用户名: 密码: 验证码:
典型生物质燃烧标识物及生物质排放的VOCs在大气中的降解机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能,就是太阳能以化学能的形式贮存在生物质中的能量形式,即以生物质为载体的能量。目前很多国家都在积极研究和开发利用生物质能,通常包括木材、水生植物、森林废弃物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。但是,在关注生物质能带来便利的同时,也应当关注生物质本身排放的VOCs和生物质燃烧排放的有机物对环境的影响。
     本文以左旋葡聚糖和脱氢枞酸作为生物质燃烧释放的典型的分子示踪物和生物质排放的单萜烯(罗勒烯、月桂烯和芳樟醇)为代表物进行研究,采用高水平量子化学理论密度泛函方法(DFT),在MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p)水平上对左旋葡聚糖、脱氢枞酸、单萜烯在大气中的氧化降解机理做出了系统的研究与分析,并且使用RRKM-TST理论计算了相关的动力学数据。得到了一些有价值的研究成果:
     1.左旋葡聚糖的大气氧化降解机理及动力学性质
     OH自由基氢抽提反应是左旋葡聚糖大气降解的主要途径。本文采取高精度的量子化学方法研究了左旋葡聚糖与OH自由基可能进行的重要反应,并对形成的主要活性中间体在O2/NO/H2O存在条件下进行的大气反应作了研究。研究表明OH自由基抽提烷基上H的反应是主要的引发反应,其最终降解产物对大气酸度和SOA形成均有贡献。并且在298K时,左旋葡聚糖与OH自由基的反应速率常数为2.21×10-13cm3molecule-1s-1,计算得到其大气寿命为26天。
     2.脱氢枞酸的大气氧化降解机理及动力学性质
     研究了OH自由基和03分别引发的脱氢枞酸的大气氧化降解机理。对于OH自由基引发反应来说,OH自由基的加成反应和抽提反应都发挥着重要作用,并且RRKM计算结果表明:在298K时,OH自由基加成反应速率常数为2.00×10-12cm3molecule-1s-1,而H抽提反应速率常数为6.89×1012cm3molecule-1s-1,总包反应速率常数为8.9×10-12cm3molecule-1s-1。由于对流层中高的O3浓度,O3引发的加成反应同样也不能忽视,其反应速率常数为2.29×10-20cm3molecule-1s-1。
     3.单萜烯的氧化降解机理和动力学性质
     分别研究了罗勒烯、月桂烯、芳樟醇与03的反应机理,讨论了03分别加成到各个双键上的加成反应,以及在O2/NO/H2O存在条件下的二级反应。并且讨论了这三个单萜烯在液相中反应进行的趋势。在298K时,罗勒烯、月桂烯、芳樟醇与03反应的速率常数分别为7.19×10-16、3.51×10-19和3.83×10-16cm3molecule-1s-1。
Biomass refers to the variety of organisms through photosynthesis, including all of the animals and plants and microorganisms. And so-called biomass energy, is the form of solar energy in the form of chemical energy stored in the biomass, that is take biomass as the carrier of energy. Now many countries are actively research and development and utilization of biomass energy, which usually includes wood, forest waste, aquatic plants, oil plants, urban and industrial organic waste, animal waste, etc. Biomass energy of the earth's resources is relatively abundant and which is the energy of harmless. People pay attention to the advantages of biomass, but at the same time, they should also pay attention to the biomass itself emission of VOCs and biomass burning emission of organic matters impact on the environment.
     This paper based on levoglucosan and dehydroabietic acid as typical tracer molecules released by the biomass combustion and monoterpene (ocimene, myrcene, linalool) emission by biomass as the representative for research, using high level quantum chemical density functional theoretical method study and analysis their oxidation degradation mechanism in the atmosphere at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. And to calculated the related dynamic datas by using the Rice-Ramsperger-Kassel-Marcus(RRKM) theory. The detailed mechanism has lead to the following conclusions:
     1. The atmospheric oxidation degradation mechanism and kinetics properties of levoglucosan
     This paper adopts the method of high-precision quantum chemical to study all the important reactions between levoglucosan and OH radical. The OH-initiated reaction of levoglucosan is one of the main eliminating ways. The possible subsequent reactions in the presence of O2, NO and H2O are also taken into consideration. The study shows that the H atom abstraction from the C4-position by the OH radical is an energetically favorable pathway, and the OH-initiated products contribute to the formation of SOA and atmospheric acidity. The rate constant of levoglucosan reacting with the OH radical at298K is2.21×10-13cm3molecule-1s-1and the atmospheric lifetime is26days ([·OH]=2.0×106molecule cm-3).
     2. The atmospheric oxidation degradation mechanism and kinetics properties of dehydroabietic acid
     In this paper, the atmospheric mechanism of DHAA initiated by OH radicals and O3was studied at the MPWB1K/6-31+G(d,p)//MPWB1K/6-311+G(3df,2p) level. For OH-initaited reaction with DHAA, both OH-addition reactions and H-abstraction reactions are significant. The result of RRKM kinetic calculation shows thatthe rate constant of OH radicals with DHAA is8.9×10-12cm3molecule-1s-1at298K and under the pressure of760Torr. The rate constant of OH addition reaction is2.00×10-12cm3molecule-1s-1, while that of the H atom abstraction is6.89×10-12cm3molecule-1s-1. The O3addition to the aromatic ring of DHAA is vital to the atmospheric reactions, because the concentration of ozone is high in the troposphere and the ozone can participate in atmospheric reactions all day. And the rate constant of O3reacting with DHAA is2.29×10-20cm3molecule-1s-1.
     3. The atmospheric oxidation degradation mechanism and kinetics properties of monoterpene
     In this paper, we studied the oxidation degradation reactions between ocimene, myrcene, linalool and ozone, respectively. And we discussed the secondary reaction in the presence of O2, NO and H2O. It also studies the reaction trend in the liquid phase. At298K, the rate constant of ocimene, myrcene, linalool are7.19×10-16,3.51×10-19and3.83×10-16cm3molecule-1s-10
引文
[1]胡敏,唐倩,彭剑飞,王锷一,王淑兰,柴发合.我国大气颗粒物来源及特征分析.环境与可持续发展,2011,5;15-19.
    [2]曹国良,张小曳,王丹,郑方成.秸秆露天燃烧排放的TSP等污染物清单.农业环境科学学报,2005,24(4):800-804.
    [3]Cruteen P J, Andreae M. Biomass burning in the tropics:impact on atmospheric chemistry and biogeochemical cycles. Science,1990,250:1669-1678.
    [4]Penner J E, Dickinson R E, O'Neill C A. Effects of aerosol from biomass burning on the global radiation budget. Science,1992,256:1432-1434.
    [5]Mandalakis M, Gustafsson O, Alsberg T, Egeback A-L, Reddy C M, Xu L, Klanova J, Holoubek I, Stephanou E G Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environmental Science and Technology,2005,39:2976-2982.
    [6]Levine J S, Cofer Ⅲ, W R, Cahoon Jr D R, Winstead E L. Biomass burning:a driver for global change. Environmental Science and Technology,1995,29(3): 120A-125A.
    [7]Viana M, Lopez J M, Querol X, Alastuey A, Garcia-Gacio D, Blanco-Heras G, Lopez-Mahia P, Pineiro-lglesias M, Sanz M J, Sanz F, Chi X, Maenhaut W. Tracers and impact of open burning of rice straw residues om PM in Eastern Spain. Atmospheric Environment,2008,42(8):1941-1957.
    [8]Bond T C, Streets D G, Yarber K F, Nelson S M, Woo J-H, Klimonts Z. A technology-based global inventory of black and organic carbon emission from combustion. Journal of Geophysical Research:Atmospheres,2004,109(D14): 1-43.
    [9]Schkolnik G, Chand D, Hoffer A, Andreae M O, Erlick C, Swietlick E, Rudich Y. Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment,2007,41:1107-1118.
    [10]Ogunjobi K O, He Z, Kim K W, Kim Y J. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea. Atmospheric Environment,2004,38:1313-1323.
    [11]Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles,15(4):955-966.
    [12]Zhang H F, Hu D W, Chen J M, Ye X N, Wang S X, Hao J M, Wang L, Zhang R Y, An Z S. Particle size distribution and polycyclic aromatic hydrocarbons emission from agricultural crop residue burning. Environmental Science and Technology,2011,45:5477-5482.
    [13]Adams F, Liu X D. Characterisation of biomass burning particles. In:Boutron C ed., European Research Course on Atmosphere (ERCA). Les Ulis:EDP Sciences, 2000,4(6):83-99.
    [14]陈德翼,彭平安,胡建芳,任曼,陈佩.生物质燃烧的二噁嗯英排放特征.环境化学,2011,30(7):1271-1279.
    [15]Zhang X, Hecobian A, Zheng M, Frank N H, Weber R J. Biomass burning impact on PM2.5 over the southeastern US during 2007:integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmospheric Chemistry and Physics,2010,10(14):6839-6853.
    [16]Glasius M, Ketzel M., Wahlin P, Jensen B, M(?)onster J, Berkowicz R, Palmgren F. Impact of wood combustion on particle levels in a residential area in Denmark. Atmospheric Environment,2006,40:7115-7124.
    [17]Killops S D, Killops V J. An introduction to organic geochemistry. John Wiley Sons.2005.
    [18]Simoneit B R T. Organic matter of the troposphere-V:application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. Journal of Atmospheric Chemistry,1989,8:251-275.
    [19]Simoneit B R T, Sheng G Y, Chen X J, Fu J M, Zhang J, Xu Y P. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment,25(10):2111-2129.
    [20]Sharma H, Jain V K, Khan Z H. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere,66(2):302-310.
    [21]Lary D J, Shallcross D E. Central role of carbonyl compounds in atmospheric chemistry. Journal of Geophysical Research:Atmospheres,2000,105(D15): 19771-19778.
    [22]Caiaraville M P, Bebianno M J, Blasco J, Porte, C, Sarasquete C, Viarengo A. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula:a practical approach. Science of the Total Environment,2000, 247(2-3):295-311.
    [23]田志环,焦传珍.生物标志物在监测环境污染中的应用.环境与可持续发展,2007,1:9-11.
    [24]Bowman F M, Pilinis C, Seinfeld J H. Ozone and aerosol productivity of reactive organics. Atmospheric Environment,1995,29(5):579-589.
    [25]Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics:From air pollution to climate change,2nd Edition,2006.
    [26]Tang X Y, Zhang Y H, Shao, M., Eds. Atmospheric Environmental Chemistry, Senior Education Press:Beijing, China,2006.
    [27]Simoneit B R T, Mazurek M. Organic matter of troposphere-Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment,1982,16:2139-2159.
    [28]Simoneit B R T. Organic mater of troposphere-III. Characterization and sources petroleum and pyrogenic residues aerosols over the western United States. Atmospheric Environment,1984,18:51-67.
    [29]Standley L J, Simoneit B R T. Characterization of extractable plant wax, resin and thermally matured components in smoke particles from described burns. Environmental Science and Technology,1987,21:227-235.
    [30]王伯光,周炎,冯志诚.挥发性恶臭有机污染物的分子标志物研究进展.环境科学与技术,2008,31(9):82-86.
    [31]Robinson A L, Subramanian R, Donahue N M, Bernardo-Bricker A, Rogge W F. Source apportionment of molecular markers and organic aerosols-1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environmental Science and Technology,2006,40 (24):7803-7810.
    [32]Hays M D, Fine P M, Geron C D, Kleeman M J, Gullett B K. Open burning of agricultural biomass:Physical and chemical properties of particle-phase emissions. Atmospheric Environment,2005,39 (36):6747-6764.
    [33]Simoneit B R T. Biomass burning-a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry,2002,17 (3):129-162.
    [34]Fraser M P, Cass G R, Simoneit B R T. Air quality model evaluation data for organics 6. C3-C24 organic acids. Environmental Science and Technology,2003, 37(3):446-453.
    [35]Simoneit B R T, Medeiros P M, Didyk B M. Combustion products of plastics as indicators for refuse burning in the atmosphere. Environmental Science and Technology,2005,39(18):6961-6970.
    [36]Engling G, Carrico C M, Kreidenweis S M, Collett Jr J L, Day D E, Malm W C, Lincoln E, Hao W M, Iinuma Y, Hermann H. Determination of levoglucosan in biomass combustion aerosol by high performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment, 2006,40:S299-S311.
    [37]朱智.多环芳烃及含油废水胁迫下鱼的生物标志物效应研究.[硕士学位论文],河海大学,2008.
    [38]Yan B, Zheng M, Hu Y T, Lee S, Kim H K, Russell A G. Organic composition of carbonaceous aerosols in an aged prescribed fire plume. Atmospheric Chemistry and Physics,2008,8(21):6381-6394.
    [39]Krivacsy Z, Blazso M, Shooter D. Primary organic pollutants in New Zealand urban aerosol in winter during high PM10 episodes. Environmental Pollution, 2006,139(2):195-205.
    [40]Simpson D, Winiwarter W, Borjesson G, et al. Inventorying emissions from nature in Europe. Journal of Geophysical Research,1999,104(D7):8113-8152.
    [41]Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment,2000,34(12-14): 2205-2230.
    [42]王勤耕,韩志传,雷肖恩.当前对流层臭氧数值模式研究中的若干问题.气候与环境研究,2002,7(1):42-48.
    [43]谢曼,王体健,江飞,杨修群.NOx和VOC自然源排放及其对中国地区对流层光化学特征影响的数值模拟研究.环境科学,2007,28(1):32-39.
    [44]屈玉,安俊岭.人为源和生物源排放对臭氧的总贡献与协同贡献-以春季东亚地区为例.中国环境科学,2009,29(2):955-960.
    [45]司徒淑娉.珠三角地区萜烯化合物排放特征研究.[硕士学位论文],中山大学,2009.
    [46]Kesselmeier J, Staudt M. Biologic Volatile Organic Compounds(VOC):An Overview on Emission, Physiology and Ecology. Journal of Atmospheric Chemistry,1999,33:28-88.
    [47]闫雁,王志辉,白郁华,谢邵东,邵敏.中国植被VOC排放清单的建立.中国环境科学,2005,25(1):110-114.
    [48]Went F W. Blue Hazes in the Atmosphere. Nature,1960,187:641-643.
    [49]杨文波.大气中有机农药降解机理的理论研究.[硕士学位论文],山东大学,2011.
    [50]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review,1964,136: B864-B871.
    [51]Ricca A, Bauschlicher C W. Successive H2O Binding Energies for Fe(H2O)n+. the Journal of Physical Chemistry,1995,99(22):9003-9007.
    [52]曾智文.碳-化学相关产品的合成反应机理研究.[硕士学位论文],中南大学,2010.
    [53]B.Wang, H. Hou, Y. Gu, J. Phys. Chem. A103 (1999) 8021.
    [54]Diau E W, Lin M C, Melius C F. A Theoretical Study of the CH3+ C2H2 Reaction. Journal of Chemical Physics,1994,101(5):3923-3927.
    [55]M. R. Berman, M. C. Lin, J. Phys. Chem.87 (1983) 3933
    [56]孙静俞.腈类分子与活泼自由基反应机理和动力学研究.[硕士学位论文],东 北师范大学,2009.
    [57]Capart R, Khezami L, Burnham A K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta,2004,417(1): 79-89.
    [58]Liao Y F, Wang S R, Ma X Q, Luo Z Y, Cen K F. Numerical approach to the mechanism of cellulose pyrolysis. Chinese Journal of Chemical Engineering,2005, 13(2):197-203.
    [59]Simoneit B R T, Schauer J J, Nolte C G, Oros D R, Elias V O, Fraser M P, Rogge W F, Cass G R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment,1999,33:173-182.
    [60]Elias V O, Simoneit B R T, Cordeirc R C, Turcq B. Evaluating levoglucosan as an indicator of biomass burning in Carajas, Amazonia:A comparison to the charcoal record. Geochimica et Cosmochimica Acta,2001,65(2):267-272.
    [61]Jordan T B, Seen A J, Jacobsen G E. Levoglucosan as an atmospheric tracer for woodsmoke. Atmospheric Environment,2006,40:5316-5321.
    [62]Fraser, M. P.; Lakshmanan, K. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science and Technology,2000,34:4560-4564.
    [63]Mochida M, Kawamura K, Umemoto N, Kobayashi M, Matsunaga S, Lim H-J, Turpin B J, Bates T S, Simoneit B R T. Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia:continental outflow of organic aerosols during the ACE-Asia campaign. Journal of Geophysical Research,2003,108(D23),8638.
    [64]Stohl A, Berg T, Burkhart J F, Fjaeraa A M, Forster C, Herber A, Hov 0, Lunder C, McMillan W W, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Strom J, T(?)rseth K, Treffeisen R, Virkkunen K, Yttri K E. Arctic smoke e record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics,2007,7:511-534.
    [65]Zhang X, Hecobian A, Zheng M, Frank N H, Weber R J. Biomass burning impact on PM2.5 over the southeastern US during 2007:integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmospheric Chemistry and Physics Discussion,2010,10:7037-7077.
    [66]Hennigan C J, Miracolo M A, Engelhart G J, May A A, Presto A A, Lee T, Sullivan A P, McMeeking G R, Coe H, Wold C E, Hao W M, Gilman J B, Kuster W C, Gouw J de, Schichtel B A, Collett Jr J L, Kreidenweis S M, Robinson A L. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmospheric Chemistry and Physics Discussion,2011,11:11995-12037.
    [67]Mochida M, Kawamura K, Fu P Q, Takemura T. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment,2010,44:3511-3518.
    [68]Seinfeld J H, and Pandis S N. Atmospheric Chemistry and Physics, John Wiley, New York,1998.
    [69]Hennigan C J, Sullivan A P, Collett Jr J L, Robinson A L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research letter,2010,37(9):L09806.
    [70]Frisch M J, Trucks G W, Schlegel H B, et al, GAUSSIAN 03, Pittsburgh, PA, 2003.
    [71]Becke A D. Density-functional thermochemistry. Ⅳ. Anew dynamical correlation functional and implications for exact-exchange mixing. Journal of Chemical Physics,1996,104(3):1040-1046.
    [72]Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPWIPM models. Journal of Chemical Physics,1998,108(2):664-675.
    [73]Zhao Y, Truhlar D G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, the Journal of Physical Chemistry A, 2004,108:6908-6918.
    [74]Fukui K. The path of chemical reactions-the IRC approach. Accounts of Chemical Research,1981,14:363-368.
    [75]Kessler S H, Smith J D, Che D L, Worsnop D R, Wilson K R, Kroll J H. Chemical Sinks of Organic Aerosol:Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan. Environmental Science and Technology,2010,44:7005-7010.
    [76]Bethel H L, Atkinson R, Arey J. Hydroxycarbonyl Products of the Reactions of Selected Diols with the OH Radical.the Journal of Physical Chemistry A,2003, 107:6200-6205.
    [77]Holmes B J, Petrucci G A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environmental Science and Technology,2006,40:4983-4989.
    [78]Holmes B J, Petrucci G A. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. Journal of Atmospheric Chemistry,2007, 58:151-166.
    [79]Yang L M, Nguyen D M, Yu L E. Photooxidation of levoglucosan in atmospheric aqueous aerosols. Goldschmidt Conference Abstract 2009.
    [80]Hoffmann D, Tilgner A, Iinuma Y, Herrmann H. Atmospheric stability of levoglucosan:A detailed laboratory and modeling study. Environmental Science and Technology,2010,44:694-699.
    [81]Tong C, Blanco M, Goddard III W, Seinfeld J H. Secondary Organic Aerosol Formation by Heterogeneous Reactions of Aldehydes and Ketones:A Quantum Mechanical Study. Environment Science and Technology,2006,40:2333-2338.
    [82]Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 1998,19:404-417.
    [83]Barone V, Cossi M, Tomasi J. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, the Journal of Physical Chemistry A,1998,102:1995-2001.
    [84]Standley L J, Simoneit B R T. Resin diterpenoids as tracers for biomass combustion aerosols. Journal of Atmospheric Chemistry,1994,18:1-15.
    [85]Simoneit B R T, Rogge W F, Mazurek M A, Standley L J, Hildemann L H, Cass G R. Lignin pyrolysis products, Lignans and Resin acids as specific tracers of plant classes in emissions from biomass combustion. Environment Science and Technology,1993,27:2533-2541.
    [86]Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States.Environment Science and Technology,2001,35:2665-2675.
    [87]Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the southern United States. Environment Science and Technology,2002,36:1442-1451.
    [88]Engling G, Herckes P, Kreidenweis S M, Malm W C, Collett Jr J L. Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment,2006,40:2959-2972.
    [89]Wang G, Kawamura K, Hatakeyama S, Takami A, Li H, Wang W. Aircraft Measurement of Organic Aerosols over China. Environment Science and Technology,2007,41:3115-3120.
    [90]Leithead A, Li S M, Hoff R, Cheng Y, Brook J. Levoglucosan and dehydroabietic acid:Evidence of biomass burning impact on aerosols in the Lower Fraser Valley. Atmospheric Environment,2006,40:2721-2734.
    [91]Halbrook N J, Lawrence R V. The isolation of dehydroabietic acid from disproportiinated rosin.the Journal of Organic Chemistry,1966,31:4246-4247.
    [92]Munoz M J, Castano A, Blazquez T, Vega M, Carbonell G, Ortiz J A, Carballo M, Tarazona J V. Toxicity identification evaluations for the investigation of fish kills: A case study. Chemosphere.1994,29:55-61.
    [93]Pacheco M, Santos M A. Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicology and Environmental Safety,2002,53:331-347.
    [94]Piispanen P S, Hedman B, Norin T. Synthesis and characterization of dehydroabietic acid derivatives suitable for surfactant synthesis. Journal Surfactants Deterg,2001,5:165-168.
    [95]Jia W H, Rao X P, Song Z Q, Shang S B. Microwave-Assisted Synthesis and Properties of a Novel Cationic Gemini Surfactant with the Hydrophenanthrene Structure. Journal Surfactants Deterg,2009,12:261-267.
    [96]Rao X P, Song Z Q, He L. Synthesis and antitumor activity of novel a-aminophosphonates from diterpenic dehydroabietylamine. Heteroatom Chemistry,2008,19:512-516.
    [97]Rao X P, Song Z Q, He L, Jia W H. Synthesis, structure analysis and cytotoxicity studies of novel unsymmetrically N,N'-substituted ureas from dehydroabietic acid. Chemical Pharmaceutical Bulletin,2008,56:1575-1578.
    [98]Simoneit B R T, Elias VO. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry,2000,69:301-312.
    [99]Corin N S, Backlund P H, Kulovaara M A M. Photolysis of the Resin Acid Dehydroabietic Acid in Water. Environment Science and Technology,2000,34: 2231-2236.
    [100]Martin V J J, Yu Z T,-Mohn W W. Recent advances in understanding resin acid biodegradation:microbial diversity and metabolism. Archives of Microbiology,1999,172:131-138.
    [101]Gamal EL-Din M, Smith D W, Al Momani F, Ikehata K. Ozone treatment for degradation of resin and unsaturated fatty acid at low temperatures. Journal of Environment Engineering Science,2006,5:S95-S102.
    [102]SRC, Syracuse Research Corporation, AopWin Estimation Software, Ver. 4.10. North Syracuse, NY.2011.
    [103]Zenaitis M G, Duff S J B. Modeling of the Reaction of Ozone with Dehydroabietic Acid. Ozone Science and Engineering,2005,27:397-407.
    [104]Alvarado A, Arey J, Atkinson R. Kinetics of the Gas-Phase Reactions of OH and NO3 Radicals and O3 with the Monoterpene Reaction Products Pinonaldehyde, Caronaldehyde, and Sabinaketone. Journal of Atmospheric Chemistry,1998,31: 281-297
    [105]Noe S M, Ciccioli P, Bancaleoni E, Loreto F, Niinemets U. Emissions of monoterpenes linalool and ocimenerespond differently to environmental changes due to differences in physico-chemical characteristics. Atmospheric Envieonment, 2006,4(25):4649-4662.
    [106]白志鹏,李伟芳.二次有机气溶胶的特征和形成机制.过程工程学报,2008,8(1):202-208.
    [107]王玉东.臭氧引发的萜烯化合物大气反应机理的理论研究.[硕士学位论文],山东大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700