用户名: 密码: 验证码:
Cu-Sb合金熔体结构转变及其凝固相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态物质的结构及基本性质对凝固、固态相变以及材料最终组织与性能具有重要的影响。近年来,液态物质多型性得到了科学界普遍关注,很多物质液态结构被发现随温度或压力而发生异常变化。这些现象打破了人们对液态结构连续渐变的传统认知,也为更进一步认知液态物质提供了新的突破口。多年以来,合金熔体过热处理作为重要手段之一应用于改善材料组织和性能方面取得了丰硕成果。虽然人们将熔体热历史对凝固的作用归结于熔体结构状态的变化,但其本质及规律并不十分明了。液态结构转变的发现与研究,为液-固依存关系的认知提供了一个新的契机,同时也避免了工艺探索上的盲目性,但对于熔体结构转变及其对凝固、合金性能影响的规律及本质仍需进一步探索。
     本文以化合物形成合金Cu-Sb合金为研究对象,系统地研究了三种成分合金液态结构转变的各自特征及规律,并利用不同的熔体热处理方式探讨了可逆及不可逆两类熔体结构转变对于合金凝固行为及组织的影响,主要内容、创新点和意义归纳如下:
     1、研究三种成分Cu(100-x)Sbx (x=70,76.5,90)合金在连续升降温过程的电阻率-温度行为,发现其在特定温度区间内存在明显的异常现象,提示其液态结构发生了可逆及不可逆两种转变。该结果证实,除以前发现含Sn的合金熔体以外,又一类合金——含Sb的合金,其熔体的温度行为也可能发生可逆转变。
     2、以熔体结构转变为切入点,利用不同冷却速率控制合金熔体的凝固过程,并运用多种实验和检测方法分别研究了可逆及不可逆两类熔体结构转变对合金凝固行为和凝固组织的影响。研究发现:经历不可逆转变的熔体,凝固过冷度增大、形核率增高、对应凝固速率加快,凝固组织明显细化,且其中的各析出相的组织形态也会发生变化;另一方面,针对可逆转变改变熔体处理方法,能够有效地操控熔体状态,从而最终得到不同的凝固组织。
     3、在研究方法上,将电阻法与热分析法相结合用于研究熔体结构转变前后的凝固过程,验证了电阻法不仅可有效揭示凝固行为,具有凝固特征点更为明显的优势,还可以比热分析法揭示更多的凝固行为信息。
     本文结果揭示:事先把握熔体状态对温度的变化信息及规律,有利于更明确地操控熔体处理温度来有效控制凝固组织。本文所揭示的新的现象、结果及规律,为更深入地认识液态物质结构及其本质提供了新的依据;对材料加工的技术进步具有积极意义。
The structures and properties of liquid metals and alloys do have much effect on solidification, phase transitions, as well as the final solidified microstructures and their qualities. In recent years, the phenomena of liquid polyamorphism bring great interest to relevant realms, and pressure or temperature induced liquid-liquid structure transitions (TI-LLST) were found could occur in liquids. All these present challenges to our conventional picture of liquid as entity with a continuously varying averaged structure, and provide new breakthrough to further recognize liquid substances. The overheating treatment of alloy melts has been widely studied for many years, and it has been verified that the structures and properties of some alloys could be obviously improved by such proper treatment. Generally, people think that the effects of over-heating treatments on solidification must attribute to some changes of melt’s structures states, however, the essence and rule of these phenomena are not anatomized very well by now. And although the detection and investigation of liquid-liquid structure transitions provide a new way for deeper understanding the relationship of liquid-solid structures, the nature and rule of the melt structure transition and its effect on solidification still need to be explored further.
     In this paper, the compound forming alloy is chosen as the investigation object. The characters, mechanism and also their correlation of TI-LLST in three components Cu(100-x)Sbx (x=70,76.5,90) alloy are systematically explored with electrical resistivity method. In addition, based on the prior results, from the new viewpoint of TI-LLST, the effects of TI-LLST (both reversible and irreversible) on the solidification of Cu-Sb alloys are studied further. The major contents and conclusions are as follows:
     First, the electrical resistivities of liquid Cu-Sb alloys are measured as the function of temperature continuously in several heating and cooling cycles. The results show that the resistivity-temperature (ρ-T) curves of the melt change abnormally in a relatively high-temperature zone above the liquidus in several experimental. It indicates that there are TI-LLST in Cu-Sb alloys, moreover the structure transition contain both irreversible and reversible ones. These new phenomena verify that the temperature behavior of melt another kind of alloy—Sb-based alloy could also be reversible, except the Sn-based alloy.
     Second, from the viewpoint of melt structure transitions, through different melt overheating treatments, the effects of both reversible and irreversible TI-LLST on the solidification of Cu-Sb alloys were studied. The results show that larger undercooling, higer nucleus forming rates, faster solidification rates could be obtained after the melt experienced the TI-LLST, in consequence, finer grain sizes as well as different microscopic patterns of solidified structures would be gained. In other sides, amending the melt processing methods in response to the reversible structure changes could catch hold of the melts states effectively, and resulting in different solidification microstructures.
     Third, in research methods, the resisitivity method was still used to investigate the solidification process of the melt, associated with the thermal analysis method. The results reflected in this paper show that the the resisitivity method could not only display the solidified behavior very validly, such as the more visible solidification parameters but also supply more imformations of the solidification behavior than thermal analysis method.
     The new phenomena and results reflected in this paper suggest that grasping the rules of melt structure change with temperature before material processing will give help for controlling the solidification more effectively, finally resulting in more ideal microstructures. It provides a new basis for deeper understanding the essence of heat treatment, and is also of significance for promoting the innovation of material processing.
引文
[1]陆坤权,液态物理学发展概论,中国科学院院刊, 1998, 6:419-422
    [2] Teixeira, J. Mater. Sci. and Eng. A178, 1994, 9
    [3]张承甫,龚建森,液态金属的净化与变质,上海,上海科技出版社, 1989
    [4] Ziman, J.M. A theory of the electrical properties of liquid metals. I: The monovalent metals. Phil.Mag, 1961, 6 (68):1013-1034
    [5]下地光雄(著),郭淦钦(译),液态金属,北京,科学出版社, 1987
    [6] Gebhardt, B. Halm Th and Hoyer W. The structure of liquid Ga-In alloys. J. Non-Crys. Solids. 1995, 192&193:306-308
    [7] Osamu. Uemura, Takeshi. Usuk & et al. Radial Distribution Studies of TI-S Alloys in Liquid and Amorphous States. J. Phys. Soc. Japan.1996, 65(7):2106-2111
    [8] Jacobs, G. Egry, I. Holland-Moritz, D. et al. Short-Range Order in Undercooled Liquid Metals. J. Non-Cryst. Solids. 1998, 223-234:396-402
    [9]陆坤权,用EXAFS方法研究液态GaSb和InSb结构,物理, 1998, 27(6): 321
    [10] Chen Kuiying, Liu Hongbo and Hu Zhuangqi. Structure features in binary Liquid Li-TI alloys. J. Chem. Phys.1995,103(20): 9083-9090
    [11]秦敬玉,液态Al-Fe合金的微观不均匀结构研究,山东工业大学博士学位论文, 1998
    [12] Poole, P.H. Grande, T. Angell, C.A. McMillan, P.F. Polymorphic phase transitions in liquids and glasses. Science 1997, 275:322-323
    [13] Rao, K. R. Phase transitions in liquids, Current Science 2001, 80:1098-1100
    [14] Yarger, J. L.& Wolf G. H. Polymorphism in Liquids, Science 2004, 306:220-221
    [15] Katayama, Y. Mizutani, T. Utsumi, W. Shimomura, O. Yamakata, Funakoshi, M. K. A. First-order liquid-liquid phase transition in phosphorus, Nature 2000, 403:170-173
    [16] Franzese, G. Malescio,G. Skibinsky,A. Buldyrev, S. V. & Stanley, H. E. Generic mechanism for generating a liquid-liquid phase transition, Nature 2001, 409:692-695
    [17] Debenedetti, P. G. Metastable Liquids, Princeton University Press, Princeton, 1997
    [18] Angell, C. A. Science, 1995, 267:1924
    [19] Hafner, J. Structure and thermodynamics of liquid metals and alloy, Phys. Rev. A, 1977, 16:351-364
    [20] Coulet, M. Bergman, V. C. Bellissent, R. et al. J. Non-Cryst. Solids 1999; 252:463
    [21] Lacks, D.J. Phys. Rev. Lett. 2000; 84:4629
    [22] Bundy, F. P. Melting of Graphite at Very High Pressure, J. Chem.Phys, 1963, 38:618
    [23] Fateeva, N.S. Vereshchagin,L. F. Concerning the melting point of graphite up to 90kbar. Pis’ma Zh. Eksp. Teor. Fiz., 1971, 13:157-159
    [24] Glosli, J. N. and Ree, F. H. Phys. Rev. Lett., 1999, 82:4659
    [25] Togaya, M. Phys. Rev. Lett., 1997, 79:2474
    [26] Grumbach, M. P. and Martin, R. M. Phys. Rev. B, 1996, 54:15730
    [27] Tsuji, K. et al, Measurements of x-ray diffraction for liquid metals under high pressure. Rve. Sci. Instrum., 1989, 60(7):2425-2428
    [28] Tsuji, K. et al, Z. Phys. Chem. Neue Folge, 1988, 156:465
    [29] Tsuji, K. et al, Structure of liquid metals under high pressure. J. Non-Crystal. Solids, 1990, 117-118:27-34
    [30] Monaco, G. S. Falconi, Crichton, W.A. Mezouar, M. Nature of the First-Order Phase Transition in Fluid Phosphorus at High Temperature and Pressure. Phys. Rev. Lett., 2003, 90 (25):255701-255704
    [31] McMillan, P. Nature, 2000, 403:151
    [32] Brazhkin, V. V. et al, Phys. Lett A 1991, 154:413
    [33] Brazhkin, V. V. et al, High Pressure Res. 1992, 6:363
    [35] Thiel, M.Van. Ree, F. H. Phys.Rev.B, 1993, 48:3591
    [34] Mcmillan, P. F. J. Mater. Chem. 1994, 14:1506
    [35] Deb, S. K. Wilding, M. Somayazulu, M. Mcmillan, P. F. Nature 2001, 414
    [36] Lamparter, P. and Steeb, S. Z. Naturforsch, 1976, 31A:99
    [37] Richter, H. and Breitlung, G. Metalk, Z. 1970, 61:28
    [38] Kurita, R. Tanaka, H. Cirtical-like phenomena associated with liquid-liquid transition in a molecular liquid, Science, 2004, 306:29
    [39] Aasland, S. McMillan, P. F. Density-driven liquid–liquid phase separation in the system Al2O3–Y2O3. Nature, 1994, 369:633-636
    [40] Nasch, P. Manghnani, M. M. H. Secco, R. A. Anomalous behavior of sound velocity and. attenuation in liquid Fe-Ni-S, Science 1997, 227:219-221
    [41] Wang, W. M. Bian, X, F, Qin, J. Y. Proceedings of the 5th Asian Foundry Congress,Sep,1997,Nanjing, China
    [42]边秀房,秦敬玉,王伟民等.金属学报, 1999, 35(1):19
    [43]孙民华,耿浩然,边秀房等.金属学报, 2000, 35(11):1134
    [44]张林,边秀房,马家骥.铸造, 1995, 10:7
    [45]李培杰,哈尔滨工业大学博士论文, 1995
    [46]李培杰,桂满昌,贾均等.铸造, 1998, 9:15
    [47]祖方遒等,液态Pb-Sn合金的内耗研究.中山大学学报, 2001, 40:273-275
    [48]郭丽君,祖方遒等,以内耗技术探索Pb-Sn合金熔体的结构变化.物理学报, 2002, 51(2):300-303
    [49] Zu, F. Q. Zhu, Z. G. Guo, L. J. et al, Observation of an Anomalous Discontinuous Liquid-Structure Change with Temperature. Phys. Rev. Lett., 2002, 89(12):125505-12508.
    [50] Zu, F.Q. Li, X.F. Guo, L.J. et al, Temperature dependence of liquid structures in In–Sn20: diffraction experimental evidence. Phys. Lett. A., 2004, 324:472-478
    [51] Zu, F.Q. et al, Relative energy dissipation: sensitive to structural changes of liquids [J]. Chin.Phys.Lett. 2002, 19(1):94-101
    [52] Zu, F.Q. et al, Post-melting anomaly of Pb–Bi alloys observed by internal friction technique. J. Phys.Con.Mat, 2001, 13:11435–11442
    [53] Wang, L. Bian, X. F. Liu, J.T. Discontinuous structural phase transition of liquid metal and alloys, Physics Letters A 2004, 326:429-435
    [54] Ji, M. and Gong, X.G. Ab initio molecular dynamics simulation on temperature-dependent properties of Al–Si liquid alloy. J. Phys.: Condens. Matter, 2004, 16:2507-2514
    [55] Plevachuk, Yu. Sklyarchuk, V. Yakymovych, A. Willers, B. Eckert, S. Electronic properties and viscosity of liquid Pb–Sn alloys,J. of Alloys and Compounds 2005, 394:63
    [56] Liu, C.S. Li, G. X. Liang,Y. F. and Wu, A. Q. Quantitative analysis based on the pair distribution function for understanding the anomalous liquid-structure change in In20Sn80, PHYSICAL REVIEW B 2005, 71:064204
    [57]秦敬玉,边秀房,王伟民, Al和Sn液态结构的温度变化特性.物理学报, 1998, 47(3):438-444
    [58]胡丽娜,金属玻璃形成液体的脆性研究.山东大学博士学位论文, 2006
    [59]程素娟,金属熔体原子团簇的微观热收缩现象.山东大学博士学位论文, 2004
    [60]耿浩然,孙春静等. Sb和Bi熔体的密度变化,科学通报, 2007, 52(7):756-759
    [61]孙民华,耿浩然,边秀房等. A1熔体粘度的突变点及与熔体微观结构的关系.金属学报, 2000, 36(11):11-34
    [62]杨中喜,耿浩然,陶珍东等.液态Sn的粘度及其熔体微观结构的变化.原子与分子物理学报, 2004, 21(4):663-666
    [63]关绍康,北京科技大学博士论文, 1995
    [64]张景新,韦新,李辉.山东冶金, 1998, (4):29
    [65]周正有,王铁兵,程兆年.物理学报, 1999, (12):2228
    [66]李基永,刘让苏,周征谢.中国有色金属学报, 1997, (3):81
    [67]刘让苏,李基永,周益群.科学通报, 1998, (40):979
    [68] Debenedetti, P.G. Metastable Liquids: Concepts and Principles. Princeton: Princeton Uinv. Press, 1998
    [69] Kurita, R. & Tanaka, H. Critical-Like Phenomena Associated with Liquid-Liquid Transition in a Molecular Liquid, Science 2004, 306:845-848
    [70] White, J. A. Multiple critical points for square-well potential with repulsive shoulder, Physica A 2005, 346:347–371
    [71] Turnbull, D. Solid State Phys. Adv. Res. Appl. 1956, 3:225
    [72] Johnson, W. L. Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials. Pro Matter Sci, 1986, 30(2):81-134
    [73]傅恒志,魏炳波,郭景杰.凝固科学技术与材料.中国工程科学, 2003, 5(8):1-15
    [74] Sette, F Krisch, M.H. Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-ray Scattering. Science, 1998, 280(5369):1550–1555
    [75] Ubbelohde, A.R. The Molten State of Matter: Melting and Crystal Structure, New York, JOHN WILEY & SONS, 1978, 477-564
    [76] Waseda, Y. The Structure of Non-crystalline Materials, New York: Mc Graw Hill, 1980, 57–58
    [77] Rudolph, P. Schaefer, N. Fukuda, T.,Crystal growth of Zn-Se from the melt, Materials Science and Engineering R-Report 1995, 15:85-133
    [78] Wang, J. F. Omino, A. Isshiki, M. Bridgman growth of twin-free ZnSe single crystals, Materials Science and Engineering B., 2001, 83:185–191
    [79]陈光,蔡英文,李建国,傅恒志.熔体热处理研究及其应用,河北科技大学学报, 1998, 46(1):6-12
    [80] Dahlborg, U. & Calvo-Dahlborg, M. Influence of the production conditions on the structure and the microstructure of metallic glasses studied by neutron scattering techniques, Materials Science and Engineering A. 2000, 283:153-163
    [81] Calvo-Dahlborg, M. et al. Temperature dependent structure of amorphous pdsi alloys, J. Physique IV France 2001, 11:41-49
    [82] Tang, Y.L. Kramer, M.J. Dennis, K.W.et al, On the control of microstructure in rapidly solidified Nd-Fe-B alloys through melt treatment, Journal of Magnetism and Magnetic Materials, 2003, 267:307-15
    [83] Enisz, M. Kristof-Mako, E. Oravetz, D. Phase transformation in doped Y–Ba–Cu–O superconductors obtained by different melt processing techniques, Journal of the European Ceramic Society 2007, 27:1105–1111
    [84] Koh, H. J. Rudolph, P. Schaefer, N. Umestsu, K. Fukuda, T. The effect of various thermal treatments on supercooling of Pb-Te melts, Materials Science and Engineering B 1995, 34:199-203
    [85] Li, P. J. Nikitin, V. I. Kandalova, E.G. Nikitin, K.V. Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure, Materials Science and Engineering A 2002:332, 371–374
    [86] Sidorov, V. Popel, P. Calvo-Dahlborg, M. Dahlborg, U. Manov, V. Heat treatment of iron based melts before quenching, Materials Science and Engineering A 2001:304–306, 480–486
    [87] Wang, J. He, S.H. Sun,B.D. Guo, Q.X. Nishio, Grain, M. refinement of Al–Si alloy (A356) by melt thermal treatment, Journal of Materials Processing Technology 2003, 141:29–34
    [88] P. Demo, A. M. Sveshnikov, K. Nitsch, et al. Determination of time characteristics of solidification of supercooled halide melt from measurements of electrical conductivity. Mater. Phys. Mech.2003, 6:43-48
    [89] Glosli, J. N. Francis, H. R. Liquid-liquid Phase Transformation in Carbon, Physical Review Letters, 1999, 82, 23 :4659-4662
    [90] Zhang, J. X. Fung, P. C. W. Zeng, W. G. Dissipation Function of the first-order phase transformation in solids via internal-friction measurements, Physical Review B, 1995, 52(1):268
    [91] Shen R R, Zu F Q, Li Q, et al. Phys Scr, 2006, 73:184-187
    [92]李先芬,共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响,合肥工业大学博士毕业论文, 2006
    [93] Li X F, ZU F Q, Ding H F. Phys. Lett. A., 2006, 354:325-329
    [94]王强, In-Sb及Ga-Sb电传输性能的研究,中科院物理研究所博士学位论文, 1999
    [95] Takeuchi, S. and Endo, H. Trans. JIM. 1962, 3:30
    [96] Bakkali, M.E. Gasser, J.G. and Terzieff, P. Z.Metallkd. 1993, 84:622
    [97] Newport, R. J. Gurman, S. J. and Howe, R. A. Phil. Mag.B, 1980, 42:587
    [98] Ohno, S. Okazaki, H. and Tamaki, S. J.Phys. Soc. Jpn. 1974, 36:1133
    [99] Ohno, S. Okazaki, H. and Tamaki, S. J.Phys. Soc. Jpn. 1973, 35: 1060
    [100] Bath, A. Gasser, J. G. J. L.Bretonnet, et al. J. Physique 1980, 41:519
    [101] Hansen, M. Constitution of Binary Alloys, McGraw-Hill 1958
    [102] Buhler, E. Lanparter, P. and Steeb, S. Z. Naturforsch. A 1987, 42:507
    [103] Lanparter, P. et al, in Materials Science and Technology, edited by V. Gerold VCH, Weinheim,1993
    [104] Geng, H. R. Sun, Ch. J. WANG, R. QI, X.G. ZHANG, N. Chinese. Sci. Bull., 2007, 52:2031-2034
    [105] Waseda, Y. The Structure of Non-Crystalline Materials-Liquid and Amorphous Solids. New York: McGraw-Hill, 1980, 54:263
    [106] Lamparter, P. Martin, W. Steeb, S. Freyland, W. J. Non-Cryst. Solids,1984, 61-62:279-284
    [107] Seifert, K. Hafner, J. Kress, G. Phy. Rev. B, 1992, 45:2739-2749
    [108] Knoll, W. Steeb, S. Phys. Chem. Liquids, 1973, 4:39-60
    [109] Hendus, H. Z. Naturforsch. 1947, 2A:505
    [110] Wilson, J. R. Met. Rev. 1965, 10:381
    [111] Wang, Q. Lu, K. Q. Li, Y. X. Acta Phys. Sinica 2001, 50:1355
    [112] Wang, Y. R. Lu, K. Q. Li, C.X. Phys. Rev. Lett. 1997, 79:3664
    [113]席赟,二元化合物形成合金熔体结构转变及其对凝固的影响,合肥工业大学博士毕业论文, 2006
    [114] Kassner, K. Misbah, C. Similarity laws in eutectic growth, physical review letters, 1991, 66(4):445-448.
    [115] Grugel, R. N. Hellawell, A. The breakdown of fibrous structures in directionally grown monotectic alloys, metallurgical transactions A, 1984, 15A:1626-1633
    [116] Akamatsu, S. Plapp, M. Faivre, G. and Karma, A. Pattern stability and trijunction motion in eutectic solidification, 2002, 66:030501-1~4
    [117] Datye, V. Stability of thin lamellar eutectic growth, Langer, physical review B, 1981, 24(8):4155-4169
    [118] Hunt, J. D. and Jackson, K. A. Trans. Met. Soc. ALME, 1966, 236:843, Bridgman Solidified Al-18.3%Si Alloy, Acta metal, Mater. 1995, 43(2):579-585
    [119] Ashtaken, S. American metal Society, 1981:1843
    [120] Demo, P. Sveshnikov, A. M. Nitsch, K. Rodová, M. Ko?í?ek, Z. Mater. Phys. Mech., 2003, 6:43-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700