用户名: 密码: 验证码:
基于热管结构的多芯片大功率LED照明系统集成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LED作为一种新型高效固体光源,具有节能、环保和寿命长等特点,大幅降低了用电量,减少了有毒物质的产生。但是LED在工作时有10%~20%的功率转化为光能,80%~90%的功率转化为热能,因此开发热可靠性高、光学性能优异的封装结构对照明用LED的推广应用至关重要。
     本文针对制约照明用LED发展的散热和光学设计这两大关键问题,研究了基于热管结构的大功率LED散热问题;分析了LED照明系统的光照度和均匀性,并对其进行了改进和完善。
     首先,在对LED市场需求和产品应用进行深入调研的基础上,介绍了当前国内外大功率LED制造所采用的工艺、材料、热设计方法及光学设计方案等。在此基础上,提出了本课题的研究内容和研究思路。
     其次,针对多芯片大功率的LED发光器件提出了热管加翅片散热的热设计方案,进行热管材料、工质和结构参数的设计与选择,核算热管的毛细极限,确定热管的导热能力;基于热管热阻网络图,估算热管的热阻和热传导系数;在此基础上,根据设计所要求的结温,估算翅片有效散热面积,并应用热阻网络图估算芯片结温为62℃。
     然后,采用专业热分析软件ICEPAK对基于热管散热的大功率LED照明系统进行了热仿真分析。探讨了热分析与流体分析所需求解的微分方程和基于有限体积法求解的基本思想。简要介绍了基于有限体积法的热分析软件ICEPAK,基于该软件建立了基于热管散热的大功率LED照明系统的热仿真模型,根据实际应用环境设置合理边界条件并进行分析求解,结果显示芯片的最高温度为65℃。ICEPAK软件求解的结温与基于热阻网络求解的结温63℃相比,结果相差幅度为3%,同时也验证了所采用热管和翅片结构的合理性。此外,针对LED散热系统中的翅片结构,系统分析了翅片厚度、高度和翅片间距及有效散热面积对结温的影响,同时考虑到LED成本最低和结构轻量化需求,选取翅片厚度为1mm,高度为25mm,翅片个数为13片为最优的一组数据,此时芯片结温最低为59℃,完全符合多芯片大功率LED实际应用要求。
     最后,对大功率多芯片封装LED照明系统中的光学器件进行了光照度和均匀性分析。在完成上述热设计基础,综合考虑结温对LED光学性能的影响,应用专业光学设计软件TRACEPRO初步研究大功率多芯片封装LED照明系统的光学特性;在此基础上进行二次光学设计,采用不同结构的光学器件对LED器件进行光线的追迹模拟,得出光照度图,对比分析得出较优的结果,最终获得合理的光学设计方案。
Light emitting diode (LED) is a new light source which has the advantages of energy saving, environmental protection, long lifetime compared with traditional fluorescent and incandescent lights. But when LED are working, there is only 10%~20% power translate into light, and 80%~90% power translate into heat. So develop a new package structure which has high reliability and excellent optical performance is essential for application of LED. In addition, the popularization of LED will strongly promote the construction of economical society.
     According to two key issues of heat dissipation and optical design which restrict the LED technology development, this paper studies the heat dissipation problem of high power LED based on heat pipe structure, then investigates the illuminance and evenness of light emitter and improve the optical structure of LED.
     Firstly, the manufacturing process, materials, thermal management and optical design of high power LED are introduced based on investigated LED market and product application at home and abroad. And then the general research way of this paper is put forward.
     Secondly, aiming at a high power LED based on multi-chip packaging, the thermal design of heat pipe and fins is proposed. The material, working fluid and structure parameters of heat pipe are designed and selected. Then the capillary limitation of heat pipe is accounted. So the heat dissipating capability can be determined. Thermal resistance and thermal conductivity of heat pipe are estimated based on network of thermal resistance. According to design requirements of junction temperature and effective dissipation area of fins, junction temperature of LED chip is 62℃based on one-dimensional network of thermal resistance.
     Thirdly, the thermal simulation analysis of high power LED which based on heat pipe structure is took by ICEPAK software. The differential equations of thermal analysis and fluid analysis are study. The basic solution thought of finite volume method and ICEPAK software are introduced. The simulation model of high power LED based on heat pipe structure is developed, and boundary conditions are accurately set based on actual work condition of LED. When solving process finish, the results showed that the junction temperature of LED chips is 65℃. Compared with the result of chapter 2, the result of simulation by ICEPAK software is basically in accordance with the calculated data based on network of thermal resistance in chapter 2, which the change range is 4.8%. At the same time, the result also verifies the feasibility and effectiveness of heat pipe and fins. Aiming at the fin structure of LED dissipation system, the thickness, highness, spacing and effective dissipation area of fins which have influence on junction temperature of LED are comparatively analyzed. By comprehensive consideration, when the fin thickness of 1mm, a height of 25mm, fin spacing of 4mm, the dissipation effect is best.
     At last, the illuminance and evenness of high power multi-chip LED optical devices is systematically analyzed. According to optical properties of selected LED chips, intensity distribution of chips is imposed on surface of LED chips based on TracPro software, and optical properties of high power multi-chip LED is made a preliminary analysis. On this basis, different optical devices (lens and reflector) are selected to simulate ray tracing of LED. And the graphs of illuminance are obtained. Comparing with different simulation results, and finally a reasonable plan of optical design is presented.
引文
[1] http://www.iea.org
    [2]王乐.关于LED应用于照明的研究和设计[D].浙江大学, 2005: 1-5.
    [3] http://www.china-led.net
    [4] http://www.sslchina.org
    [5]陈元灯. LED制造技术与应用[M].北京:电子工业出版社, 2007: 10-100.
    [6]杨清德,康娅. LED及其工程应用[M].北京:人民邮电出版社, 2007: 15-186.
    [7]赵璐冰.国际几大公司专利现状分析[J].半导体照明, 2009, 10(2): 54-55.
    [8] Max Yue. Next Generation Intelligent Lighting Control System for SSL[C],∥6th China International Forum on Solid State Lighting, 2009: 314-316.
    [9] Lianqiao Yang, et al. Thermal analysis of high power GaN based LEDs with ceramic package[J]. Thermochimica Acta. 2007, 455:95-99.
    [10] Lan Kim, Moo Whan Shin. Thermal analysis of high power LED packages[C].∥Proc.of IPIE. 2006, 6337: 1-9.
    [11] Henning Dieker, et al. Comparison of different LED Packages[J]. Proc. of SPIE. 2007, 6769:6797011-67970112.
    [12] Marc de Samber, et al. A new Embedded Packaging Technology for high power LEDs[C].∥IEEE 2008 10th Electronics Packaging Technology Conference. 2008: 242-248.
    [13] K.M.Kim, S.H.Shin, et al. Aluminium-based packaging platform for LED using selectively anodizing method [J]. Pro. SPIE, 2008, 44(1): 1-2
    [14] Jung Kyu Park, et al. A Suggestion for High Power LED Package Based on LTCC[C].∥2006 Electronic Components and Technology Conference, 2006:1070-1075.
    [15]苏达.大功率LED散热封装技术研究的新进展[J].电力电子技术, 2007, 41:13-15
    [16]陈明祥,罗小兵,马泽涛,等.大功率白光LED封装设计与研究进展[J].半导体光电, 2006, 27: 653-658.
    [17]钱可元,胡飞等.大功率白光LED封装技术研究[J].半导体光电, 2005, 26(2):118-120.
    [18] Carl Zweben. Advances in LED packaging and thermal management materials [J]. Proc. SPIE, 2008, 6910: 1-11.
    [19] Petroski. J. Understanding longitudinal fin heat sink orientation sensitivity for Light Emitting Diode (LED) lighting applications[C].∥International Electronic Packaging Technical Conference and Exhibition. 2003:111-117.
    [20] Chen J.H, Liu C.K, Chao Y.L, Tain R.M. Cooling performance of silicon-based thermoelectric device on high power LED[C],∥24th International Conference onthermoelectrics[C]. 2005:53- 56.
    [21] Acikalin T, Garimella S.V, Petroski J, Arvind Raman. Optimal design of miniature piezoelectric fans for cooling light emitting diodes[C],∥The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 2004:663-671.
    [22] Adam Christensen, Samuel Graham. Thermal effects in packaging high power light emitting diode arrays[J]. Applied Thermal Engineering. 2009, 29:364-371
    [23] Lan Kim, et al. Thermal analysis of LED array system with heat pipe[J]. Thermochimica Acta. 2007, 455:21-25.
    [24] John Vetrovec, Amardeep Litt. High Performance Heat Sink for Solid State Lighting [J]. Pro. SPIE. 2009, 7231:1-9
    [25] Jingming Song, Sheng Liu. Cu/M/Cu Sub-mount Applied in High Brightness LED Array Package[C].∥2006 7th International Conference on Electronics Packaging Technology. 2006.
    [26] Xiang you Lu, et al. Thermal analysis of loop heat pipe used for high power LED[J]. Thermochimica Acta. 2009, 246:159-165.
    [27] Xiaobing Luo, et al. Strutural optimization of a microjet based cooling system for high power LEDs[J]. International Journal of Thermal Sciences. 2008, 47:1086-1095.
    [28]李志强,常瑞群,刘旭光.整体式散热系统及具该整体式散热系统的LED照明装置, 200710124533.0[P]. 2008-05-07.
    [29]余彬海,李军政,王垚浩.应用于通用照明的LED面光源, 200710308049.3[P]. 2008-07-09.
    [30] Kuan Chun Chen, et al. High Thermal Dissipation of Ultra High Power Light-Emitting Diode by Copper Electroplating[C]. 2007 Electronic Components and Technology Conference. 2007:734-736.
    [31] Kamenova. L, Avenas. Y, Tzanova. S, Popova. N, et al. 2D numerical modeling of the thermal and hydraulic performances of a very thin sintered powder copper flat heat pipe[C].∥Power Electronics Specialists Conference, 2006: 1-7.
    [32] Ming Tzer Lin, Chao-Chi Chang, Ray-Hua Horng, et al. Heat Dissipation Performance for the Application of Light Emitting Diode[C].∥Design, Test, Integration & Packaging of MEMS/MOEMS, 2009: 145-149.
    [33]姚仲鹏,王瑞君,张习军.传热学[M].北京:北京理工大学出版社, 1995. 12: 98-168.
    [34]吴懿平,电子制造技术基础[M].北京:机械工业出版社, 2005: 60-198.
    [35] http://www.neopac.com
    [36] International Technology Roadmap for Semiconductors 2007 Edition. Assembly and Packaging[R]. 2007:8-9.
    [37]朱明善.工程热力学[M].北京:清华大学出版社, 1995: 568-616.
    [38]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社, 2000: 118-268
    [39]卓世杰.铜粉烧结型微型热管之研究[D].台湾:国立台北科技大学, 1997: 34-50.
    [40] Y.Avenas, et al. Thermal Analysis of Thermal Spreaders Used in Power Electronics Cooling[J]. IEEE, 2002: 216-221.
    [41]余建祖,高红霞,谢永奇.电子设备热设计及分析技术[M].北京:北京航空航天大学出版社, 2008 16-88.
    [42]张红,刘翼宁,庄骏.小热管传热性能的研究[C].∥第七届全国热管会议论文集. 2000: 73-78
    [43]伊凡诺夫斯基,潘永密.热管的物理原理[M].北京:中国石化出版社, 1991: 69-108.
    [44]陈礼,吴勇华.流体力学与热工基础[M].北京:清华大学出版社, 2002: 60-98.
    [45]霍尔曼.传热学[M].北京:人民教育出版社, 1979: 200-246.
    [46]贾力.高等传热学[M].北京:高等教育出版社, 2003: 46-97.
    [47]威尔特,威克斯,马紫峰,等.动量、热量和质量传递原理[M].北京:化学工业出版社, 2005: 68-178.
    [48]钱壬章.传热分析与计算[M].北京:高等教育出版社, 1987: 88-265.
    [49]陈华. 8W白光LED多芯片组件的热分析[D].华中科技大学. 2007: 27-33.
    [50]张建文,杨振亚,张政.流体流动与传热过程的数值模拟基础与应用[M].北京:化学工业出版社, 2009: 36-98.
    [51]李人宪.有限体积法基础[M].北京:国防工业出版社, 2008: 101-156.
    [52] http://www.peraglobal.com.
    [53]方志烈.半导体照明技术[M].上海:复旦大学出版社, 2009: 36-286.
    [54]柯顿,马斯登,马紫峰,等.光源与照明[M].上海:复旦大学出版社, 2000: 378-426。
    [55]张诗意.高功率白光LED之混光试验、模组设计及模拟优化[D].国立台湾科技大学. 2006: 54-61.
    [56]黄建.非成像光学系统设计方法及其在LED道路照明工程中的应用[D].浙江大学. 2008: 21.
    [57] http://www.alading.com
    [58]李晓彤.几何光学和光学设计[M].杭州:浙江大学出版社, 1997: 25-168.
    [59]胡玉禧,安连生,应用光学[M].合肥:中国科学技术大学出版社, 1996: 2-278.
    [60] http://www.cree.com
    [61]李林,现代光学设计方法[M].北京:北京理工大学出版社, 2009: 297-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700