technology, 1992, 26:1361-1368.
    
    76. Faust B. C, Hoffmann M. R., Bahnemann D. W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α.-iron oxide (Fe_2O_3) [J]. Journal of Physical Chemistry, 1989, 93: 6371-6381.
    
    77. Gupta K. S., Madnawat P. V. S., Rani A., Sharma M., Prasad D. S. N., Jain U., Bhargava P., Saxena D. In Topics in Chemistry Series 1: Chemical Kinetics and Reaction Mechanism [M]; Gupta, K. S., Ed.; RBSA Publishers: Jaipur, India, 1991,117-163.
    
    78. Kim K. H., Choi J. S. Kinetics and mechanism of the oxidation of sulfur dioxide on α-Fe_2O_3 [J]. Journal of Physical Chemistry, 1981,85:2447-2450.
    
    79. Faust B. C, Hoftinann M. R. Photoinduced reductive dissolution of α-Fe_2O_3 by bisulfite [J]. Environment Science & Technology, 1986,20: 943-948.
    
    80. Brodzinsky R., Chang S. G., Markowitz S. S., Novakov T. Kinetics and mechanism for the catalytic oxidation of sulfur Dioxide on carbon in aqueous suspension[J]. Journal of Physical Chemistry, 1980, 84:3354-3358.
    
    81. Harrison R. M., Pio C. A. Kinetics of SO_2 oxidation over carbonaceous particles in the presence of H_2O, NO_2, NH_3 and O_3 [J]. Atmospheric Environment. 1983,17: 1261-1275.
    
    82. Chen L. C, Peoples S. M., McCarthy J. F., Amdur M. O. Furnace-generated acid aerosols: speciation and pulmonary effects [J]. Atmospheric Environment, 1989, 23:149-173.
    
    83. Rani A., Prasad D. S. N., Madnawat P. V. S., Gupta K. S. The role of free fall atmospheric dust in catalysing autoxidation of aqueous sulphur dioxide [J]. Atmospheric Environment, 1992,26A: 667-673.
    
    84. Zhang J. Z., Millero F. J. The rate of sulfite oxidation in seawater [J]. Geochimica et Cosmochimica Acta, 1991, 55: 677-685.
    
    85. GrgiC I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation -I. Catalytic effects of some metal ions [J]. Atmospheric Environment, 1991, 25A:1591-1597.
    
    86. GrgiC I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation-II.Synergistic effects of some metal ions [J]. Atmospheric Environment, 1992, 26A:571-577.
    
    87. Gupta K. S., Madnawat P. V. S., Bhargava R., Prasad D. S. N., Sharma M., Rani A. In Precipitation, Scavenging and Atmosphere-Surface Exchange; Schwartz, S. E., Slinn, W. G. N., Eds.; Hemisphere Publishing Corporation: Washington, 1992; Vol. 1 (The Georgii Volume: Precipitation Scavenging Processes), 153-160.
    
    88. Dlugi R., Jordan S., Lindemann E. The heterogeneous formation of sulfate aerosols in the atmosphere [J]. Journal of Aerosol Science, 1981,12:185-197.
    
    89. Mamane Y., Gottlieb J. Heterogeneous reaction of minerals with sulfur and nitrogen oxides [J]. Journal of Aerosol Science, 1989, 20:303-311.
    
    90. Juderkis H. S., Stewart T. B., Wren A. G. Laboratory studies of heterogeneous reactions of SO_2 [J]. Atmospheric Environment, 1978,12:1633.
    
    91. Martin J. H., and Fitzwater S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J], Nature, 1988, 331:341-343.
    
    92. Moore R. M., Milley J. E., and Chart A. The potential for biological mobilization of trace elements from aeolian dust in the ocean and its importance in the case of iron [J]. Oceanologica Acta. 1984, 7: 221-228.
    
    93. Duce R. A. The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity, In P. BuatMenard [Ed.], The role of air-sea exchange in geochemical cycling, Reidel Press, 1986: 497-529
    
    94. Zhuang G., Duce R. A. and Kester D. R. The dissolution of atmospheric iron in the surface seawater of the open ocean [J]. Journal of Geophysical Research, 1990,95:16207-16216.
    
    95. Martin J. H., Gordon R. M., and Fitzwater S. E., Iron in Antarctic waters [J]. Nature, 1990,345:156-158.
    
    96. Martin J. H., Fitzwater, S. E., and Gordon, R. M. We still say iron deficiency limits phytoplankton growth in the Subarctic Pacific [J]. Journal of Geophysical Research, 1991, 96: 20699-20700.
    
    97. Martin J. H., Gordon R. M., and Fitzwater S. E. The case for iron [J]. Limnology and Oceanography, 1991, 36:1793-1802.
    
    98. Martin J. H., Coale K H, Kolber Z S, et al. Testing the iron in ecosystems of the equatorial Pacific Ocean [J]. Nature, 1994, 371:123-129.
    
    99. Charlson R. J., Lovelock J. E., Andreae M. O. and Warren S. G. A climate feedback loop of sulfate aerosols [J]. Nature, 1987, 326: 55-661.
    
    100.Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J J A, Hansen J E, and Hofmann D J. Climate forcing by anthropogenic aerosols [J], Science, 1992,255: 423-430.
    101.Fitzgerald J. W. Marine aerosols: A review [J], Atmospheric Environment, 1991, 25:533-545.
    102.Galloway J. N., et al., Sulfur in the western North Atlantic Ocean atmosphere: Results from a summer 1998 ship/aircraft experiment [J]. Global Biogeochemical Cycles, 1990, 4:349-365.
    103. Savoie D. L., Prospero J. M. and Saltzman E. S. Nitrate, non-sea-salt sulfate, and methanesulfonate over the Pacific Ocean, In Riley J. P. et al. [eds.], Chemical Oceanography, Academic Press, 1989, Vol10, 220-250.
    104. Gao Y., Arimoto R., Duce R. A., et al. Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the China Sea [J]. Journal of Geophysical Research, 1996, 101(D7):12601-12611.
    105. Schwartz S. E. The whitehouse effect-shortwave radiative forcing of climate by anthotopogenic aerosols: An overview [J]. Journal of Aerosol Science, 1996, 27: 359-382.
    106. Faust B. C. and Hoigne, J. Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in cloud, fog and rain [J]. Atmospheric Environment, 1990, 24: 79-89.
    107. Peak, D., Ford R. G, and Sparks D. L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite [J]. Journal of Colloid and Interface Science, 1999, 218: 289-299.
    108. Stephan J. H. In Situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions [J]. Journal of Colloid and Interface Science, 1997, 188: 415-422.
    109. Moulder J. F., Stickle W. F., Sobol P. E., et al. Handbook of X-ray Photoelectron Spectroscopy (Ed. Chastain J.)[M]. Norwalk: Perkin-Elmer Corporation, Physical Electronics Division. 1992.
    110. Lin J. and Kester D. R. The kinetics of Fe(Ⅱ) complexation by ferrozine in seawater [J]. Marine Chemistry, 1992, 38: 283-301.
    111. Shaked Y., Kustka A. B., Morel F. M. M. and Erel Y. Simultaneous determination of iron reduction and uptake by phytoplankton[J]. Linmology and Oceanography: Methods, 2004, 2:137-145.
    112. Yi Z., Zhuang G. S., Brown P. R. and Duce R. A. High-performance liquid chromatographic method for the determination of ultratrace amounts of Iron (Ⅱ) in aerosols, rainwater, and seawater [J]. Analytical Chemistry, 1992, 64: 2826-2830.
    113.黎永杰,赵美萍,常文保.食品中亚硫酸盐的检测方法研究进展[J].食品与发酵工业,2004,30(5):99-105.
    114.吴风武,何治柯,罗庆尧,曾云鹗.二氧化硫分析研究进展[J].分析科学学 报, 2000,16(3):248-252.
    115.Michigami Y., Morooka M., Ueda K. Determination of sulphite and sulphate by ion charomategraphy using a weakly basic phthate eluent [J]. Journal of Chromatography A, 1996,732:403-407.
    116.Padarauskas A., Paliulionyte V., Ragauskas R., Dikcius A. Capillary electrophoretic determination of thiosulfate and its oxidation products [J]. Journal of Chromatography A, 2000, 879:235-243.
    117.Zuo Y.G, Chen H. Simultaneous determination of sulfite, sulfate, and hydroxymethanesulfonate in atmospheric waters by ion-pair HPLC technique [J].Talanta, 2003, 59:875-881.
    118.Pehkonen S. O, Erel Y. and Hoffmann M. R. Simultaneous spectrophotometric measurement of Fe (II) and Fe(III) in atmospheric water [J]. Environment Science & Technology, 1992,26:1731-1736.
    119.O'Sullivan D. W., Alfred K., Hanson Jr., Kester D. R. Stopped flow luminal chemiluminescence determination of Fe(II) and reducible in seawater at subnanomolar levels [J]. Marine Chemistry, 1995, 49:65-77.
    120.Martin J. H., Gordon R. M., Fitzwater S. E., Broenkow W. W. Phytoplankton/iron studies in the Gulf of Alaska [J]. Deep-sea Research. Part A, 1989, 36:649-680.
    121.Hudson R. J. M., Morel F. M. M. Abstracts of Papers, 198th National Meeting of the American Chemical Society, Miami Beach, FL, Sept 10-15, 1989; American Chemical Society: Washington, DC, 1989; GEOC 99.
    122.Conklin M. H., Hoffmann M. R. Metal ion-sulfur(IV) chemistry, 3.Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes [J].Environment Science & Technology, 1988, 22:899-907.
    123.Hirayama K. and Unohara N. Spectrophotometric Catalytic Determination of an Ultratrace Amount of Iron(II1) in Water Based on the Oxidation of N ,N-Dimethyl-p -phenylenediamine by Hydrogen Peroxide[J]. Analytical Chemistry, 1988, 60: 2573-2577.
    124.Lopes da Concercao A.C., Tena M.T., Correia dos Santos M. M., et al. Flow injection-assisted optical sensor for determination of iron(II) and iron(III) in natural water [J]. Analytical Chimica Acta, 1997, 343:191-197.
    125. Croot P. L. and Hunter K. A. Determination of Fe(Ⅱ) and total iron in natural waters with3-(2-pyridyl)-5, 6-diphenyl-1, 2, 4-triazine (PDT) [J]. Analytica Chimica Acta, 2000, 406:289-302.
    126. Zaporozhets O., Gawer O. and Sukhan V. Determination of Fe (Ⅱ), Cu (Ⅱ) and Ag (Ⅰ) by using silica gel loaded with 1, 10-phenanthroline [J]. Talanta, 1998, 46: 1387-1394.
    127.孙本良,李洪刚,李春艳.二氮杂菲光度法连续测定水样中总铁及亚铁[J],理化检验-化学分册,2003,39:421
    128. Stookey L. L. Ferrozine-A New Spectrophotometric Reagent for Iron [J]. Analytical Chemistry, 1970, 42:779-781.
    129. Gibbs C. R. Characterization and Application of FerroZine Iron Reagent as a Ferrous Iron Indicator [J]. Analytical Chemistry, 1976, 48:1197-1201.
    130. Kieber R. J., Williams K., Willey J. D., Skrabal S., Avery Jr. G. B. Iron speciation in coastal rainwater: concentration and deposition [J]. Marine Chemistry, 2001, 73: 83-95.
    131. Viollier E., Inglett P. W., Hunter K., Roychoudhury A. N., Cappellen P. V. The ferrozine method revisited: Fe(Ⅱ)/Fe(Ⅲ) determination in natural waters [J]. Applied Geochemistry, 2000, 15: 785-790.
    132. Chapin T. P., Jannasch H. W., Johnson K. S. In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems [J]. Analytica Chimica Acta., 2002, 463:265-274.
    133. Dominik P., Kaupenjohann M. Simple spectrophotometric determination of Fe in oxalate and HCI soil extracts [J]. Talanta, 2000, 51:701-707.
    134. Waite T. D., Szymczak R., Espey Q. R., Furnas M. J. Dial variations in iron speciation in northern Australian shelf water [J]. Marine Chemistry, 1995, 50:79-91.
    135. Voelker B. M. and Sedlak D. L. Iron reduction by photoproduced superoxide in seawater [J]. Marine Chemistry, 1995, 50:93-102.
    136. Seitz W. R., Hercules D. M. Determination of Trace Amounts of Iron(Ⅱ) Using Chemiluminescene Analysis [J]. Analytical Chemistry, 1972, 44: 2143-2149.
     137.Elrod V. A., Johnson K. S. and Coale K. H. Determination of subnanomolar levels of iron(II) and total dissolved iron in seawater by flow injection analysis with chemiluminescence detection [J]. Analytical Chemistry, 1991, 63:893-898.
    138.Obata H., Karatani H. and Nakayama E. Automated Determination of Iron in Seawater by Chelating Resin Concentration and Chemiluminescence Detection [J]. Analytical Chemistry, 1993, 65: 1524-1528.
    139.Bowie A. R., Acherberg E. P., Mantoural R.F.C. and Worsfold P.J. Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection [J]. Analytica ChemicaActa. 1998,361:189-200.
    140.Croot P. L., Laan P. Continuous shipboard determination of Fe(II) in polar waters using flow injection analysis with chemiluminescence detection [J]. Analytica Chimica Acta 2002,466:261-273.
    141.Whang Xiaoqin, et al. Determination of iron (II) and iron (III) in Water by ion chromatography Combined with Atomic Absorption Spectrometry [J]. Chinese Journal of Environment Science, 1995,16(1):62-64.
    
    142.Bermejo P., Dominguez R., Bermejo A. Direct determination of Fe and Zn in different components of cow milk by FAAS with a high performance nebulizes [J]. Talanta, 1997, 45:325-330.
    143.Costa R. C. C., Araujo A. N. Determination of Fe (III) and total Fe in wines by sequential injection analysis and flame atomic absorption spectrometry [J]. Analytica Chimica Acta, 2001,438:227-233.
    144.Pulido-Tofino P., Barrero-Moreno J.M., Perez-Conde M.C. A flow-through fluorescent sensor to determine Fe (III) and total inorganic iron [J]. Talanta, 2000, 51:537-545.
    145.Ki-Won Cha, Kwang-Won Park. Determination of iron (III) with salicylic acid by the fluorescence quenching method [J]. Talanta, 1998,46: 1567-1571.
    146.Wu Jingfeng, Boyle E. A. Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH)_2 coprecipitation [J]. Analytica Chimica Acta, 1998, 367: 183-191.
    147. Li L. Y., Gui M. D. and Zhao Y. Q. Reversed-Phase HPLC Determination of Co(Ⅱ), Ni(Ⅱ) and Fe(Ⅱ) as their2-(2-Thiazolyliazo)-5-Dimethylaminophenol Chelates [J]. Tatanta, 1995, 42: 89-92.
    148. Ma Z. L., Wang Y. P., Wang C. X., et, al. Reversed-phase ion-pair high performance liquid chromatographic determination of Co(Ⅱ)-, Ni(Ⅱ)-, V(Ⅴ)-and Fe(Ⅲ)-2-(2-benzothiazolylazo)-5-(3-sulforpropyl) aminophol chelates [J]. Talanta, 1997, 44:743-748.
    149. Zhuang G. S., Yi Z., Wallance G. T. Iron (Ⅱ) in rainwater, snow, and surface seawater from a coastal environment [J]. Marine Chemistry. 1995, 50:41-50.
    150. Baraj B., Martinez M., Sastre A. Manuel Aguilar Simultaneous determination of Cr(Ⅲ)、Fe(Ⅲ)、Cu (Ⅱ)and Pb (Ⅱ) as UV-absorbing EDTA complexes by capillary zone electrophoresis [J]. Journal of Chromatography A, 1995, 696:103-111.
    151. Hirayama K. and Unohara N. Spectrophotometric Catalytic Determination of an Ultratrace Amount of Iron(Ⅲ) in Water Based on the Oxidation of N, N-Dimethyl-p -phenylenediamine by Hydrogen Peroxide [J]. Analytical Chemistry, 1988, 60: 2573-2577.
    152. King D. W., Lin J., Kester D. R. Determination of Fe (Ⅱ) in seawater at nanomolar concentrations [J]. Analytica Chimica Acta, 1991, 247:125-132
    153.朱元保,沈子琛,张传福等,电化学数据手册[M]。湖南科学技术出版社,1985:266-267.
    154.朱明华,仪器分析(第三版)[M]。高等教育出版社,2000:70-72.
    155. Jickells T. D., An Z. S., Andersen K. K., Baker A. R., Bergametti G., Brooks, N., Cao J. J., Boyd P. W., Duce R. A., Hunter K. A., Kawahata H., Kubilay N., LaRoche J., Liss P. S., Mahowald N., Prospero J. M., Ridgwell A. J., Tegen I. and Torres R. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate [J]. Science, 2005, 308:67-71.
    156. Prospero J. M., Uematsu M., Savoie D. L. Chemical Oceanography (2nd Ed.) [M], Academic Press, 1989, 188-218.
    157. Arimoto R., Duce R. A., Savoie D. L. and Prospero J. M. Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources and relationships to aerosol sulfate [J]. Journal of Atmospheric Chemical. 1992, 14(1-14):439-457.
    158. Smith B. M., Wagman J. E. Interaction of Airborne Particles with Gases [J]. Environment Science & Technology, 1969, 3:558-562.
    159. Urone P., Lutsep H., Noyes C. M. et al. Static studies of sulfur dioxide reactions in air [J]. Environment Science & Technology, 1968, 2 (8):611-618.
    160. Chun K. C., Quon J. E. Capacity of ferric oxide particles to oxidize sulfur dioxide in air [J]. Environment Science & Technology, 1973, 7:532-538.
    161. Meskhidze N., Chameides W. L., Nenes A. Chen G. Iron mobilization in mineral dust: Can anthropogenic SO_2 emissions affect ocean productivity? [J]. Geophysical Research Letter, 2003, 30 (21):2-1-5.
    162. Wang L, Zhang F, Chen J M. Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles [J]. Environmental Science & Technology, 2001, 35: 2534-2547.
    163.王琳,宋国新,张峰,陈建民.大气颗粒物对CS_2催化氧化反应动力学研究[J].高等学校化学学报,2002,23(9):1738-1742.
    164.王琳,张峰,陈建民.CS_2与大气颗粒物的多相催化反应研究[J].高等学校化学学报,2002,23(5):866-870.
    165. Wu H. B., Wang X., Chen J. M., et al. Mechanism of the heterogeneous reaction of carbonyl sulfide with typical components of atmospheric aerosol, Chinese Science Bulletin [J], 2004, 49(12): 1231-1235.
    166. Majzlan J. and Myneni S. C. B. Speciation of Iron and Sulfate in Acid Waters: Aqueous Clusters to Mineral Precipitates [J]. Environment Science & Technology, 2005, 39:188-194.
    167. Yamaguchi T., Jin T. and Tanabe K. Structure of Acid Sites on Sulfur-Promoted Iron Oxide [J]. Journal of Physical Chemistry, 1986, 90:3148-3152.
    168.华中一,罗维昂.表面分析[M].上海:复旦大学出版社,1989.
    169. Ali M. A., Dzombak D. A. Competitive Sorption of Simple Organic Acids and Sulfate on Goethite [J]. Environment Science & Technology, 1996, 30: 1061-1071.
    170. Kieber R. J., Hardison D. R., Whitehead R. F and JD Willey. Photochemical production of Fe (Ⅱ) in rainwater [J]. Environment Science & Technology, 2003, 7:4610-4616.
    171. Laskin A., Gaspar D. J., Wang W. H., Hunt S. W., Cowin J. P., Colson S. D. and Finlayson-Pitts B. J. Reactions at interfaces as a source of sulfate formation in sea-salt particles [J]. Science, 2003, 301:340-344.
    172.Katoshevski D, Nenes A., Seinfeld J. A study of processes that govern the maintenance of aerosols in the marine boundary layer [J]. Journal of Aerosol Science, 1999, 30: 503-532.
    173.O'Dowd C. D, Smith M. H., Consterdine I. E., et al. Marine aerosol, sea-salt, and the marine sulphur cycle: a short review [J]. Atmospheric Environment, 1997,31:73-80.
    174.Ayer G. P., Cainey, J. M. Granek H., et al. Dimethylsulfide oxidation and the ratio of methanesulfonate to non sea-salt sulfate in the marine aerosol[J].Oceanographic Literature View, 1997,44: 796.
     175.Gong S. L., Barrie L. A. Simulating the impact of sea salt on global nss sulphate aerosols [J]. Journal of Geophysical Research, 188(D16): 4516.
    
    176.Keene, W. C, Jacob D. J. and Fan, S. M. Reactive chlorine: a potential sink for dimethylsulfide and hydrocarbons in the marine boundary layer [J] .Atmospheric Environment, 1996, 30(6): 1-3.
    177.Chameides W. L. and Stelson A. W. Aqueous-phase chemical processes in deliquescent sea salt aerosols: a mechanism that couples the atmospheric cycles of S and sea salt [J]. Journal of Geophysical Research, 1992, 97: 20565-20580.
    178.Zhou X., Prospero J.M., Millero F. J., Savoie D.L. and Brass, G.W. The solubility of ferric iron in marine aerosol solutions at ambient relative humidities [J].Marine Chemistry, 1992, 38:91-107.
    179.Ginoux P., Chin M., Tegen I., Prospero J., Holben B., Dubovik O., and Lin, S.Sources and distributions of dust aerosols simulated with the GOCART model [J],Journal of Geophysical Research, 2001,106:20255-20273.
    180.Tegen I. and Fung I. Modeling of mineral dust in the atmosphere: Sources,transport, and optical thickness [J]. Journal of Geophysical Research 1994, 99:22897-22914.
    181.Zhang D and Iwasaka Y. Chlorine deposition on dust particles in marine atmosphere [J]. Geophysical Research Letters, 2001, 28:3613-3616.
    
    182.Nishikawa M., Kanamori S., Kanamori N., Mizoguchi T., Kosa aerosol as eolian carrier of anthropogenic material [J] . Science of Total Environment, 1991, 107: 13-27.
    183.Kanamori S., Kanamori N., Nishikawa M, et al. The chemistry of KOSA [A]. KOSA by WRI of Nagoya University (Eds.), Nagoya: Kokin Syoin Press, 1991.124-156.
    184.Okada K, et al. X-ray spectrometry of individual Asian dust stormparticles over the Japanese Islands and the North Pacific Ocean [J]. Atmospheric Environment,1990,24A:1369-1378.
    185.Yamato Y. and Tanaka H. Aircraft observations of aerosols in the free marine troposphere over the North Pacific Ocean: Particle chemistry in relation to air mass origin [J]. Journal of Geophysical Research, 1994, 99:5353-5377.
    186.Okada K. and Kai K. Features of elemental composition of mineral particles collected in Zhangye, China [J]. Journal of Meteorological Society of Japan, 1995,73:2947-2957.
    187.Zhang D. and Iwasaka Y. Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996 [J]. Atmospheric Environment, 1999, 33: 3213-3223.
    188.Ibusuki T., Ohsawa M. and Boatman, J. Metal ion catalyzed oxidation of SO_2 in the presence of trace H_2O_2 in aqueous solution under environmental conditions [J]. Atmospheric Environment, 1990, 24A: 1325-1330.
    189.Luria M. and Sievering H. Heterogeneous and homogeneous oxidation of SO_2 in the remote marine atmosphere [J]. Atmospheric Environment, 1991, 25A: 1489-1496.
    190.Beichert P. and Finlayson-Pitts B. J. Knudsen Cell Studies of the Uptake of Gaseous HNO_3 and Other Oxides of Nitrogen on Solid NaCl: The Role of Surface-Adsorbed Water [J]. Journal of Physical Chemistry, 1996, 100:15218-15228.
    191.Byrne R. H., Yao Wensheng, Luo Yu-Ran, Wang Binyu. The dependence of Fe~(III)hydrolysis on ionic strength in NaCl solutions [J]. Marine Chemistry, 2005, 97:34-48.
    192.Bassert and Parker, The oxidation of sulphurous acid [J]. Journal of the Chemical Society, 1951:1540-1560.
    193.Hansel C. M., Benner S. and Fendorf S. Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite Environment [J]. Science & Technology, 2005,39:7147-7153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700