用户名: 密码: 验证码:
α-蒎烯氧化生成二次有机气溶胶的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次有机气溶胶(secondary organic aerosol,SOA)由于降低能见度、导致气候变化、危害人体健康等负面效应,日益被关注。本研究以排放量大、生成SOA产率高的天然源VOCs物种α-蒎烯为研究对象,通过室内烟雾箱实验系统研究其经光氧化、臭氧氧化生成SOA的过程。光氧化实验在恒温(303K)、恒湿(40%RH)用黑光灯辐照α-蒎烯与NOx的混合物引发;臭氧氧化在黑光灯关闭的条件下通过注入臭氧或α-蒎烯引发,并以甲醇作为OH自由基清除剂。实验过程中,利用扫描迁移率粒子测定仪(SMPS)联合超细凝聚核粒子计数器(CPC)测量颗粒相的粒径分布,利用气相色谱-离子火焰检测器测量α-蒎烯的消耗,并实时记录NOx,O3等气相物种的浓度变化。
     在无颗粒物种子的条件下,光氧化及臭氧氧化反应生成SOA的产率都可用Odum双产物模型描述。颗粒物粒径分布曲线表明最初颗粒相的形成可由低挥发性氧化产物的均相成核过程解释,随后的粒径的增长由半挥发性有机物在两相的分配决定。干态弱酸性颗粒物种子硫酸铵存在的条件下,α-蒎烯光氧化生成的SOA的时间提前,并且最终产率显著增加,产率的相对增量ΔY*与颗粒物种子的表面积浓度呈较好的线性关系(R~2>0.9)。根据反应路径及产物鉴别结果推断,在无机酸性种子气溶胶的催化作用下,α-蒎烯光氧化的主要气相产物蒎酮醛与存在于颗粒相的化合物发生异相反应,生成低聚物(Oligomer),使得原本存在于气相中的高分子醛类更多地进入颗粒相,使SOA产率的增加。而对于α-蒎烯臭氧氧化的过程,实验结果表明,干态硫酸铵颗粒物种子的存在对SOA产率无影响,对臭氧氧化生成的SOA分子鉴别的结果表明,可鉴别组分中有很高比例的有机羧酸类物质,这一比例远高于光氧化产物,这些有机酸具有较低的挥发性而极易形成颗粒相,并且不参与异相酸催化反应。
     利用CHEMKIN软件建立化学反应机理模拟平台,辅助进行机理分析,得到本烟雾箱系统的HONO的释放速率为1.65×10~(-5) cm~3molecule~(-1)s~(-1)。由此提供了一种表征实验与箱式模型联合使用确定烟雾箱系统HONO释放速率的方法。
Secondary organic aerosol (SOA) has been an issue of enormous interest in recent years because of the possible impacts of SOA on the earth’s radiative balance linked to climate change, visibility degradation, and health effects. In this study, SOA formation potential ofα-pinene, one of the most abundant and reactively biogenic VOCs, was investigated at Tsinghua Indoor Chamber Facility. The photo-oxidation has been initiated by irradiation ofα-pinene/NOx mixture, and ozonolysis has been initiated by injection of ozone orα-pinene under dark condition. Methanol was also injected as OH radical scavenger for ozonolysis experiments. A Scanning Mobility Particle Sizer system (3936, TSI) and a Condensation Particle Counter (3010, TSI) were used to study the SOA formation and a gas chromatograph (GC) equipped with a DB-5 column and a flame ionization detector (FID) was used to measureα-pinene, and the concentration of NO, NO_x-NO and O_3 were recorded simultaneously.
     For the experiments without seed aerosol, the SOA yield can be regressed by two-product model, and the particle size distribution imply that the SOA were initially formed by homogenous nucleation of products with lower volatility, and the following growth of particle size was due to the gas/particle partitioning process. For the photo-oxidation, the presence of dry ammonia sulfate seed aerosol increased the SOA yield significantly, and a strong linear relationship (r~2=0.96) between SOA yield enhancement (ΔY*) and surface concentration of seed aerosol (PMi,s)has been found, denoting that the PMi,s is the control factor for SOA yield enhancement. And the possible reason for the enhancement is due to acid-catalyzed heterogeneous reactions of pinonaldehyde to form oligomer. For ozonolysis, the SOA yield has not been changed by inorganic seed aerosol, because the products are mainly carboxylic acids, which has much lower saturation vapor pressure and thus easily undergo homogeneous nucleation or gas-particle partitioning to be in the aerosol phase.
     Box simulation was conducted using CHEMKIN software, mechanism analysis with box simulation denoted that, the HONO off-gassing rate are 1.65×10~(-5) cm~3molecule~(-1)s~(-1).By using the chamber characterization experiments and one box simulation, a method to evaluate the background HONO formation of smog chamber has been established.
引文
Adelman Z E. A Reevaluation of the Carbon Bond-IV Photochemical Mechanism[Master DegreeThesis]. Chapel Hill :University of North Carolina, 1999.
    Altieri K E, Carlton A G, Lim H J, et al. Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products. Environmental Science & Technology, 2006, 40:4956-4960.
    Atkinson R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. Journal of Physical and Chemical Reference Data, 1997, 26:215-220.
    Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 2000, 34:2063-2101.
    Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 2003, 37:S197-S219.
    Benjamin M T, Sudol M, Vorsatz D, et al. A spacially and temporally resolved biogenic hydrocarbon emissions inventory for the California South Coast Air Basin. Atmospheric Environment, 1997, 31:3087-3100.
    Berndt T, B?ge OStratmann F. Gas-phase ozonolysis ofα-pinene: gaseous products and particle formation. Atmospheric Environment, 2003, 37:3933-3945.
    Bohn B, Rohrer F, Brauers T, et al. Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2005, 5:493-503.
    Bonn B, Moortgat G K. New particle formation during alpha- and beta-pinene oxidation by O-3, OH and NO3, and the influence of water vapour: particle size distribution studies. Atmospheric Chemistry and Physics, 2002a, 2:183-196.
    Bonn B, Schuster GMoortgat G K. Influence of Water Vapor on the Process of New Particle Formation during Monoterpene Ozonolysis. J. Phys. Chem. A, 2002b, 106:2869-2881
    Brooks S D, Wise M E, Cushing M, et al. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophysical Research Letters, 2002, 29,134-145.
    Brown D G, Jaffe P R. Effects of Nonionic Surfactants on the Cell Surface Hydrophobicity and Apparent Hamaker Constant of a Sphingomonas sp. Environ. Sci. Technol., 2006, 40:195-201.
    Burkholder J B, Baynard T, Ravishankara A R, et al. Particle nucleation following the O3 and OH initiated oxidation of alpha-pinene and beta-pinene between 278 and 320 K. Journal of Geophysical Research-Atmospheres, 2007, 112:145-161.
    Buzcu B, Yue Z W, Fraser M P, et al. Secondary particle formation and evidence ofheterogeneous chemistry during a wood smoke episode in Texas. Journal of Geophysical Research-Atmospheres, 2006, 111:-.
    Calogirou A, Larsen B RKotzias D. Gas-phase terpene oxidation products:a review. Atmospheric Environment, 1999, 33:1423-1439.
    Capouet M, Peeters J, Noziere B, et al. Alpha-pinene oxidation by OH: simulations of laboratory experiments. Atmospheric Chemistry and Physics, 2004, 4:2285-2311.
    Carter W P L Evaluation of the RADM gas-phase chemical mechanism; EPA-600/3-90-001; 1990.
    Carter W P L. Evaluation of a detailed gas-phase atmospheric reaction mechanism using environmental chamber data. Atmospheric Environment, 1991, 25:2771-2806.
    Carter W P L. Computer Modeling of Environmental Chamber Measurements of Maximum Incremental Reactivities of Volatile Organic-Compounds. Atmospheric Environment, 1995, 29:2513-2527.
    Carter W P L, Pierce J A, Luo D M, et al. Environmental Chamber Study of Maximum Incremental Reactivities of Volatile Organic-Compounds. Atmospheric Environment, 1995, 29:2499-2511.
    Carter W P L, Fitz D R, Cocker D R III, et al. 2005. Development of a next-generation environmental chamber facility for chemical mechanism and VOC reactivity research . Final report to the United States Environmental Protection Agency, Cooperative Agreement CR 827331-01-0.
    Chang E IPankow J F. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts,and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model. Atmospheric Environment, 2006, 40:6422–6436.
    Chandramouli B, Jang M, Kamens R M. Gas–particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance . Atmospheric Environment, 2003, 37(6):853-864.
    Cocker D R, Clegg S L, Flagan R C, et al. The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: alpha-pinene/ozone system. Atmospheric Environment, 2001a, 35:6049-6072.
    Cocker D R, Flagan R CSeinfeld J H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environmental Science & Technology, 2001b, 35:2594-2601.
    CornerPendlebury In The coagulation and deposition on a stirred aerosol, Proceedings of the Physical Society, 1951; 645–654.
    Czoschke N MJang M. Markers of heterogeneous reaction products in alpha-pinene ozone secondary organic aerosol. Atmospheric Environment, 2006, 40:5629-5639.
    Czoschke N M, Jang MKamens R M. Effect of acidic seed on biogenic secondary organic aerosolgrowth. Atmospheric Environment, 2003, 37:4287-4299.
    Dodge M C. Chemical oxidant mechanisms for air quality modeling critical review. Atmospheric Environment, 2000, 34:2103-2130.
    Dommen J, Metzger A, Duplissy J, et al. Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation. Geophysical Research Letters, 2006, 33:-.
    Du L, Xu Y, Ge M F, et al. Experimental investigation of incremental reactivity of di-tert-butyl peroxide. Chinese Science Bulletin, 2007a, 52:1629-1634.
    Du L, Xu Y F, Ge M F, et al. Rate constant for the reaction of ozone with diethyl sulfide. Atmospheric Environment, 2007b, 41:7434-7439.
    Du L, Xu Y F, Ge M F, et al. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3)with ozone. Chemical Physics Letters, 2007c, 436:36-40.
    Duan F K, He K B, Ma Y L, et al. Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001-2002. Science of the Total Environment, 2006, 355:264-275.
    Edney E O, Kleindienst T E, Jaoui M, et al. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmospheric Environment, 2005, 39(29):5281-5289.
    Erdakos G B, Asher W E, Seinfeld J H, et al. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 1: Organic compounds and water by consideration of short- and long-range effects using X-UNIFAC.1. Atmospheric Environment, 2006a, 40:6410–6421.
    Erdakos G B, Chang E I, Pankow J F, et al. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts,and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3. Atmospheric Environment, 2006b, 40:6437–6452.
    Fan Z, Kamens R M, Zhang J, et al. Ozone-nitrogen dioxide-NPAH heterogeneous soot particle reactions and modeling NPAH in the atmosphere. Environ. Sci. Technol., 1996, 30(9):2821-2827.
    Fick J, Pommer L, Nilsson C, et al. Effect of OH radicals, relative humidity, and time on the composition of the products formed in the ozonolysis ofα-pinene. Atmospheric Environment, 2003, 37:4087-4096.
    Fuentes J D, Lerdau M, Atkinson R, et al. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society, 2000, 81:1537-1575.
    Gao S, Keywood M, Ng N L, et al. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alpha-pinene. Journal of Physical Chemistry A, 2004a, 108:10147-10164.
    Gao S, Ng N L, Keywood M, et al. Particle phase acidity and oligomer formation in secondary organic aerosol. Environmental Science & Technology, 2004b, 38:6582-6589.
    Gery M W, Whitten G Z, Killus J P, et al. A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. Journal of Geophysical Research-Atmospheres, 1989, 94:925-956.
    Glasson W A, Dunker A M. Investigation of background radical sources in a Teflon-film irradiation chamber. Environ. Sci. Technol., 1989, 23:970-978.
    Grey M W, Whitten G Z, Killus J P. A photochemical kinetics mechanism for urban and regional scale computer modeling. Journal of Geophysical Research, 94, 1989, 94:12925-12926.
    Griffin R J, Cocker D R, Flagan R C, et al. Organic aerosol formation from the oxidation of biogenic hydrocarbons. Journal Of Geophysical Research-Atmospheres, 1999a, 104:3555-3567.
    Griffin R J, Cocker D R, Seinfeld J H, et al. Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophysical Research Letters, 1999b, 26:2721-2724.
    Guenther A, Geron C, Pierce T, et al. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment, 2000, 34:2205.
    Guenther A, Hewitt C N, Erickson D, et al. A Global-Model of Natural Volatile Organic-Compound Emissions. Journal of Geophysical Research-Atmospheres, 1995, 100:8873-8892.
    Hao L Q, Wang Z Y, Huang M Q, et al. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene. Journal of Environmental Sciences-China, 2007, 19:704-708.
    He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001, 35:4959-4970.
    Heland J, Kleffmann J, Kurtenbach R, et al. A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environmental Science & Technology, 2001, 35:3207-3212.
    Hoffmann T, Odum J R, Bowman F, et al. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal Of Atmospheric Chemistry, 1997, 26:189-222.
    Holmes B J, Petrucci G A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environmental Science & Technology, 2006, 40:4983-4989.
    Hynes R G, Angove D E, Saunders S M, et al. Evaluation of two MCM v3.1 alkene mechanisms using indoor environmental chamber data. Atmospheric Environment, 2005, 39(38):7251-7262.
    Iinuma Y, Boge O, Gnauk T, et al. Aerosol-chamber study of the alpha-pinene/O3 reaction:influence of particle acidity on aerosol yields and products. Atmospheric Environment, 2004, 38:761-773.
    Izumi K, Fukuyama T. Photochemical aerosol formation from aromatic-hydrocarbons in the presence ofNOx. Atmospheric Environment, 1991, 24A:1433-1441.
    Jang M, Czoschke N M, Northcross A L. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions. Chemphyschem, 2004, 5:1647-1661.
    Jang M, Czoschke N M, Northcross A L, et al. SOA formation from partitioning and heterogeneous reactions: Model study in the presence of inorganic species. Environmental Science & Technology, 2006, 40:3013-3022.
    Jang M, Kamens R M. Newly characterized products and composition of secondary aerosols from the reaction of alpha-pinene with ozone. Atmospheric Environment, 1999, 33:459-474.
    Jang M, Lee S, Kamens R M. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmospheric Environment, 2003, 37:2125-2138.
    Jang M S, Carroll B, Chandramouli B, et al. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environmental Science & Technology, 2003, 37:3828-3837.
    Jang M S, Czoschke N M, Lee S, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 2002, 298:814-817.
    Jang M S, Czoschke N M, Northcross A L. Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environmental Science & Technology, 2005, 39:164-174.
    Jang M S, Kamens R M. Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environmental Science & Technology, 2001a, 35:4758-4766.
    Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environmental Science & Technology, 2001b, 35:3626-3639.
    Jaoui M, Kamens R M. Gas phase photolysis of pinonaldehyde in the presence of sunlight. Atmospheric Environment, 2003, 37:1835-1851.
    Jaoui M, Corse E, Kleindienst T E, et al. Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5. Environ. Sci. Technol., 2006, 40:3819-3828.
    Jenkin M E, Clemitshaw K C. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 2000, 34:2499-2527.
    Jenkin M E, Saunders S M, Wagner V, et al. Protocol for the development of the Master ChemicalMechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 2003, 3:181-193.
    Kalberer M, Paulsen D, Sax M, et al. Identification of polymers as major components of atmospheric organic aerosols. Science, 2004, 303:1659-1662.
    Kamens R, Jang M, Chien C J, et al. Aerosol formation from the reaction of alpha-pinene and ozone using a gas-phase kinetics aerosol partitioning model. Environmental Science & Technology, 1999, 33:1430-1438.
    Kamens R M, Jaoui M. Modeling aerosol formation from alpha-pinene plus NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory. Environmental Science & Technology, 2001, 35:1394-1405.
    Kelly N A, Chang T Y. An experimental investigation of incremental reactivities of volatile organic compounds. Atmospheric Environment, 1999, 33(13):2101-2110.
    Keywood M D, Kroll J H, Varutbangkul V, et al. Secondary organic aerosol formation from cyclohexene ozonolysis: Effect of OH scavenger and the role of radical chemistry. Environmental Science & Technology, 2004, 38:3343-3350.
    Kleindienst T E, Smith D F, Hudgens E E, et al. The photooxidation of automobile emissions: measurement of the transformation products and their mutagenic activity. Atmospheric Environment, 1992a, 26A:3039-3053.
    Kleindienst T E, Smith D F, Hudgens E E, et al. Generation of mutagenic transformation products during the irradiation of simulated urban atmospheres. Environ. Sci. Technol., 1992b, 26(2):320-329.
    Kleindienst T E, Smith D F, Li W, et al. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmospheric Environment, 1999, 33(22):3669-3681.
    Kleindienst T E, Edney E O, Lewandowski M, et al. Secondary organic carbon and aerosol yields from the irradiations of isoprene andα-pinene in the presence of NOx and SO2. Environ. Sci. Technol., 2006, 40:3807-3812.
    Klimont Z, Streets D G, Gupta S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China. Atmospheric Environment, 2002, 36:1309.
    Klinger L F, Li Q J, Guenther A B, et al. Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research-Atmospheres, 2002, 107:-
    Kroll J H, Ng N L, Murphy S M, et al. Secondary organic aerosol formation from isoprene photooxidation. Environmental Science & Technology, 2006, 40:1869-1877.
    Kulmala M. How particles nucleate and grow. Science, 2003, 302:1000-1001.
    Lamb B, Gay D, Westberg H, et al. A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model. Atmospheric Environment, 1993, 27:1673-1690.
    Lamb B, Guenther A, Gay D, et al. A national inventory of biogenic hydrocarbon emissions. Atmospheric Environment, 1987, 21:1695–1705.
    Larsen B R, Di Bella D, Glasius M, et al. Gas-phase OH oxidation of monoterpenes: Gaseous and particulate products. Journal of Atmospheric Chemistry, 2001, 38:231-276.
    Lee A, Goldstein A H, Kroll J H, et al. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. Journal of Geophysical Research-Atmospheres, 2006, 111:-.
    Lee S, Kamens R M. Particle nucleation from the reaction of alpha-pinene and O3. Atmospheric Environment, 2005, 39:6822-6832.
    Leungsakul S, Jaoui M, Kamens R M. Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone . Environ. Sci. Technol., 2005, 39(24):9583-9594.
    Librando V, Tringali G. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation. Journal of Environmental Management, 2005, 75:275-282.
    Liggio J, Li S M. Reactive uptake of pinonaldehyde on acidic aerosols. Journal of Geophysical Research-Atmospheres, 2006, 111:-.
    Liggio J, Li S M, Brook J R, et al. Direct polymerization of isoprene and alpha-pinene on acidic aerosols. Geophysical Research Letters, 2007, 34:-.
    Lu Z, The effect of preexisting ammonium sulfate seed aerosol on secondary organic aerosol formation in irradiated toluene/NOx/air mixtures. In Seventh International Aerosol Conference, St. Paul, Minnesota, U. S., 2006.
    McMurry P H, Grosjean D. Gas and aerosol wall losses in Teflon film smog chambers. Environmental Science and Technology, 1985, 19:1176.
    Meagher J F, Olszyna K J, Simonaitis R. Smog chamber study of H2O2 formation in ethene-NOx and propene-NOx mixtures. International Journal of Chemical Kinetics, 1990, 22(7 ):719-740.
    Moldanova J, Ljungstrom E. Modelling of particle formation from NO3 oxidation of selected monoterpenes. Journal of Aerosol Science, 2000, 31:1317-1333.
    Ng N L, Kroll J H, Keywood M D, et al. Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. Environmental Science & Technology, 2006, 40:2283-2297.
    Northcross A L, Jang M. Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid. Atmospheric Environment, 2007, 41:1483-1493.
    Nunes T V, Pio C A. Carbonaceous aerosols in industrial and coastal atmospheres. Atmospheric Environment, 1993, 27:1339–1446.
    Odum J R, Hoffmann T, Bowman F, et al. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology, 1996, 30:2580-2585.
    Pandis S N, Paulson S E, Seinfeld J H, et al. Aerosol formation in the photooxidation of isoprene and beta-pinene. Atmospheric Environment, 1991, 25:997-1008.
    Pankow J F. An Absorption-Model of the Gas Aerosol Partitioning Involved in the Formation of Secondary Organic Aerosol. Atmospheric Environment, 1994, 28:189-193.
    Pankow J F. Absorptive partitioning of semi-volatile organic compounds to environmental tobacco smoke (ETS) and urban secondary organic aerosol (SOA). Abstracts of Papers of the American Chemical Society, 1996, 211:120-126.
    Peeters J, Vereecken L, Fantechi G. The detailed mechanism of the OH-initiated atmospheric oxidation of alpha-pinene: a theoretical study. Physical Chemistry Chemical Physics, 2001, 3:5489-5504.
    Ramazan K A, Syomin D, Finlayson-Pitts B J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2. Physical Chemistry Chemical Physics, 2004, 6:3836-3843
    Rinne J, Hakola H, Laurila T, et al. Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmospheric Environment, 2000, 24:1099-1107.
    Rogge W F, Mazurek M A, Hildemann L M, et al. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 1993, 27:1309-1330.
    Rohr A C, Weschler C J, Koutrakis P, et al. Generation and quantification of ultrafine particles through terpene/ozone reaction in a chamber setting. Aerosol Sci. Technol., 2003, 37:65-78
    Rohrer F, Bohn B, Brauers T, et al. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2005, 5:2189-2201.
    Saunders S M, Jenkin M E, Derwent R G, et al. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 2003, 3:161-180.
    Seinfeld J H, Pankow J F. Organic atmospheric particulate material. Annual Review of Physical Chemistry, 2003, 54:121-140.
    Sheehan P E, Bowman F M. Estimated effects of temperature on secondary organic aerosol concentrations. Environmental Science & Technology, 2001, 35:2129-2135.
    Simonaitis R, Meagher J F, Bailey E M. Evaluation of the condensed carbon bond (CB-IV) mechanism against smog chamber data at low VOC and NOx concentrations. Atmospheric Environment, 1997, 31:27-43.
    Simpson D, Winiwarter W, Borjesson G, et al. Inventorying emissions from nature in Europe.Journal of Geophysical Research-Atmospheres, 1999, 104:8113-8152.
    Song C, Na K S, Cocker D R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology, 2005, 39:3143-3149.
    Surratt J D, Kroll J H, Kleindienst T E, et al. Evidence for organosulfates in secondary organic aerosol [J]. Environ. Sci. Technol., 2007, 41:517-527.
    Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment, 2003, 37:3413-3424.
    Tong C H, Blanco M, Goddard W A, et al. Secondary organic aerosol formation by heterogeneous reactions of aldehydes and ketones: A quantum mechanical study. Environmental Science & Technology, 2006, 40:2333-2338.
    Varutbangkul V, Brechtel F J, Bahreini R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmospheric Chemistry and Physics, 2006, 6:2367-2388.
    Wallington T J, Ninomiya Y, Mashino M, et al. Atmospheric oxidation mechanism of methyl pivalate, (CH3)3CC(O)OCH3. J. Phys. Chem. A., 2001, 105(30):7225-7235.
    Wang L H, Milford J B, Carter W P L. Reactivity estimates for aromatic compounds. Part 1. Uncertainty in chamber-derived parameters. Atmospheric Environment, 2000, 34:4337-4348.
    Wang Q G, Han Z W, Wang T J, et al. An estimate of biogenic emissions of volatile organic compounds during summertime in China. Environmental Science and Pollution Research, 2007, 14:69-75.
    Wang Y, Zhuang G S, Chen S, et al. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research, 2007, 84:169-181
    Wang Z H, Bai Y H, Zhang S Y. A biogenic volatile organic compounds emission inventory for Beijing. Atmospheric Environment, 2003, 37:3771-3782.
    Wei W, Wang S, Chatani S, et al. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 2008, In Press, Accepted Manuscript.
    Wu H B, Wang X, Chen J M. Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol. Science in China Series B-Chemistry, 2005, 48:31-37.
    Wu H B, Wang X, Chen J M, et al. Mechanism of the heterogeneous reaction of carbonyl sulfide with typical components of atmospheric aerosol. Chinese Science Bulletin, 2004, 49:1231-1235.
    Wu Shan L Z, Hao Jiming. Construction and characterization of atmospheric simulation smog chamber. Advances in Atmospheric Sciences, 2007, 24:250-258.
    Xu Y F, Jia L, Ge M F, et al. A kinetic study of the reaction of ozone with ethylene in a smogchamber under atmospheric conditions. Chinese Science Bulletin, 2006, 51:2839-2843.
    Yao X, Chan C K, Fang M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36:4223–4234.
    Yu J Z, Cocker D R, Griffin R J, et al. Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products. Journal of Atmospheric Chemistry, 1999, 34:207-258.
    Yu J Z, Flagan R C, Seinfeld J H. Identification of products containing -COOH, -OH, and -C=O in atmospheric oxidation of hydrocarbons. Environmental Science & Technology, 1998, 32:2357-2370.
    Yu J Z, Jeffries H E. Atmospheric photooxidation of alkylbenzenes.2. Evidence of formation of epoxide intermediates. Atmospheric Environment, 1997a, 31:2281-2287.
    Yu J Z, Jeffries H E, Sexton K G. Atmospheric photooxidation of alkylbenzenes.1. Carbonyl product analyses. Atmospheric Environment, 1997b, 31:2261-2280.
    Zador J, Turanyi T, Wirtz K, et al. Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE). Journal of Atmospheric Chemistry, 2006, 55:147-166.
    Zhang W J, Sun Y L, Zhuang G S, et al. Characteristics and seasonal variations of PM2.5, PM10, and TSP aerosol in Beijing. Biomedical and Environmental Sciences, 2006, 19:461-468.
    Zhang Z QFriedlander S K. A comparative study of chemical databases for fine particle Chinese. Environmental Science & Technology, 2000, 34:4687-4694.
    杜林,徐永福,葛茂发.大气条件下O3与乙炔反应速率常数的测定.化学学报, 2006, 64:2133-2137.
    杜林,徐永福,葛茂发,等.烟雾箱模拟乙炔和NOx的大气光化学反应.环境科学, 2007, 28:482-488.
    郝立庆,王振亚,黄明强,等. In种子气溶胶对甲苯光氧化生成二次有机气溶胶的生长影响, 中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会,中国北京, 2006;中国北京, 2006.
    贾龙,葛茂发,徐永福,等.大气臭氧化学研究进展.化学进展, 2006a, 18:1566-1574.
    贾龙,葛茂发,庄国顺,等.对流层中的OH与HO2自由基的研究进展.化学通报, 2005:736-744.
    贾龙,葛茂发,庄国顺,等.对流层夜间化学研究. 2006b, 18:1034-1040.
    贾龙,徐永福,葛茂发,等.丙烯的臭氧化反应动力学研究.物理化学学报, 2006c, 22:1260-1265.
    李金龙,白郁华,胡建信,等.油松排放萜烯类化合物浓度的日变化及排放速率的研究.中国环境科学, 1994, 14:165-169.
    李爽,陈忠明,邵可声,等.异戊二烯与O3的大气化学反应研究.环境科学, 1997, 18:10-14
    梁英教,物理化学.冶金工业出版社:北京, 1983.
    聂劲松,秦敏,杨勇,等.一种用于研究光化学反应烟雾腔的结构和性能.原子与分子物理学报, 2002a, 19:186-190.
    聂劲松,秦敏,杨勇,等.用烟雾箱研究甲苯与OH自由基光化学反应.原子与分子物理学报, 2002b, 19:304-306.
    任凯锋,李建军,王文丽,等.光化学烟雾模拟实验系统.环境科学学报, 2005, 25:1431-1435.
    任信荣,刘兆荣, Matthias Otting,等.长光路FTIR研究OH发生体系中的OH浓度.环境科学, 1999, 20:26-29.
    唐孝炎,毕木天,李金龙,等.光化学烟雾箱的试制和性能实验.环境化学, 1982, 1:344-351
    王文兴,束勇辉,李金花.煤烟粒子中PAH_S光化学降解的动力学.中国环境科学, 1997, 17:97-102.
    王文兴,谢英,林子瑜,等.甲烷光化学反应机理模式模拟研究.中国环境科学, 1995a, 15:329-332.
    王文兴,谢英,林子瑜,等.甲烷光氧化反应速率常数及其在大气中的寿命.中国环境科学, 1995b, 15:258-261.
    王晓,吴洪波,陈建民.常压和真空下CS2的光氧化反应.环境科学, 2005, 26:45-49.
    吴海,牟玉静,张晓山,等.相对速率法测OH自由基与几种低碳醇的反应速率常数.环境科学学报, 2001, 21:525-529.
    吴海,张逸,牟玉静.异丙醇与OH自由基和Cl反应产物的研究.环境化学, 2004, 23:1-5.
    武江波.甲苯光降解及光催化降解的初步研究.中国科学院研究生院(广州地球化学研究所),中国广州, 2007a.
    武江波,曾祥英,李桂英,等.紫外光照射下甲苯光化学降解的初步研究.地球化学, 2007b, 36:328-334.
    闫雁,王志辉,白郁华,等.中国植被VOC排放清单的建立.中国环境科学, 2005, 25:110-114.
    张远航,邵可声,唐孝炎,等.中国城市光化学烟雾污染研究.北京大学学报(自然科学版), 1998, 34:392-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700