用户名: 密码: 验证码:
金属硫族化合物纳米材料的制备及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫族化合物是一类重要的功能材料,在光学、电子学及光电领域都有着重要的应用。金属硫族化合物纳米材料更是现代材料学研究的热点。纳米材料的性质取决于其制备过程及组成基元的尺寸、形貌、分布等特点,因而对纳米材料的制备方法和形貌控制的研究是纳米材料研究的重点。本论文的第二、三章,我们选取一种三元硫化物和多种二元硒/硫/碲化物为研究对象,开发出几种简便、环保的制备方法;对产物的相和形貌的形成及控制进行了研究。另外,硫族化合物中的复合金属氧化物是稀土离子掺杂荧光粉最常用的基质材料,对基质材料的选择和改性是获得更强更好发光材料的重要手段。在第四章我们就选取性能稳定的金属锆酸盐作为对象,对其进行了制备、稀土离子掺杂及发光性质的研究。
     在第一章中,对纳米材料、纳米材料的制备、发光理论与发光材料进行了阐述,并对金属硫族化合物纳米材料制备的一些研究现状进行了简要的介绍。
     在第二章中,使用表面活性剂辅助的乙二醇回流法制备了CuInS_2纳米空心球。空心球的平均尺寸在80-100nm,球壁由10nm左右的CuInS_2纳米颗粒组成。提出一个囊胞模板的机制来解释空心球的形成。表面活性剂十六烷基三甲基溴化胺(CTAB)在空心球结构的形成过程中起到重要作用,一定浓度的CTAB在乙二醇溶液中形成均匀的球形囊泡,产物以CTAB囊泡为模板析出,并进一步结晶化形成CuInS_2纳米空心球。另外,在CuInS_2的形成过程中,乙二醇不仅是很好的溶剂而且是将Cu~(2+)还原为Cu~+的还原剂;原料中微量水的存在对CuInS_2的形成也是必要的。
     针对目前金属硒化物纳米材料的制备存在像原料有毒、反应条件苛刻等一些问题。在第三章中,我们介绍了两种合成金属硒(硫/碲)化物纳米结构的方法。这两种方法均有操作简单、毒性小、成本低、可控性好等特点。利用这两种方法进行了不同相和形貌的可控合成研究;对产物进行了结构和形貌表征,并提出了各种不同的相和形貌的形成机理。第一种方法是乙酸盐.石蜡法,用这种方法合成了一系列的硒/硫/碲化物,产物表现出多种形貌。讨论了产物的相和形貌的形成机制。石蜡代替有毒的TOP溶解硒(硫/碲)粉形成均一的溶液。油酸可以与各种金属乙酸盐形成可溶性的油酸盐前驱体,保证了金属离子与Se(S/Te)的石蜡溶液的充分反应,并使该方法适用于多种金属的硫族化物的合成。形貌的形成主要受两个因素影响,产物自身的晶体结构和油酸对晶面的作用。对于乙酸盐-石蜡法中产物相和形貌的控制,选取了具有多个相的硒化铜作为对象,研究了反应条件对其相和形貌的影响。通过调节反应参数可以控制合成的硒化铜为CuSe或者Cu_(2-δ)Se;不同硒化铜相的形成主要受两个因素——氧化还原性和稳定性控制。另外通过控制油酸的量可以调节Cu_(2-δ)Se的组分δ值。所得产物存在两种不同的形貌,纳米片和纳米片与纳米线的混合。提出了一个浓度控制的生长机制来解释不同形貌的生成。使用表面活性剂十二烷基苯磺酸钠(SDBS)修饰可以获得在水溶液中分散性很好的CuSe纳米片。第二种方法为乙二醇法,采用这一方法我们在同一体系中可以选择合成PbSe纳米晶或者Se微/纳米棒;这是一个动力学竞争的过程,控制较高的反应温度有利于PbSe纳米晶的形成,低温有利于Se微/纳米棒的生成。离子性表面活性剂的使用更有利于获得形貌规则的产物;阳离子表面活性剂的使用更有利于PbSe相的生成。该反应还可在多个不同金属阳离子/表面活性剂的体系中进行,形成Se微/纳米棒和其他一些硒化物纳米晶。
     第四章以发光性质研究为主,采用溶胶-凝胶-燃烧法制备了纯相和稀土离子掺杂的金属锆酸盐——钙钛矿结构的SrZrO_3和烧绿石结构的RE_2Zr_2O_7的纳米晶粉末。对其进行了结构和发光性质表征,发现了一些新的发光性质以及发光性质与结构特点的联系。首先在300℃的低温下引发燃烧反应制备出片状结构的SrZrO_3纳米晶粉末。700℃的二次烧结可以去除残留的有机物,并提高产物结晶性。首次在未掺杂的SrZrO_3中检测到了荧光发射,位于400nm左右的缺陷中心发光。二次烧结可大幅度提高该发光强度。采用700℃下的直接燃烧法还制备出了多孔形貌的SrZrO_3纳米晶粉末以及Eu~(3+)掺杂的SrZrO_3纳米晶粉末。Eu~(3+)掺杂的SrZrO_3在紫外光的激发下表现出很强的红光发射。用不同波长的光激发样品可以获得纳米晶内部的结构信息。该荧光粉具有较高的稳定性。第二部分,通过600℃下引发的燃烧反应制备了一系列的RE_2Zr_2O_7(RE=La、Nd、Eu、Y)粉末,产物结构为烧绿石或者缺陷萤石,形貌为团聚的纳米晶粒。除Eu_2Zr_2O_7表现出Eu~(3+)的特征发光外,所有样品的发光都来源于其自身的氧弗兰克尔缺陷。对RE_2Zr_2O_7进行Pb~(2+)掺杂可以增强该发光的强度,但对不同的RE_2Zr_2O_7增强幅度相差很大。结构与发光性质分析发现,RE_2Zr_2O_7的缺陷发光强度取决于晶体结构的有序性。我们提出一个通过缺陷荧光强度来判断RE_2Zr_2O_7晶体从烧绿石结构到缺陷萤石结构有序性变化的方法。考虑到发光强度的相对性,可以通过比较二价金属离子掺杂对RE_2Zr_2O_7发光强度的增强幅度来判断RE_2Zr_2O_7晶体结构的有序性程度:增幅大则有序程度高,增幅小则有序程度低。我们还对La_2Zr_2O_7和Y_2Zr_2O_7进行了稀土激活离子的掺杂。Eu~(3+)掺杂的La_2Zr_2O_7、Y_2Zr_2O_7纳米晶粉末均表现出Eu~(3+)特征的橙红光发射,发光强度随掺杂浓度的增加而增强。Dy~(3+)掺杂的La_2Zr_2O_7分别在575nm、480nm两处有黄、蓝光发射,由于存在荧光浓度猝灭,发光强度随掺杂浓度的增加先增强后减弱,2.0mol%为Dy~(3+)的最佳掺杂浓度。Eu~(3+)、Dy~(3+)共掺的La_2Zr_2O_7样品表现为Eu~(3+)的发光。由于存在Dy~(3+)到Eu~(3+)的能量传递,Eu~(3+)、Dy~(3+)共掺的样品发光强度明显高于单掺Eu~(3+)的样品。对Eu~(3+)、Dy~(3+)离子掺杂的La_2Zr_2O_7、Y_2Zr_2O_7纳米晶粉末进行不同波长光激发以及不同浓度掺杂时,发射光谱的细节变化揭示了晶体结构的特点。
     在第五章中,我们对本论文的内容进行了总结。
Metal chalcogenides are important functional materials with wide applications in the optical,electronic and optoelectronic field.The nanomaterials of metal chalcogenides are even the hot subject of the material researches.The properties of the nanomaterials depend on their process history,size,morphology and distribution.Thus the preparation method and the morphology controlling become the key parts of the nanomaterial researches.In Chapter 2 and 3 of this thesis,we took one ternary sulfide and a series of binary selenide/sulfides/tellurides as the objects of study,developed several handy and environment-friendly methods to synthesize these chalcogenides,and investigated the formation process and the control of the products and their morphology.The polyoxides, as one kind of the chalcogenides,are the most useful luminescence host materials,and phosphors with better luminescent property can be developed by choosing and modifying the host materials.In Chapter 4,we chose the stable zirconates as the object, and carried out a research on the preparation,rare earth ions-doping and luminescence property of them.
     In Chapter 1,we introduced the conception,preparation method of nanomaterials,the theory of luminescence and the luminescent materials,and presented the current research status of the metal chalcogenide nanomaterials preparation.
     In Chapter 2,CuInS_2 hollow nanospheres were prepared through a surfactantassisted glycol-reflux method.The hollow spheres have an average diameter of 80-100 nm,and the shells of the hollow spheres are composed of CuInS_2 nanoparticles of about 10 nm in size.A vesicle-template mechanism was proposed to explain the formation process of the hollow structure,during which amorphous hollow structures are first formed on the surfactant template and then crystallize in the refluxing process. Furthermore,in the reaction,glycol acted not only as a good solvent but also as a reducer reducing Cu~(2+) to Cu~+.The trace water in the raw materials was also required for the formation of CuInS_2.
     Considering the problems existing in the present synthesis methods of selenide nanomaterials,such as the toxic reagents and rigorous reaction condition,we introduced in Chapter 3 two methods to prepare nanoscaled metal slenides(sulfides or tellurides). Both of the methods are featured with easy operation,low toxicity,low cost and high controlling.Phase-and morphology-controllable synthesis of the various chalcogenide materials were researched through the two methods,the structure and morphology of the products were characterized,and several mechanisms were proposed to explain the formation of the different phase and morphology.Firstly,it is the Acetate-Paraffin method,by which we synthesized a series of selenides/sulfides/tellurides.The products showed various morphologies.Mechanisms were proposed to explain the formation of the different chalcogenides and their nanostructures.Paraffin liquid instead of TOP was used to dissolve Se(S/Te) powder.Oleic acid can react with each metal acetate to form the soluble M-OA complex,promising the thorough reaction between metal cations and Se(S/Te)/paraffin solution,and thus this method is suitable for the preparation of many metal chalcogenides.The morphologies of the chalcogenides are mainly affected by two factors,the crystal structure and the action of oleic acid on the crystal faces.To examine the phase and morphology control of the products from the Acetae-Paraffin method,we carried out an in-depth study on copper selenide,which show complexity of composition and structure.CuSe or Cu_(2-δ)Se was selectively synthesized by adjusting the reaction parameters.The formation of the different phases of copper selenide is determined by two elements—the redox and stability.Theδvalue of Cu_(2-δ)Se can also be adjusted by changing the oleic acid amount.The products showed two morphologies, nanoflakes,or the mixture of nanoflakes and nanowires.A concentration-limited growth mechanism was proposed to explain the various morphologies of Cu_(2-δ)Se and CuSe forming at the different condition.The SDBS-modified CuSe nanoflakes exhibited good dispersivity in water.The other method is based on ethylene glycol.PbSe nanoparticles and Se micro/nanorods can be selectively synthesized in the same reaction system by this glycol method.It is a kinetic competition process.PbSe nanocrystals would form when the reaction temperature was controlled at a high level,while the low temperature favored the formation of Se rods.The products showed more regular morphology when ionic surfactants was used.The PbSe phase was easier to form when the surfactant was cationic.This method can be used in the other metal cation/surfactant system,resulting in Se micro/nanorods and other selenide nanocrystals.
     The research emphasis in Chapter 4 switched to the luminescence property.Pure and doped metal zirconates—perovskite-structured SrZrO_3 and pyrochlore-structured RE_2Zr_2O_7 nanocrystals were prepared through a facile sol-gel-combustion method.The products were characterized by the crystal structure and luminescence property,and some new luminescence properties and relationship between structure and luminescence were discovered.Firstly,SrZrO_3 nanocrystalline flakes were prepared through a combustion reaction ignited at a temperature as low as 300℃.The further calcination at 700℃removed the organic residues and improved the crystallinity of the products.For the first time,we detected a luminescence at 400nm,which might originate from the defect centers in the nanocrystals.The intensity of this luminescence was dramatically enhanced after the further calcination,due to the removal of organic residues which has a deleterious effect on the luminescence.Porous and Eu~(3+)-doped SrZrO_3 nanopowders were prepared by combustion at 700℃.Eu~(3+)-doped SrZrO_3 emitted strong red light under UV excitation.The structure details of the nanocrystals can be revealed by exciting the products with light of different wavelength.The Eu~(3+)-doped SrZrO_3 phosphor showed a high stability of luminescence.Secondly,a series of RE_2Zr_2O_7 (RE=La,Nd,Eu,Y) powders were prepared through the combustion reaction ignited at 600℃.The products showed crystal structure of pyrochlore or defected fluorite,and morphology of aggregated nanocrystals.Except the characteristic luminescence emission of Eu~(3+) for Eu_2Zr_2O_7,all the samples showed luminescence originating from the intrinsic oxygen Frenkel defect of the crystals.The intensity of this emission can be increased by the doping of Pb~(2+).The amplitude of the increase varies widely for different RE_2Zr_2O_7.Analyzing the crystal structure and luminescence property of RE_2Zr_2O_7,we found that the luminescence intensity of RE_2Zr_2O_7 is intimately related to the ordering degree of their crystal structure.So we proposed a method to judge the disordering degree of RE_2Zr_2O_7(from pyrochlore structure to defected fuorite structure) according to the luminescence intensity of them.Considering the luminescence intensity is relative,the disordering degree can be estimated by the increase amplitude of the luminescence after the doping of Pb~(2+).The increase amplitude is larger,the ordering degree is higher,and the increase amplitude is smaller,the ordering degree is lower. La_2Zr_2O_7 and Y_2Zr_2O_7 nanocrystals were doped with rare earth ions.Eu~(3+)-doped La_2Zr_2O_7 and Y_2Zr_2O_7 nanocrystals showed orange-red emission from the characteristic transition of Eu~(3+).The luminescence intensity increased with the Eu~(3+) concentration. Dy~(3+)-doped La_2Zr_2O_7 nanocrystals emited yellow and blue light at 575nm and 480nm respectively.The luminescence intensity first increased and then decreased with the Dy~(3+) concentration because of the luminescence concentration quenching,and 2.0mol% is the best doping concentration of Dy~(3+).Eu~(3+),Dy~(3+)-codoped La_2Zr_2O_7 nanocrystals only showed the characteristic luminescence of Eu~(3+).The luminescence intensity of Eu~(3+),Dy~(3+)-codoped La_2Zr_2O_7 nanocrystals is much higher than that of the samples only doped with Eu~(3+),due to the energy transfer from Dy~(3+) to Eu~(3+) in the codoped sample. There was a change in the fine structure of the emission spectra when the excitation wavelength or Eu~(3+) concentration was altered,which can disclose the structure feature of La_2Zr_2O_7 and Y_2Zr_2O_7 nanocrystals.
     In Chapter 5,a concise summary of the contents was given.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2002。
    [2]S.G.Louie,"Nanoparticles behaving oddly",Nature 1996,384,612-613.
    [3]N.Hall,"Physics:clusters whip light atomic nuclei into shape",Science 1996,271,922-924.
    [4]D.Bethell,D.J.Schifrin,"Nanotechnology and nucleotides",Nature 1996,382,581-581.
    [5]A.Henglein,"Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles",Chem.Rev.1989,89,1861-1873.
    [6]R.W.Siegel,"Nanostructured materials-mind over matter",Nanostruct.Mater.1994,4,121-138.
    [7]H.W.Kroto,J.R.Heath,S.C.O'Brien,et al.,"C60:buckminsterfullerene",Nature,1985,318,162-163.
    [8]许并社,纳米材料及应用技术,化学工业出版社,2004。
    [9]刘吉平,廖莉玲,无机纳米材料,科学出版社,2003。
    [10]Z.Li,C.M.Foster,D.Guo,H.Zhang,G.R.Bai,P.M.Baldo,L.E.Rehn,"Growth of high quality single-domain single-crystal films of PbTiO_3",Appl.Phys.Lett.1994,65,1106-1108.
    [11]高濂,孙静,刘阳桥,纳米粉体的分散及表面改性,化学工业出版社,2003。
    [12]J.Karch,R.Birringer,H.Gleiter,"Ceramics ductile at low temperature",Nature 1987,330,556-558.
    [13]W.CW.Chan,D.J.Maxwell,X.Gao,R.E.Bailey,M.Han,S.Nie,"Luminescent quantum dots for multiplexed biological detection and imaging",Curr.Opin.Biotech.2002,13,40-46.
    [14]A.J.Nozik,"Quantum dot solar cells",Physica E 2002,14,115-120.
    [15]P.T.Landsberg,H.Nussbaumer,G.Willeke," Band-band impact ionization and solar cell efficiency",J.Appl.Phys.1993,74,1451-1452.
    [16]S.Kolodinski,J.H.Werner,T.Wittchen,H.J.Queisser,"Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells",Appl.Phys.Lett.1993,63,2405-2407.
    [17]W.Shockley,H.J.Queisser,"Detailed Balance Limit of Efficiency of p-n Junction Solar Cells",J.Appl.Phys.1961,32,510-519.
    [18]R.T.Ross,A.J.Nozik,"Efficiency of hot-carrier solar energy converters",J.Appl.Phys.,1982,53,3813-3818.
    [19]D.S.Boudreaux,F.Williams,A.J.Nozik,"Hot carrier injection at semiconductor -electrolyte junctions",J.Appl.Phys.1980,51,2158-2163.
    [20]A.J.Nozik,D.S.Boudreaux,R.R.Chance,F.Williams,Advances in Chemistry, ACS, New York, 1980.
    [21] F. Williams, A.J. Nozik, "Solid-state perspectives of the photoelectrochemistry of semiconductor-electrolyte junctions", Nature 1984, 312,21-27.
    [22] F. Williams, A.J. Nozik, "Irreversibilities in the mechanism of photoelectrolysis", Nature 1978,271,137-139.
    [23] H. Benisty, C.M. Sotomayor-Torres, C. Weisbuch, "Intrinsic mechanism for the poor luminescence properties of quantum-box systems", Phys. Rev. B 1991, 44, 10945-10948.
    [24] U. Bockelmann, G. Bastard, "Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases", Phys. Rev. B 1990,42, 8947-8951.
    [25] H. Benisty, "Reduced electron-phonon relaxation rates in quantum-box systems: Theoretical analysis", Phys. Rev. B 1995,51,13281-13293.
    [26] A.J. Nozik, "Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots", Annu. Rev. Phys. Chem. 2001, 52,193-231.
    [27] D. Tsamouras, E. Dalas, S. Sakkopoulos, P. G. Koutsoukos, "Physicochemical characteristics of mixed copper-cadmium sulfides prepared by coprecipitation" Langmuir 1999,15, 8018-8024.
    [28] F.J. Perez-Alonso, M.L. Granados, M. Ojeda, P. Terreros, et al. "Chemical structures of coprecipitated Fe-Ce mixed oxides", Chem. Mater. 2005,17,2329-2339.
    [29] N. Zhao, L. Qi, "Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants", Adv. Mater. 2006, 18, 359 -362.
    [30] T. S. Li, S. P. Liu, Z. X. Lu, Z. F. Liu, "Synthesis and characterization of cuprous selenide nanocrystals at room temperature", Chinese Chem. Lett. 2007,18, 617-620.
    [31] A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk, S. G. Hickey, "The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis", J. Am. Chem. Soc. 2006, 128,6792-6793.
    [32] K. H. Park, K. Jang, S. Kim, H. J. Kim, S. U. Son, "Phase-Controlled One-Dimensional Shape Evolution of InSe Nanocrystals", J. Am. Chem. Soc. 2006,128, 14780-14781.
    
    [33] L. S. Li, N. Pradhan, Y. Wang, X. Peng, "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors", Nano Lett. 2004, 4, 2261-2264.
    
    [34] P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli, A. Agostiano, "Shape and Phase Control of Colloidal ZnSe Nanocrystals", Chem. Mater. 2005, 17, 1296-1306.
    
    [35] F. Gao, Q. Lu, D. Zhao, "Controllable Assembly of Ordered Semiconductor Ag_2S Nanostructures", Nano Lett. 2003, 3, 85-88.
    
    [36] J. C. Hulteen, C. R. Martin, "A general template-based method for the preparation of nanomaterials" J. Mater. Chem. 1997, 7, 1075-1087.
    
    [37] P. V. Braun, P. Ostenar, I. Stupps, "Semiconducting superlattices templated by molecular assemblies", Nature 1996, 380, 325-328.
    
    [38] S. Rahman, H. Yang, "Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates", Nano Lett. 2003, 3(4), 439-442.
    
    [39] C. Danumah, M. Bousmina, S. Kaliaguine, "Novel polymer nanocomposites from templated mesostructured inorganic materials", Macromolecules 2003, 36, 8208-8209.
    
    [40] J. D. Klein, R. D. Herrick, D. Palmer, et al., "Electrochemical fabrication of cadmium chalcogenide microdiode arrays", Chem. Mater. 1993, 5, 902-904.
    
    [41] Z. K. Tang, H. D. Sun, J. Wang, J. Chen, G. Li, "Mono-sized single-wall carbon nanotubes formed in channels of AlPO_4-5 single crystal", Appl. Phys. Lett. 1998, 73, 2287-2289.
    
    [42] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, C. M. Lieber, "Synthesis and characterization of carbide nanorods", Nature 1995, 375, 769-772.
    
    [43] B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang, Y. N. Xia, "Single-crystalline nanowires of Ag_2Se can be synthesized by templating against nanowires of trigonal Se", J. Am. Chem. Soc. 2001, 123, 11500-11501.
    [44]J.H.Song,Y.Y.Wu,B.Messer,H.Kind,P.D.Yang,"Metal nanowire formation using Mo_3Se_3-as reducing and sacrificing templates",J.Am.Chem.Soc.2001,123,10397-10398.
    [45]M.Li,H.Schnablegger,S.Mann,"Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization",Nature 1999,402,393-395.
    [46]Y.Y.Yu,S.S.Chang,C.L.Lee,C.R.C.Wang,"Gold nanorods:electrochemical synthesis and optical properties",J Phys.Chem.B 1997,101,6661-6664.
    [47]Y.Li,X.Li,Z.X.Deng,B.Zhou,et al.,"From surfactant-inorganic mesostructures to tungsten nanowires",Angew.Chem.Int.Ed.2002,41,333-335.
    [48]Y.J.Xiong,Y.Xie,J.Yang,et al.,"In situ micelle-template-interface reaction route to CdS nanotubes and nanowires",J.Mater.Chem.2002,12,3712-3716.
    [49]J.S.Beck,J.C.Vartuli,W.J.Roth,M.E.Leonowicz,C.T.Kresge,et al."A new family of mesoporous molecular sieves prepared with liquid crystal templates",J.Am.Chem.Soc.1992,114,10834-10843.
    [50]宋彩霞,王德宝,古国华等,“表面活性剂有序聚集体在纳米材料制备中的应用”,材料导报,2002,16(9),56-59。
    [51]施尔畏,夏长泰,王步国等,“水热法的应用及发展”,无机材料学报,1996,2,67-71。
    [52]苏勉曾,谢高阳等译,固体化学及应用,复旦大学出版社,1989。
    [53]R.-Q.Song,A.-W.Xu,S.-H.Yu,"Layered Copper Metagermanate Nanobelts:Hydrothermal Synthesis,Structure,and Magnetic Properties",J.Am.Chem.Soc.2007,129,4152-4153.
    [54]X.Wang,Y.Li,"Selected-control hydrothermal synthesis of α-and β-MnO_2single crystal nanowires",J.Am.Chem.Soc.2002,124,2880-2881.
    [55]B.Tang,L.Zhuo,J.Ge,J.Niu,Z.Shi,"Hydrothermal synthesis of ultralong and single-crystalline Cd(OH)_2 nanowires using alkali salts as mineralizers",Inorg.Chem.2005,44,2568-2569.
    [56] P. Yan, "A novel mild route to nanocrystalline selenides at room temperature", J. Am. Chem. Soc. 1999,121,4062-4063.
    
    [57] Y. D. Li, X. F. Duan, Y. T. Qian, L. Yang, M. R. Ji, C. W. Li, "Solvothermal co-reduction route to the nanocrystalline III-V semiconductor InAs", J. Am. Chem. Soc. 1997,119,7869-7870.
    
    [58] S. Schlecht, L. Kienle, "Mild solvothermal synthesis and TEM investigation of unprotected nanoparticles of tin sulfide", Inorg. Chem. 2001,40, 5719-5721.
    
    [59] P. M. Forster, P. M. Thomas, A. K. Cheetham, "Biphasic solvothermal synthesis: a new approach for hybrid inorganic-organic materials", Chem. Mater. 2002, 14, 17-20.
    
    [60] Z. Miao, D. Xu, J. Ouyang, G. Guo, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO_2 nanowires", Nano Lett. 2002,2, 717-720.
    
    [61] Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, "Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach", Nano Lett. 2002,2,183-186.
    
    [62] A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, "Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties", Chem. Mater. 2003, 15,4377-4383.
    
    [63] J. J. Moore, H. J. Feng, "Combustion synthesis of advanced materials: part I. Reaction parameters", Prog. Mater. Sci. 1995, 39, 243-273.
    
    [64] J. J. Moore, H. J. Feng, "Combustion synthesis of advanced materials: part II. Classification, applications and modeling", Prog. Mater. Sci. 1995, 39, 275-316.
    
    [65] F. Gu, S. F. Wang, M. K. Lii, G. J. Zhou, D. Xu, D. R. Yuan, "Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method", Langmuir 2004,20, 3528-3531.
    
    [66] F. Gu, S. F. Wang, M. K. Lu, et al., "Combustion synthesis and luminescence properties of Dy~(3+)-doped MgO nanocrystals", J. Cryst. Growth 2004, 260, 507-510.
    
    [67] G. Tessari, M. Bettinelli, A. Speghini, "Synthesis and optical properties of nanosized powders:lanthanide-doped Y_2O_3", Appl. Surf. Sci. 1999, 144-145, 686-689.
    [68]Z.Fu,S.Zhou,"Combustion synthesis and luminescence properties of nanocrystalline monoclinic SrAl_2O_4:Eu~(2+)",Chem.Phys.Lett.2004,395,285-289.
    [69]G.C.Kim,"Emission color tuning from blue to green through cross-rdaxation in heavily Tb~(3+)-doped YAlO_3",Mater.Res.Bull.2001,36,1603-1608.
    [70]D.A.Fumo,M.R.Morelli,A.M.Segadaes,"Combustion synthesis of calcium aluminates",Mater.Res.Bull.1996,31,1243-1255.
    [71]J.McKittrick,L.E.Shea,"The influence of processing parameters on luminescent oxides produced by combustion synthesis",Displays 1999,19,169-172.
    [72]P.Yang,G.Q.Yao,J.H.Lin,"Photoluminescence and combustion synthesis of CaMoO_4 doped with Pb~(2+)",Inorg.Chem.Commun.2004,7,389-391.
    [73]周永慧,林君,张洪杰,“纳米发光材料研究的若干进展”,化学研究与应用,2001,13,117-122.
    [74]孙家跃,渡海燕,胡文祥,固体发光材料,化学工业出版社,2003.
    [75]徐叙珞,苏勉曾,发光学与发光材料,化学工业出版社,2004。
    [76]杨华明,欧阳静,史蓉蓉,张科,张花,“稀土激活发光材料的研究进展”,材料导报,2005,19(6),1-3.
    [77]T.Chivers,"Tellurium compounds of the main-group dements:progress and prospects",J.Chem.Soc.,Dalton Trans.1996,1185-1194.
    [78]J.J.Ritter,"A Novel Synthesis of Polycrystalline Bismuth Tdluride",Inorg.Chem.1994,33,6419-6420.
    [79]J.J.Ritter and M.Pichai,"Synthesis of Polycrystalline Bismuth Telluride by a Metal-Organo Complex Method",Inorg.Chem.1995,34,4278-4280.
    [80]A.J.Strausse,"Band Structure and Laser Action in Pb_xSn_(1-x)Te",Phys.Rev.Lett.1966,16,1193-1196.
    [81]M.Bruchez Jr.,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos,"Semiconductor Nanocrystals as Fluorescent Biological Labels",Science 1998,281,2013-2016.
    [82]W.C.W.Chan,S.Nie,"Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection",Science 1998,281,2016-2018.
    [83] E. R. Goldman, A. R. Clapp, G.P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, H. Mattoussi, "Multiplexed Toxin Analysis Using Four Color of Quantum Dot Fluororeagents" Anal. Chem. 2004, 76, 684-688.
    
    [84] C. B.Murray, D. J. Norris and M. G. Bawendi, "Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites", J. Am. Chem. Soc. 1993,115,8706.
    
    [85] J. Hambrock, A. Birkner, R. A. Fischer, " Synthesis of CdSe nanoparticles using various organometallic cadmium precursors", J. Mater. Chem. 2001, 3197-3201.
    
    [86] Z. A. Peng, X. G. Peng, "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor", J. Am. Chem. Soc. 2001,123,183-184.
    
    [87] L. Qu, A. Peng, X. G. Peng, "Alternative Routes toward High Quality CdSe Nanocrystals", Nano Lett. 2001,1, 333-337.
    
    [88] M. Green, P. O'Brien, "Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots", Chem. Commun. 1999, 22, 2235-2241.
    
    [89] M. W. Yu, X. G. Peng, "Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers", Angew. Chem., Int. Ed. 2002,41,2368-2371.
    
    [90] C. R. Bullen, P. Mulvaney, "Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene", Nano Lett. 2004,4,2303-2307.
    
    [91] C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, "Colloidal synthesis of nanocrystals and nanocrystal superlattices", IBM J. Res. Dev. 2001,45,47-56.
    
    [92] H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, J. Silcox, "Optical Properties of Colloidal PbSe Nanocrystals", Nano Lett. 2002,2,1321-1324.
    
    [93] M. A. Hines, P. Guyot-Sionnest, "Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals", J. Phys. Chem. B 1998,102, 3655-3657.
    [94] D. J. Norris, "High-Quality Manganese-Doped ZnSe Nanocrystals", Nano Lett. 2001,1, 3-7.
    
    [95] J. W. Cho, H. S. Kim, Y. J. Kim, S. Y. Jang, J. Park, J.-G. Kim, Y.-J. Kim, "Phase-Tuned Tetrapod-Shaped CdTe Nanocrystals by Ligand Effect", Chem. Mater. 2008,20, 5600-5609.
    
    [96] H. Yu, R. Bellair, R. M. Kannan, S. L. Brock, "Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape", J. Am. Chem. Soc. 2008,130, 5054-5055.
    
    [97] W. Wang, S. Banerjee, S. Jia, M. L. Steigerwald, I. P. Herman, "Ligand Co ntrol of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods", Chem. Mater. 2007,19,2573-2580.
    
    [98] L. Zhao, T. Lu, M. Yosef, M. Steinhart, M. Zacharias, U. Gsele, S. Schlecht, "Single-Crystalline CdSe Nanostructures: from Primary Grains to Oriented Nanowires", Chem. Mater. 2006,18 (26), 6094-6096.
    
    [99] I. U. Arachchige, S. L. Brock, "Sol-Gel Assembly of CdSe Nanoparticles to Form Porous Aerogel Networks", J. Am. Chem. Soc. 2006,128 (24), 7964-7971.
    
    [100] C. Ma, Y. Ding, D. Moore, X. Wang, Z. L. Wang, "Single-Crystal CdSe Nanosaws", J. Am. Chem. Soc. 2004,126 (3), 708-709.
    
    [101] Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, J. H. Fendler, "Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles", J. Phys. Chem. 1996, 100, 8927-8939.
    
    [102] Y. Liu, M. Kim, Y. Wang, Y. A. Wang, X. Peng, "Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups", Langmuir 2006,22,6341-6345.
    
    [103] K. Palaniappan, C. Xue, G. Arumugam, S. A. Hackney, J. Liu, "Water-Soluble, Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots" Chem. Mater. 2006,18, 1275-1280.
    
    [104] D. V. Talapin, R. Koeppe, S. Goltzinger, A. Kornowski et al., "Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality", Nano Lett. 2003, 3, 1677-1681.
    
    [105] C. Lu, A. Akey, W. Wang, I. P. Herman, "Versatile Formation of CdSe Nanoparticle-Single Walled Carbon Nanotube Hybrid Structures", J. Am. Chem. Soc. 2009,131,3446-3447.
    
    [106] S. Yochelis G. Hodes, "Nanocrystalline CdSe Formation by Direct Reaction between Cd Ions and Selenosulfate Solution", J. Phys. Chem. B 1999,103, 3065-3069.
    
    [107] B. Li, M. Jing, G. Rong, Y. Xu, Y. Xie, "Morphology Control of CdSe Submicrostructures with High Hierarchy in Solution", Eur. J. Inorg. Chem. 2006, 4349-4354.
    
    [108] S.O. Oluwafemi, N. Revaprasadu, A.J. Ramirez, "A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles", J. Cryst. Growth 2008, 310, 3230-3234.
    
    [109] N. Pradhan, D. Goorskey, J. Thessing, X. Peng, "An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals" J. Am. Chem. Soc. 2005,127,17586-17587.
    
    [110] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, "Progress toward 20% efficiency in Cu(In,Ga)Se_2 polycrystalline thin-film solar cells", Prog. Photovolt. Res. Appl. 1999, 7, 311-316.
    
    [111] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, "Nanocrystalline Chalcopyrite Materials (CuInS_2 and CuInSe_2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors", Chem. Mater. 2003, 15, 3142-3147.
    
    [112] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, "Synthesis and Characterization of Colloidal CuInS_2 Nanoparticles from a Molecular Single-Source Precursor", J. Phys. Chem. B 2004,108,12429-12435.
    
    [113] J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. Wandruszka, T. R. Fletcher, M. Williams, C. Wang, M. G. Norton, "Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors",Nano Lett.2006,6,1218-1223.
    [114]Y.Jiang,Y.Wu,X.Mo,W.Yu,Y.Xie,Y.Qian,"Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuinE_2(E=S,Se) Nanorods" Inorg.Chem.2000,39,2964-2965.
    [115]H.Grisaru,O.Palchik,A.Gedanken,V.Palchik,M.A.Slifkin,A.M.Weiss,"Microwave-Assisted Polyol Synthesis of CuInTe_2 and CulnSe_2 Nanoparticles" Inorg.Chem.2003,42,7148-7155.
    [116]S.-H.Choi,E.-G.Kim,T.Hyeon,"One-Pot Synthesis of Copper-Indium Sulfide Nanoerystal Heterostructures with Acorn,Bottle,and Larva Shapes" J.Am.Chem.Soc.2006,128,2520-2521.
    [117]K.Nose,T.Omata,S.Otsuka-Yao-Matsuo,"Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties",J.Phys.Chem.C 2009,113,3455-3460.
    [118]J.Tang,S.Hinds,S.O.Kelley,E.H.Sargent,"Synthesis of Colloidal CuGaSe_2,CulnSe_2,and Cu(InGa)Se_2 Nanoparticles",Chem.Mater.2008,20,6906-6910.
    [119]M.G.Panthani,V.Akhavan,B.Goodfellow,J.P.Schmidtke,L.Dunn,A.Dodabalapur,P.F.Barbara,B.A.Korgel,"Synthesis of CulnS_2,CuinSe_2,and Cu(In_xGa_(1-x))Se_2(CIGS) Nanocrystal "Inks" for Printable Photovoltaics",J.Am.Chem.Soc.2008,130,16770-16777.
    [120]G.Wakefield,E.Holland,P.J.Dobson,J.L.Hutchison,"Luminescence Properties of Nanoerystalline Y_2O_3:Eu",Adv.Mater.2001,13,1557-1560.
    [121]H.Yang,D.-K.Lee,Y.-S.Kim,"Spectral variations of nano-sized Y_3Al_5O_(12):Ce phosphors via codoping/substitution and their white LED characteristics",Materials Chemistry and Physics 2009,114,665-669.
    [122]W.B.Im,H.S.Yoo,S.Vaidyanathan,K.H.Kwon,H.J.Park,Y.-I.Kim,D.Y.Jeon,"A novel blue-emitting silica-coated KBaPO_4:Eu~(2+) phosphor under vacuum ultraviolet and ultraviolet excitation",Mater.Chem.Phys.2009,115,161-164.
    [123]Z.Hou,L.Wang,H.Lian,R.Chai,C.Zhang,Z.Cheng,J.Lin,"Preparation and luminescence properties of Ce~(3+) and/or Tb~(3+) doped LaPO_4 nanofibers and microbelts by electro spinning", J. Solid State Chem. 2009, 182, 698-708.
    
    [124] P. Gtuchowski, R. Pazik, D. Hreniak, W. Strek, "Luminescence studies of Cr~(3+) doped MgAl_2O_4 nanocrystalline powders", Chem. Phys. 2009, 358, 52-56.
    
    [125] Y. Wang, W. Qin, J. Zhang, C. Cao, S. Lu, X. Ren, "Photoluminescence of colloidal YVO_4:Eu/SiO_2 core/shell nanocrystals", Opt. Commun. 2009, 282, 1148 -1153.
    
    [126] D. Solis, T. Lopez-Luke, E. De la Rosa, P. Salas, C. Angeles-Chavez, "Surfactant effect on the upconversion emission and decay time of ZrO_2:Yb-Er nanocrystals", J. Lumin. 2009,129,449-455.
    [1]S.G Bailey,D.J.Flood,"Space photovoltaics",Prog.Photovolt:Res.Appl.1998,6,1-14.
    [2]H.-W.Schock,R.Noufi,"CIGS-based solar cells for the next millennium",Prog.Photovolt:Res.Appl.000,8,151-160.
    [3]M.A.Contreras,B.Egaas,K.Ramanathan,J.Hiltner,A.Swartzlander,F.Hasoon,R.Noufi,"Progress toward 20%efficiency in Cu(In,Ga)Se_2 polycrystalline thin-film solar cells",Prog.Photovolt:Rcs.Appl.1999,7,311-316.
    [4]B.Asenjo,A.M.Chaparro,M.T.Gutierrcz,J.Herrero,"Electrochemical growth and properties of CulnS_2 thin films for solar energy conversion',Thin Solid Films,2006,511-512,117-120.
    [5]W.Shockley,H.J.Queisser,"Detailed Balance Limit of Efficiency of p-n Junction Solar Cells",J.Appl.Phys.32(1961) 510-519.
    [6]M.A.Green,Third Generation PhotoVoltaics,Springer,Sydney,2001.
    [7]A.J.Nozik "Quantum dot solar cells",Physica E 2002,14,115-120.
    [8]R.Plass,S.Pelct,J.Krueger,M.Graltzel,"Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells",J.Phys.Chem.B 2002,106,7578-7580.
    [9]I.Robcl,V.Subramanian,M.Kuno,P.V.Kamat,"Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO_2 Films", J. Am. Chem. Soc. 2006,128, 2385-2393.
    
    [10] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, "Nanocrystalline Chalcopyrite Materials (CuInS_2 and CuInSe_2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors", Chem. Mater. 2003,15, 3142-3147.
    
    [11] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, Aloysius. F. Hepp, "Synthesis and Characterization of Colloidal CuInS_2 Nanoparticles from a Molecular Single-Source Precursor", J. Phys. Chem. B 2004,108,12429-12435.
    
    [12] J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. Wandruszka, T. Rick Fletcher, M. Williams, C. Wang, M. G. Norton, "Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors", Nano Lett. 2006, 6,1218-1223.
    
    [13] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, "Synthesis of CuInS_2, CuInSe_2, and Cu(In_xGa_(1-x))Se_2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics", J. Am. Chem. Soc. 2008,130,16770-1677.
    
    [14] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, "Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE_2 (E = S, Se) Nanorods", Inorg. Chem. 2000, 39, 2964-2965.
    
    [15] S.-H. Choi, E.-G. Kim, T. Hyeon, "One-Pot Synthesis of Copper-Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes", J. Am. Chem. Soc. 2006,128,2520-2521.
    
    [16] J. Xiao, Y. Xie, R. Tang, Y. Qian, "Synthesis and Characterization of Ternary CuInS_2 Nanorods via a Hydrothermal Route", J. Solid State. Chem. 2001, 161, 179-183.
    
    [17] Y. Cui, J. Ren, G. Chen, Y. Qian, Y. Xie, " A Simple Route to Synthesize MInS_2 (M =Cu, Ag) Nanorods from Single-Molecule Precursors", Chem. Lett. 2001, 3, 236-237.
    
    [18] Y. Jiang, Y. Wu, S. Yuan, B. Xie, S. Zhang, Y. Qian, "Preparation and characterization of CuInS_2 nanorods and nanotubes from an elemental solvothermal reaction", J. Mater. Res. 2001, 16,2805-2807.
    
    [19] G. Z. Shen, D. Chen, K. B. Tang, Z. Fang, J. Sheng, Y. T. Qian, "Polyol-mediated synthesis of porous nanocrystalline CuInS_2 foam", J. Cryst. Growth 2003,254,75-79.
    
    [20] K. Das, A. Datta, S. Chaudhuri, "CuInS_2 Flower Vaselike Nanostructure Arrays on a Cu Tape Substrate by the Copper Indium Sulfide on Cu-Tape (CISCuT) Method: Growth and Characterization", Cryst. Growth Des. 2007, 7,1547-1552.
    
    [21] J. F. Chen, H. M. Ding, J. X. Wang, L. Shao, "Preparation and characterization of porous hollow silica nanoparticles for drug delivery application", Biomaterials 2004,25, 723-727.
    
    [22] H. B. Chen, Y. L. Cao, Y. Z. Zhu, Y. P. Wang, Y. B. Chi, " A three- dimensional photonic crystal model: hollow-spherical non-closed packed structure", Physica B 2006, 381,289-293.
    
    [23] H. T. Schmidt, B. L. Gray, P. A. Wingert, A. E. Ostafin, "Assembly of Aqueous-Cored Calcium Phosphate Nanoparticles for Drug Delivery", Chem. Mater. 2004,16,4942-4947.
    
    [24] S. F. Wang, F. Gu, M. K. Lu, " Sonochemical Synthesis of Hollow PbS Nanospheres", Langmuir 2006,22,398-401.
    
    [25] F. Fievet, J.-P. Lagier, M. Figlarz, "Preparing Monodisperse Metal Powders in Micrometer, and Submicrometer Sizes by the Polyol Process", MRS Bull. 1989, 14, 29-40.
    
    [26] B. Wiley, Y. Sun, Y. Xia, "Polyol Synthesis of Silver Nanostructures: Control of Product Morphology with Fe(II) or Fe(III) Species", Langmuir 2005,21, 8077-8080.
    
    [27] T. Herricks, J. Chen, Y. Xia, "Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate", Nano Lett. 2004,4,2367-2371.
    
    [28] C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall, "Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism", J. Am. Chem.Soc. 2004,126, 8028-8037.
    [29] D. Lootens, C. Vautrin, H. V. Damme, T. Zemb, " Facetted hollow silica vesicles made by templating catanionic surfactant vesicles", J. Mater. Chem. 2003, 13, 2072-2074.
    
    [30] X. W. Zheng, Y. Xie, L. Y. Zhu, X. C. Jiang, A. H. Yan, "Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution", Ultrason. Sonochem. 2002, 9, 311-316.
    
    [31] C. A. Mckelvey, E. W. Kaler, J. A. Zasadzinski, B. Coldren, H. T. Jung, "Templating Hollow Polymeric Spheres from Catanionic Equilibrium Vesicles: Synthesis and Characterization", Langmuir 2000,16, 8285-8290.
    
    [32] D. H. W. Hubert, M. Jung, P. M. Frederik, P. H. H. Bomans, J. Meuldijk, A. L. German," Vesicle-Directed Growth of Silica", AdV. Mater. 2000,12,1286-1290.
    [1]K.L.Chopra,P.D.Paulson,V.Dutta,"Thin film solar cells:an overview",Prog.Photovolt:Res.Appl.004,12,69-92.
    [2]W.Diehl,V.Sittinger,B.Szyszka,"Thin film solar cell technology in Germany",Surf.Coat.Teehnol.2005,193,329-334.
    [3]M.A.Green,K.Emery,D.L.King,S.Igari,W.Warta,"Solar cell efficiency tables (Version 26)",Prog.Photovolt:Res.Appl.2005,13,387-392.
    [4]J.Pan,M.Gloeekler,J.R.Sites,"Hole current impedance and electron current enhancement by back-contact barriers in CdTe thin film solar cells",J.Appl.Phys.2006,100(12),124505-124510.
    [5]S.B.Ambade,R.S.Mane,S.S.Kale,et al."Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells",Appl.Surf.Sci. 2006, 253(4), 2123-2126.
    
    [6] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, "Semiconductor Nanocrystals as Fluorescent Biological Labels", Science 1998,281,2013-2015.
    
    [7] E. R. Goldman, A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, H. Mattoussi, "Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents", Anal. Chem. 2004, 76, 684-688.
    
    [8] M. Ueltzen, W. Heiliger, P. Reinshaus, "On the Potential of Zone Melting for the Growth of Functionally Graded (Bi,Sb)_2Te_3-Mixed Crystals", Cryst. Res. Technol. 2001, 36, 389-394.
    
    [9] T. Chivers, 'Tellurium compounds of the main-group elements: progress and prospects", J. Chem. Soc., Dalton T rans., 1996,1185-1194.
    
    [10] J. J. Ritter, "A Novel Synthesis of Polycrystalline Bismuth Telluride", Inorg. Chem., 1994,33,6419-6420.
    
    [11] J. J. Ritter, M. Pichai, "Synthesis of Polycrystalline Bismuth Telluride by a Metal-Organo Complex Method", Inorg. Chem., 1995,34,4278-4280.
    
    [12] J. O. Dimmock, I. Melngailis, and A. J. Strauss, "Band Structure and Laser Action in Pb_xSn_(1-x)Te", Phys. Rev. Lett. 1966,16,1193 -1196.
    
    [13] S.-H. Yu, J. Yang, Y.-S. Wu, Z.-H. Han, J. Lu, Y. Xie, Y.-T. Qian, "A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi_2E_3 (E=S, Se, Te)", J. Mater. Chem., 1998, 8,1949-1951.
    
    [14] G. Henshaw, I. P. Parkin, G. Shaw, "Convenient, low-energy synthesis of metal sulfides and selenides; PbE, Ag2E, ZnE, CdE (E = S, Se)", Chem. Commun. 1996, 1095-1096.
    
    [15] G. Henshaw, I. P. Parkin and G. Shaw, "Elemental, liquid ammonia facilitated routes to zinc, cadmium, mercury copper, silver and lead telluride", J. Mater. Sci. Lett. 1996, 15, 1741-1742.
    
    [16] C. B. Murray, D. J. Norris and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc. 1993,115, 8706-8715.
    
    [17] C. B. Murray, C. R. Kagan and M. G. Bawendi, "Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices" Science 1995, 270,1335-1338.
    
    [18] W. S. Sheldrick, M. Wachhold, "Solventothermal Synthesis of Solid-State Chalcogenidometalates", Angew. Chem., Int. Ed. Engl. 1997, 36, 206-224.
    
    [19] W. Wang, Y. Geng, P. Yan, F. Liu, Y. Xie, Y. Qian, "A Novel Mild Route to Nanocrystalline Selenides at Room Temperature", J. Am. Chem. Soc. 1999, 121, 4062-4063.
    
    [20] B. Pejova, M. Najdoski, I. Grozdanov, S. K. Dey, "Chemical bath deposition of nanocrystalline <111> textured AgSe_2 thin films", Mater. Lett. 2000,43,269-273.
    
    [21] L. S. Li, N. Pradhan, Y. Wang, X. Peng "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors", Nano Lett. 2004,4, 2261-2264.
    
    [22] S. K. Batabyal, C. Basu, A. R. Das, G. S. Sanyal, "Micropatterns of Ag2Se Nanocrystals", Cryst. Growth Des. 2004,4, 509-511.
    
    [23] U. Jeong, J.-U. Kim, Y. Xia "Monodispersed Spherical Colloids of Se@CdSe: Synthesis and Use as Building Blocks in Fabricating Photonic Crystals", Nano Lett. 2005, 5, 937-942.
    
    [24] K. H. Park, K. Jang, S. Kim, H. J. Kim, S. U. Son, "Phase-Controlled One-Dimensional Shape Evolution of InSe Nanocrystals", J. Am. Chem. Soc. 2006,128, 14780-14781.
    
    [25] Z. Nan, X.-Y. Wang, Z. Zhao, "Formation of various morphologies of copper sulfides by a solvothermal method", J. Cryst. Growth 2006, 295, 92 - 96.
    
    [26] Y. Li, Z. Wang, Y. Ding, "Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine", Inorg. Chem. 1999, 38, 4737-4740.
    
    [27] J. Wang, S. H. Ng, G. X. Wang, J. Chen, L. Zhao, Y. Chen, H. K. Liu, "Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries", J. Power Sources 2006, 159,287-290.
    [28] S.-M. Lee, Y.-w. Jun, S.-N. Cho, J. Cheon, "Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks", J. Am. Chem. Soc. 2002,124,11244-11245.
    
    [29] J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, "Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals", J. Am. Chem. Soc. 2003,125,11100-11105.
    
    [30] M. J. Bierman, Y. K. Albert Lau, S. Jin, "Hyperbranched PbS and PbSe Nanowires and the Effect of Hydrogen Gas on Their Synthesis", Nano Lett. 2007,7,2907-2912.
    
    [31] J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X. F. Zhang, Y. Cui, "Hyperbranched Lead Selenide Nanowire Networks", Nano Lett. 2007, 7,1095-1099.
    
    [32] M. Schierhorn, S. W. Boettcher, A. Ivanovskaya, E. Norvell, J. B. Sherman, G. D. Stucky, M. Moskovits, "Fabrication and Electrochemical Photovoltaic Response of CdSe Nanorod Arrays", J. Phys. Chem. C, 2008,112, 8516-8520.
    
    [33] A. Panneerselvam, M.. A. Malik, M. Afzaal, P. O'Brien, M. Helliwe, "The Chemical Vapor Deposition of Nickel Phosphide or Selenide Thin Films from a Single Precursor", J. Am. Chem. Soc. 2008,130, 2420-2421.
    
    [34] R. D. Schaller, R. J. Saykally, "Near-Field Infrared Sum-Frequency Generation Imaging of Chemical Vapor Deposited Zinc Selenide", Langmuir, 2001,17,2055-2058.
    
    [35] A. L. Hector, W. Levason, G. Reid, S. D. Reid, M. Webster "Evaluation of Group 4 Metal Bis-cyclopentadienyl Complexes with Selenolate and Tellurolate Ligands for CVD of ME_2 Films (E = Se or Te)", Chem. Mater., 2008,20, 5100-5106.
    
    [36] S. L. Stoll, A. R. Barron, "Metal-Organic Chemical Vapor Deposition of Indium Selenide Thin Films", Chem. Mater. 1998,10,650-657.
    
    [37] S. L. Cumberland, K. M. Hanif, A. Javier, G.A. Khitrov, G.F. Strouse, S. M. Woessner, C. S. Yun, "Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials", Chem. Mater. 2002, 14,1576-1584.
    
    [38] Y.-J. Hsu, C.-M. Hung, Y.-F. Lin, B.-J. Liaw, T. S. Lobana, S.-Y. Lu, C. W. Liu, "[Cu_4{Se_2P(O~iPr)_2}_4]: A Novel Precursor Enabling Preparation of Nonstoichiometric Copper Selenide (Cu_(2-x)Se) Nanowires", Chem. Mater. 2006, 18, 3323-3329.
    
    [39] H.-W. Chang, B. Sarkar, C. W. Liu, "Synthesis of Sb_2Se_3 Nanowires via a Solvothermal Route from the Single Source Precursor Sb[Se_2P(O~iPr)_2]_3", Cryst. Growth Des. 2007, 7,2691-2695.
    
    [40] Y. Zhang, Y. Tang, K. Lee, M. Ouyang "Catalytic and Catalyst-free Synthesis of CdSe Nanostructures with Single-Source Molecular Precursor and Related Device Application", Nano Lett. 2009,9,437-441.
    
    [41] M. A. Malik, P. O'Brien "Mixed methyl and ethylzinc complexes with diethylselenocarbamate: novel precursors for zinc selenide", Chem. Mater. 1991, 3, 999-1000.
    
    [42] J. Yang, G-H. Cheng, J.-H. Zeng, S.-H. Yu, X.-M. Liu, Y.-T. Qian," Shape Control and Characterization of Transition Metal Diselenides MSe_2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process", Chem. Mater. 2001,13, 848-853.
    
    [43] Y. Li, Y. Ding, Y. Qian, Y. Zhang, L. Yang, "A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe", Inorg. Chem. 1998, 37,2844-2845.
    
    [44] J. Xu, J.-P. Ge, Y.-D. Li, "Solvothermal Synthesis of Monodisperse PbSe Nanocrystals", J. Phys. Chem. B, 2006, 110, 2497-2501.
    
    [45] J. V. Williams, C. N. Adams, N. A. Kotov, P. E. Savage, "Hydrothermal Synthesis of CdSe Nanoparticles", Ind. Eng. Chem. Res. 2007,46,4358-4362.
    
    [46] F. Cao, W. Shi, L. Zhao, S. Song, J. Yang, Y Lei, H. Zhang, "Hydrothermal Synthesis and High Photocatalytic Activity of 3D Wurtzite ZnSe Hierarchical Nanostructures", J. Phys. Chem. C 2008,112,17095-17101.
    
    [47] J. Zhu, S. T. Aruna, Y. Koltypin, A. Gedanken, " A Novel Method for the Preparation of Lead Selenide: Pulse Sonoelectrochemical Synthesis of Lead Selenide Nanoparticles", Chem. Mater. 2000, 12,143-147.
    
    [48] R. Vaidyanathan, S. M. Cox, U. Happek, D. Banga, M. K. Mathe, J. L. Stickney, "Preliminary Studies in the Electrodeposition of PbSe/PbTe Superlattice Thin Films via Electrochemical Atomic Layer Deposition (ALD)", Langmuir 2006, 22, 10590- 10595.
    [49] Q. Li, M. A. Brown, J. C. Hemminger, and R. M. Penner, "Luminescent Polycrystalline Cadmium Selenide Nanowires Synthesized by Cyclic Electrodeposition/Stripping Coupled with Step Edge Decoration", Chem. Mater. 2006, 18,3432-3441.
    
    [50] R. Henrquez, H. Gmez, G. Riveros, J. F. Guillemoles, M. Froment, and D. Lincot "Electrochemical Deposition of ZnSe from Dimethyl Sulfoxide Solution and Characterization of Epitaxial Growth", J. Phys. Chem. B 2004,108,13191-13199.
    
    [51] C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, "Colloidal synthesis of nanocrystals and nanocrystal superlattices", IBM J. Res. Dev. 2001,45,47-56.
    
    [52] J. Hambrock, A. Birkner, R. A. Fischer, " Synthesis of CdSe nanoparticles using various organometallic cadmium precursors", J. Mater. Chem. 2001,3197-3201.
    
    [53] Z. A. Peng, X. G. Peng, "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor", J. Am. Chem. Soc. 2001,123,183-184.
    
    [54] L. Qu, A. Peng, X. G. Peng, "Alternative Routes toward High Quality CdSe Nanocrystals", Nano Lett. 2001,1, 333-337.
    
    [55] M. Green, P. O'Brien, "Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots", Chem. Commun. 1999, 22, 2235-2241.
    
    [56] M. W. Yu, X. G. Peng, "Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers", Angew. Chem., Int. Ed. 2002, 41,2368-2371.
    
    [57] C. R. Bullen P. Mulvaney, "Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene", Nano Lett. 2004,4,2303-2307.
    
    [58] H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, J. Silcox, "Optical Properties of Colloidal PbSe Nanocrystals", Nano Lett. 2002,2,1321-1324.
    
    [59] M. A. Hines, P. Guyot-Sionnest, "Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals", J. Phys. Chem. B 1998,102, 3655-3657.
    
    [60] D. J. Norris, "High-Quality Manganese-Doped ZnSe Nanocrystals", Nano Lett. 2001,1,3-7.
    
    [61] H. Liu, J. S. Owen, A. P. Alivisatos, "Mechanistic Study of Precursor Evolution in Colloidal Group II-VI Semiconductor Nanocrystal Synthesis", J. Am. Chem. Soc. 2007, 129,305-312.
    
    [62] Z. Deng, L. Cao, F. Tang, B. Zou, "A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis", J. Phys. Chem. B 2005,109,16671-16675.
    
    [63] Z. L. Wang, "Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies", J. Phys. Chem. B 2000,104, 1153-1175.
    
    [64] A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk, S. G. Hickey, "The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis", J. Am. Chem. Soc. 2006, 128, 6792-6793.
    
    [65] W. S. Chen, J. M. Stewart, R. A. Mickelsen, "Polycrystalline thin-film Cu_(2-x)Se/ CdS solar cell", Appl. Phys. Lett. 1985,46,1095-1097.
    
    [66] A. Shalav, "Photovoltaics Literature Survey (No. 53)", Prog. Photovolt: Res. Appl. 2007,15,275-279.
    
    [67] S. . Gosavi, N. . Deshpande, Y. . Gudage, R. Sharma, "Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature", J. Alloys Comp. 2008,448, 344-348.
    
    [68] C. Levy-Clement, M. Neumann-Spallart, S. K. Haram, K. S. V. Santhanam, "Chemical bath deposition of cubic copper (I) selenide and its room temperature transformation to the orthorhombic phase", Thin Solid Films 1997, 302,12-16.
    
    [69] V. M. Bhuse, P. P. Hankare, K. M. Garadkar, A. S. Khomane, "A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films", Mater. Chem. Phys. 2003, 80, 82-88.
    
    [70] A. L. N. Stevels, F. Jellinek, "Phase transitions in copper chalcogenides", Recueil 1971,111,273-283.
    [71]K.B.Shafizade,I.V.Ivanova,M.M.Kaizinets,"Electron diffraction study of phase transformations of the compound CuSe",Thin Solid Films.1978,55,211-220.
    [72]R.D.Heyding,R.M.Murray,"The crystal structure of Cu_(1.8)Se,Cu_3Se_2,alpha-and gamma-CuSe,CuSe_2 and CuSe_2-Ⅱ",Can.J.Chem.1976,54,841-848.
    [73]A.M.Hermarm,L.Fabick,"Research on polycrystalline thin-film photovoltaic devices",J.Cryst.Growth 1983,61,658-664.
    [74]J.J.Loferski,"Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaie Solar Energy Conversion",J.Appl.Phys.1956,27,777-784.
    [75]M.A.Malik,P.O'Brien,N.Revaprasadu,"A Novel Route for the Preparation of CuSe and CulnSe_2 Nanoparticles".Adv.Mater.1999,11,1441-1444.
    [76]T.Ohtani,M.Motoki,K.Koh,K.Ohshima," Synthesis of binary copper chalcogenides by mechanical alloying",Mater.Res.Bull.1995,30,1495-1504.
    [77]J.Xu,W.Zhang,Z.Yang,S.Yang,"Lithography inside Cu(OH)_2 Nanorods:A General Route to Controllable Synthesis of the Arrays of Copper Chalcogenide Nanotubes with Double Walls",Inorg.Chem.2008,47,699-704.
    [78]W.Wang,P.Yan,F.Liu,Y.Xie,Y.Geng,Y.Qian,"Preparation and characterization of nanocrystalline Cu_(2-x)Se by a novel solvothermal pathway",J.Mater.Chem.1998,8,2321-2322.
    [79]H.Li,Y.Zhu,S.Avivi,O.Palchik,J.Xiong,Y.Koltypin,V.Palchikb,A.Gedanken,"Sonochemical process for the preparation of α-CuSe nanocrystals and flakes",J.Mater.Chem.2002,12,3723-3727.
    [80]Y.Xie,X.Zheng,X.Jiang,J.Lu,L.Zhu,"Sonochemical Synthesis and Mechanistic Study of Copper Selenides Cu_(2-x)Se,β-CuSe,and Cu_3Se_2",Inorg.Chem.2002,41,387-392.
    [81]V.M.Garcia,P.K.Nair,M.T.S.Nair,"Copper selenide thin films by chemical bath deposition",J.Cryst.Growth 1999,203,113-124.
    [82]Y.J.Yang,S.Hu,"Galvanic synthesis of copper selenides Cu_(2-x)Se and CuSe in alkaline sodium selenosulfate aqueous solution", J. Solid State Electrochem. 2009, 13, 477-483.
    
    [83] S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen, J.-X. Yang, "Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes", Cryst. Growth Des. 2006, 6,2809-2813.
    
    [84] W. Zhang, X. Zhang, L. Zhang, J. Wu, Z. Hui, Y. Cheng, J. Liu, Y. Xie, Y. Qian, "A Redox Reaction To Synthesize Nanocrystalline Cu_(2-x)Se in Aqueous Solution", Inorg. Chem. 2000,39,1838-1839.
    
    [85] A. N. Skomorokhov, D.M. Trots, M. Knapp, N. N. Bickulova, H. Fuess, "Structural behaviour of β-Cu_(2-δ)Se (δ = 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction", J. Alloys Com. 2006,421,64-71.
    
    [86] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, Minnesota, 1992.
    
    [87] R. N. Mulik, C. B. Rotti, B. M. More, D. S. Sutrave, G.S. Shahane, K. M. Garadkar, L. P. Deshmukh, P. P. Hankare, "Polycrystalline lead selenide thin films: Growth from solution and properties", Indian J. Pure Appl. Phys. 1996, 34, 903-907.
    
    [88] K.-S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, "Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles", J. Am. Chem. Soc. 2005, 127,7140-7147.
    
    [89] M. Sirota, E. Minkin, E. Lifshitz, V. Hensel, M. Lahav, "Spectroscopic Properties of Molecular-Wire/Semiconductor Nanocrystalline Superstructures". J. Phys. Chem. B 2001,105, 6792-6797.
    
    [90] S. A. McDonald, G.Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics", Nat. Mater. 2005,4,138-142.
    
    [91] G. Allan, C. Delerue, "Confinement effects in PbSe quantum wells and nanocrystals", Phys. Rev. B 2004, 70, 245321-245329.
    [92] J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, J. A. Hollingsworth, "Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots", J. Am. Chem. Soc. 2004,126,11752-11753.
    
    [93] L. Bakueva, I. Gorelikov, S. Musikhin, X. S. Zhao, E. H. Sargent, E. Kumacheva, "PbS Quantum Dots with Stable Efficient Luminescence in the Near-IR Spectral Range", Adv. Mater. 2004,16,926-929.
    
    [94] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices", Science 2002,297,2229-2232.
    
    [95] J. Zhu, H. Wang, S. Xu, H. Chen, "Sonochemical Method for the Preparation of Monodisperse Spherical and Rectangular Lead Selenide Nanoparticles", Langmuir 2002, 18,3306-3310.
    
    [96] W. Zhu, W.Wang, J.Shi, "A Reverse Cation-Exchange Route to Hollow PbSe Nanospheres Evolving from Se/Ag2Se Core/Shell Colloids", J. Phys. Chem. B 2006, 110,9785-9790.
    
    [97] X. Li, Y. Li, S. Li, W. Zhou, H. Chu, W. Chen, I. L. Li, Z. Tang, "Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process", Cryst. Growth Des. 2005, 5, 911-916.
    
    [98] L. I. Berger, Semiconductor Materials, CRC Press: Boca Raton, FL, 1997.
    
    [99] J. A. Johnson, M. L. Saboungi, P. Thiyagarajan, R. Csencsits, D. Meisel, "Selenium Nanoparticles: A Small-Angle Neutron Scattering Study", J. Phys. Chem. B 1999,103, 59-63.
    
    [100] S. Nie, S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering", Science 1997, 275,1102-1106.
    
    [101] S. Link, M. A. E. L. Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods", J. Phys. Chem. B 1999,103, 8410-8426.
    
    [102] B. Gates, Y. D. Yin, Y. N. Xia, "A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm", J. Am. Chem. Soc. 2000,122, 12582-12583.
    
    [103] B. Gates, B. Mayers, A. Grossman, Y. N. Xia, "A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports", Adv. Mater. 2002,14,1749-1752.
    
    [104] Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng, " Micelle-Mediated Synthesis of Single-Crystalline Selenium Nanotubes", Adv. Mater. 2004, 16, 1023-1026.
    
    [105] B. T. Mayers, K. Liu, D. Sunderland, Y. N. Xia, "Sonochemical Synthesis of Trigonal Selenium Nanowires", Chem. Mater. 2003,15, 3852-3858.
    
    [106] G. Xi, K. Xiong, Q. Zhao, R. Zhang, H. Zhang, Y. Qian, "Nucleation-Dissolution-Recrystallization: A New Growth Mechanism for t-Selenium Nanotubes", Cryst. Growth Des. 2006,6,577-582.
    
    [107] Z. Jiang, Z. Xie, S. Xie, X. Zhang, R. Huang, L. Zheng, "High purity trigonal selenium nanorods growth via laser ablation under controlled temperature", Chem. Phys. Lett. 2003, 368,425-429.
    
    [108] X. B. Cao, Y. Xie, S. Y. Zhang, F. Q. Li, "Ultra-Thin Trigonal Selenium Nanoribbons Developed from Series-Wound Beads", Adv. Mater. 2004,16, 649-653.
    [1]E.A.Slonimskaya,A.V.Belyakov "Ceramics Based on Strontium Zirconate(A Review)",Glass Ceram.2001,58,54-56.
    [2]S.Leppavuori,A.Uiusimaki,A.H.Lozinski,"A thick-film pyroelectric PLZT ceramic sensor",Sons.Actuators,A 1995,47,391-394.
    [3]J.A.Labrincha,J.R.Frade,F.M.B.Marques,"Protonic conduction in La_2Zr_2O_7-based pyrochlore materials",Solid State Ion.1997,99,33-40.
    [4]X.Q.Cao,R.Vassenb,D.Stoeverb,"Ceramic materials for thermal barrier coatings",J.Eur.Ceram.Soc.2004,24,1-10.
    [5]A.B.Schaufele,K.H.Hardtl,"Ferroelastic Properties of Lead Zirconate Titanate Ceramics",J.Am.Ceram.Soc.1996,79,2637-2640.
    [6]B.R.Marple,J.Voyer,M.Thibodeau,D.R.Nagy,R.Vassen,"Hot Corrosion of Lanthanum Zirconate and Partially Stabilized Zirconia Thermal Barrier Coatings",J.Eng.Gas Turbines Power 2006,128,144-152.
    [7]W.Ma,D.Mack,J.Malzbender,R.VaBen,D.Stover,"Yb-2O-3 and Gd_2O_3 doped strontium zirconate for thermal barrier coatings",J.Eur.Ceram.Soc.2008,28,3071-3081.
    [8]D.R.Clarke,C.G Levi,A.G Evans,"Enhanced zirconia thermal barrier coating systems",Proc.Inst.Mech.Eng.,A J.Power and Energy 2006,220,85-92.
    [9]G.Blasse,B.C.Grabmaier,Luminescent Materials,Springer,Berlin,1994.
    [10]Richard Scheps,"Upconversion laser processes",Prog.Quantum Electron.1996,20,271-358.
    [11]Gareth Wakefield,Edward Holland,Peter J.Dobson,and John L.Hutchison, "Luminescence Properties of Nanocrystalline Y_2O_3:Eu",Adv.Mater.2001,13,1557-1560.
    [12]苏锵,稀土化学,河南科学技术出版社出版,1993。
    [13]R.A.Daviesa,M.S.Islama,J.D.Galeb,"Dopant and proton incorporation in perovskite-type zirconates",Solid State Ionics 1999,126,323-335.
    [14]V.S.Vishnu,G.George,V.Divya,M.L.P.Reddy,"Synthesis and characterization of new environmentally benign tantalum-doped Ce_(0.8)Zr_(0.2)O_2 yellow pigments:Applications in coloring of plastics",Dyes Pigm.2009,82,53-57.
    [15]R.Jose,Asha M.John,J.K.Thomas,J.James,J.Koshy,R.Divakar,E.Mohandas,"Synthesis,crystal structure,dielectric properties,and potential use of nanocrystalline complex perovskite ceramic oxide Ba_2ErZrO_(5.5)",Mater.Res.Bull.2007,42,1976-1985.
    [16]R.Terld,G.Bertrand,H.Aourag,C.Coddet,"Thermal properties of Ba_(1-x)Sr_xZrO_3compounds from microscopic theory",J.Alloys Comp.2008,456,508-513.
    [17]R.A.Davies,M.S.Islam,J.D.Gale,"Dopant and proton incorporation in perovskite-type zirconates",Solid State Ionics,1999,126,323-335.
    [18]H.Zhang,X.Fu,S.Niu,Q.Xin,"Synthesis and photoluminescence properties of Eu~(3+)-doped AZrO_3(A=Ca,Sr,Ba) perovskite",J.Alloys Comp.2008,459,103-106.
    [19]C.J.Howard,K.S.Knight,B.J.Kennedy,E.H.Kisi,"The structural phase transitions in strontium zirconate revisited",J.Phys.:Condens.Matter 2000,12,L677-L683.
    [20]T.Osaka,C.Numako,K.Koto,"Local Structure and Thermal Study of Ytterbium-Doped SrZrO_3",Mater.Res.Bull.1999,34,11-24.
    [21]H.Yugami,F.Iguchi,H.Naito,"Structural properties of SrCeO_3/SrZrO_3 proton conducting Superlattices",Solid State Ionics 2000,136-137,203-207.
    [22]J.K.Thomas,H.Padma Kumar,R.Pazhani,S.Solomon,R.Jose,J.Koshy,"Synthesis of strontium zirconate as nanocrystals through a single step combustion process",Mater.Lett.2007,61,1592-1595.
    [23] W. Zheng, W. Pang, G. Meng, "Hydrothermal synthesis of SrZrO_(3-α) (M=Al, Ga, In, x≤0.20) series oxides", Solid State Ionics 1998,108, 37-41.
    
    [24] M. M. Lencka, E. Nielsen, A. Anderko, R. E. Riman, "Hydrothermal Synthesis of Carbonate-Free Strontium Zirconate: Thermodynamic Modeling and Experimental Verification", Chem. Mater. 1997, 9, 1116-1125.
    
    [25] M. Andrieux, V. Viallet, M. L. Stum, L. Rapenne, M. Ghysel, C. Haut, M. Condat, "Dual-source chemical vapour deposition of strontium and zirconium β-diketonates for strontium zirconate perovskite films", Appl. Surf. Sci. 2004,222, 351-356.
    
    [26] R. Wurm, O. Dernovsek, P. Greil, "Sol-Gel derived SrTiO_3 and SrZrO_3 coatings on SiC and C-fibers", J. Mater. Sci. 1999, 34,4031-4037.
    
    [27] C. Chen, W. Zhu, T. Yu, X. Chen, X. Yao, "Preparation of metal-organic decomposition-derived strontium zirconate dielectric thin films", Appl. Surf. Sci. 2003, 211, 244-249.
    
    [28] H. S. Potdar, S. B. Deshpande, A. J. Patil, A. S. Deshpande, Y. B. Khollam, S. K. Date, "Preparation and characterization of strontium zirconate (SrZrO3) fine powders", Mater. Chem. Phys. 2000,65,178-185.
    
    [29] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, "Blow spun strontium zirconate fibres produced from a sol-gel precursor", J. Mater. Sci. 1998, 33, 3229-3232.
    
    [30] L. S. Cavalcante, A. Z. Simoes, J. C. Sczancoski, V. M. Longo, R. Erlo, M. T. Escote, E. Longo, J. A. Varela, "SrZrO_3 powders obtained by chemical method: Synthesis, characterization and optical absorption behaviour", Solid State Sci. 2007, 9, 1020-1027.
    
    [31] Y. S. Lee, J. S. Lee, T. W. Noh , D. Y. Byun, K. S. Yoo, K. Yamaura, E. Takayama-Muromachi, "Systematic trends in the electronic structure parameters of the 4d transition-metal oxides SrMO_3 (M=Zr, Mo, Ru, and Rh)", Phys. Rev. B 2003, 67, 113101-113104.
    
    [32] Y. Okamoto, Y. Nitta, T. Imanaka, S. Teranishi, "Surface characterisation of nickel boride and nickel phosphide catalysts by X-ray photoelectron spectroscopy", J. Chem. Soc., Faraday Trans. 1979,75,2027 - 2039,
    
    [33] W.-F. Zhang, Q. Xing, Y.-B. Huang, "Microstructures and Optical Properties of Strontium Titanate Nanocrystals Prepared by a Stearic-acid Gel Process", Mod. Phys. Lett. B 2000,14 (19), 709-716.
    
    [34] W. F. Zhang, M. S. Zhang, Z. Yin, Q. Chen, "Photoluminescence in anatase titaniumdioxide nanocrystals", Appl. Phys. B 2000, 70,261-265.
    
    [35] P. Yang, M. K. Lu, C. F. Song, S. W. Liu, D. Xu, D. R. Yuan, X. F. Cheng, "Preparation and tunable photoluminescence characteristics of Ni~(2+):SrAl_2O_4", Opt. Mater. 2003,24, 575-580.
    
    [36] R. A. Evarestov, A. V. Bandura, V. E. Alexandrov, E. A. Kotomin, "DFT LCAO and plane wave calculations of SrZrO_3" Phys. Stat. Sol. (b) 2005,242 (2), R11-R13.
    
    [37] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J. Appl. Phys. 1996, 79 (10), 7983-7990.
    
    [38] S. Polizzi, S. Bucella, A. Speghini, F. Vetrone, R. Naccache, J. C. Boyer, J. A. Capobianco, "Nanostructured Lanthanide-Doped Lu2O3 Obtained by Propellant Synthesis", Chem. Mater. 2004,16 (7), 1330-1335.
    
    [39] G.Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini, "Yttria-based nano-sized powders: A new class of fractal materials obtained by combustion synthesis", J. Mater. Res. 2000,15(3), 586-589.
    
    [40] S. Polizzi, G.Fagherazzi, M. Battagliarin, M. Bettinelli, A. Speghini, "Fractal aggregates of lanthanide-doped Y_2O_3 nanoparticles obtained by propellant synthesis", J. Mater. Res. 2001,16,146-154.
    
    [41] R. Y. Wang, "Distribution of Eu~(3+) ions in LaPO_4 nanocrystals", J. Lumin. 2004, 106,211-217.
    
    [42] J. Dexpert-Ghys, R. Mauricot, M. D. Faucher, "Spectroscopy of Eu~(3+) ions in monazite type lanthanide orthophosphates LnPO_4, Ln = La or Eu", J. Lumin. 1996, 69, 203-215.
    [43] R. C. Ewing, W. J. Weber, J. Lian, "Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and "minor" actinides", J. Appl. Phys. 2004,95,5949-5971.
    
    [44] R. A. McCauley, "Structural characteristics of pyrochlore formation", J. Appl. Phys. 1980,51,290-294.
    
    [45] W. R. Cook, Jr. and Hans Jaffe, "Ferroelectricity in Oxides of Face-Centered Cubic Structure" Phys. Rev. 1953, 89,1297-1298.
    
    [46] M. A. Subramanian, G.Aravamudan, G.V. Subba Rao, "Oxide pyrochlores — A review", Prog. Solid State Chem. 1983,15, 55-143.
    
    [47] L. Minervini, R.W. Grimes, "Disorder in Pyrochlore Oxide", J. Am. Ceram. Soc. 2000, 83,1873-1878.
    
    [48] C. R. Stanek, L.Minervini, R. W. Grimes, "Nonstoichiometry in A_2B_2O_7 Pyrochlore", J. Am. Ceram. Soc. 2002, 8,2792-2798.
    
    [49] J. Lian, L. Wang, J. Chen et al. "The order-disorder transition in ion-irradiated pyrochlore", Acta Mater. 2003, 51,1493-1502.
    
    [50] J. Lian , L. M. Wang , R. G. Haire , K. B. Helean , R. C. Ewing, "Ion beam irradiation in La_2Zr_2O_7-Ce_2Zr_2O_7 pyrochlore" Nucl. Instrum. Methods Phys. Res., Sect. B 2004, 218,236-243.
    
    [51] A. A. Digeos, J. A. Valdez, K. E. Sickafus, S. Atiq, R. W. Grimes, A. R. Boccaccini, "Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation", J. Mater. Sci. 2003, 38,1597 - 1604.
    
    [52] S. Pace, V. Cannillo, J. Wu, D. N. Boccaccini, S. Seglem, A. R. Boccaccini, "Processing glass-pyrochlore composites for nuclear waste encapsulation", J. Nucl. Mater. 2005, 341,12-18.
    
    [53] K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, T. Hartmann, "Radiation Tolerance of Complex Oxides", Science 2000, 289, 748-751.
    
    [54] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings",J.Am.Ceram.Soc.2000,83,2023-2028.
    [55]K.J.de Vries,T.Van Dijk,A.J.Burggraaf,Fast Ion Transport in Solids,Elsevier,North Holland,1979.
    [56]S.J.Korf,H.J.A.Koopmans,B.C.Lippens,A.J.Burggrasst,P.J.Gellings,"Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure.CO oxidation on some compounds derived from Gd_2Zr_2O_7",J.Chem.Soc.,Faraday Trans.1987,183,1485-1491.
    [57]O.Otaki,H.Kido,T.Hoshikawa,M.Shimada,K.Koizumi,"Crystal Structure and Fluorescence Properties of R_2Zr_2O-7 and(R_(1-x)EB)_2Zr_2O_7 Compounds",J.Ceram.Soc.Jpn.1988,96,124-126.
    [58]H.Kido,S.Komarneni,R.Roy,"Preparation of La_2Zr_2O_7 by sol-gel routes",J.Am.Ceram.Soc.1991,74,422-424.
    [59]H.Meyssamy,K.Riwotzki,A.Komowski,S.Naused,M.Haase,"Wet-chemical synthesis of doped colloidal nanomaterials:particle and fibres of LaPO_4:Eu,LaPO_4:Ce,amd LaPO_4:Ce,Tb",Adv.Mater.1999,11,840-844.
    [60]T.Hayakawa,K.Furuhashi,M.Nogami,"Enhancement of ~5D_0-~7F_j Emissions of Eu~(3+) Ions in the Vicinity of Polymer-Protected Au Nanoparticles in Sol-Gel-Derived B_2O_3-SiO_2 Glass",J.Phys.Chem.B 2004,108(31),11301-11307.
    [61]K.Riwotzki,M.Haase,"Colloidal YVO_4:Eu and YP_(0.95)V_(0.05)O_4:Eu Nanoparticles:Luminescence and Energy Transfer Processes",J.Phys.Chem.B 2001,105(51),12709-12713.
    [62]K.W.Kramer,D.Biner,G Frei,H.U.Gudel,M.P.Hehlen,S.R.Luthi,"Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors",Chem.Mater.2004,16(7),pp 1244-1251.
    [63]Z.Lu,J.Wang,Y.Tang,Y.Li,"Synthesis and photoluminescence of Eu~(3+)-doped Y_2Sn_2O_7 nanocrystals",J.Solid State Chem.2004,177,3075-3079.
    [64]R.Y.Wang,"Distribution of Eu~(3+) ions in LaPO_4 nanocrystals",J.Lumin.2004,106,211-217.
    [65]L.Tian,B.-Y.Yu,C.-H.Pyun,H.L.Park,S.Mho,"New red phosphors BaZr(BO_3)_2 and SrAl_2B_2O_7 doped with Eu~(3+) for PDP applications",Solid State Commun.2004,129,43-46.
    [66]P.Y.Tigreat,J.L.Doualan,C.Budasca,R.Moncorge,"Energy transfer processes in(Yb~(3+),Dy~(3+)) and(Tm~(3+),Dy~(3+)) codoped LiYF_4 and KY_3F_(10) single crystals",J.Lumin.2001,94-95,23-27.
    [67]A.Patra,"Effect of crystal structure and concentration on luminescence in Er~(3+):ZrO_2 nanocrystals",Chem.Phys.Lett.2004,387,35-39.
    [68]G.Dominiak-Dzik,W.Ryba-Romanowski,L.Kovacs,E.Beregi,"Effect of temperature on luminescence and VUV to visible conversion in the YAl_3(BO_3)_4:Dy~(3+)(YAB:Dy) crystal",Radiat.Meas.2004,38,557-561.
    [69]]D.Zhou,Y.Chen,C.Shi,Y.Wei,H.Chen,M.Yin,"Energy transfer in PbWO_4/Dy~(3+) luminescence",J.Alloys Comp.2001,322,298-301.
    [70]K.K.Rao,T.Banu,M.Vithal,G.Y.S.K.Swamy,K.R.Kumar,"Preparation and characterization of bulk and nano particles of La_2Zr_2O_7 and Nd_2Zr_2O_7 by sol-gel method",Mater.Lett.2002,54,205-210.
    [71]Y.Matsumura,M.Yoshinaka,K.Hirota,O.Yamaguchi,"Formation and sintering of La_2Zr_2O_7 by the hydrazine method",Solid State Commun.1997,104,341-345.
    [72]S.B.Qadri,J.P.Yang,E.F.Skelton,B.R.Ratna,"Evidence of strain and lattice distortion in lead sulfide nanocrystallites",Appl.Phys.Lett.1997,70(8),1020-1021.
    [73]G.K Williamson,W.H.Hall,"X-ray line broadening from filed aluminium and wolfram",Acta Metallurgica 1953,1,22-31.
    [74]B.R.Judd,"Optical Absorption Intensities of Rare-Earth Ions",Phys.Rev.1962,127,750-761.
    [75]G.S.Ofelt,"Intensities of Crystal Spectra of Rare-Earth Ions",J.Chem.Phys.1962,37,511-520.
    [76]P.J.Wilde,C.R.A.Catlow,"Defects and diffusion in pyrochlore structured oxides",Solid State Ionics 1998,112,173-183.
    [77]H.L.Tuller,S.Kramer,M.A.Spears,High Temperature Electrochemical Behaviour of Fast-Ion and Mixed Conductors,In:Poulsen F.W.,Bentzen J.J.,Jacobsen T.,Skou E.,Ostergard M.J.L.,editors,Proceedings of the 14th Ris International Symposium on Materials Science,Riso National Laboratory,Denmark,September 6-10,1993,p.151.
    [78]M.Pirzada,R.W.Grimes,J.F.Maguire,"Incorporation of divalent ions in A_2B_2O_7pyrochlores",Solid State Ionies 2003,161,81-91.
    [79]T.Uehara,K.Koto,Sh.Emura,F.Kanamaru,"Exafs study of the fluorite and pyrochlore compounds in the system ZrO_2-Gd_2O_3",Solid State Ionics 1987,23,331-337.
    [80]M.Yu,J.Lin,Z.Wang,J.Fu,S.Wang,H.J.Zhang,and Y.C.Han,"Fabrication,Patterning,and Optical Properties of Nanocrystalline YVO_4:A(A=Eu~(3+),Dy~(3+),Sm~(3+),Er~(3+)) Phosphor Films via Sol-Gel Soft Lithography",Chem.Mater.2002,14(5),2224-2231.
    [81]S.Yamazaki,T.Yamashita,T.Matsui,T.Nagasaki,"Thermal expansion and solubility limits of plutonium-doped lanthanum zirconates",J.Nucl.Mater.2001,294,183-187.
    [82]R.Jagannathan,"Eu~(3+) luminescence in BiSr_2V_3O_(11)—A potential red phosphor",J.Lumin.1996,68,211-216.
    [83]A.S.Edelstein,R.C.Cammarata,Nanomaterials—Synthesis,Properties and Applications,Institute of Physics Publishing,Bristol and Philadelphia,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700